上海中考数学知识点梳理(20200613201150)
- 格式:pdf
- 大小:283.60 KB
- 文档页数:19
(简化版)上海中考数学知识点梳理
一、代数与函数
1. 一次函数及其应用
2. 幂函数及其应用
3. 绝对值函数及其应用
4. 平方根函数及其应用
5. 指数函数及其应用
6. 对数函数及其应用
二、图形的认识与初步研究
1. 点、直线、线段、射线的认识
2. 角的认识与性质
3. 三角形的认识、性质与判定
4. 平行四边形的认识、性质与判定
5. 直角三角形的认识、性质与判定
6. 圆的认识、性质与应用
三、数与量的关系
1. 数、量和单位的认识
2. 有理数的概念与运算
3. 整数、分数、小数的相互转化与比较
4. 百分数的概念与计算
5. 换算问题的解决
四、数形关系的初步认识
1. 计数原则和排列、组合
2. 几何变化中的相似与全等
3. 二次根式的概念与运算
4. 平面的认识与证明
5. 空间的认识与证明
五、统计与概率
1. 数据的调查与统计
2. 数据的整理与图表
3. 暂未涉及概率相关知识
六、应用题
1. 高斯消元法
2. 无穷等差数列和无穷等比数列的和
以上是 (简化版)上海中考数学知识点的梳理,旨在帮助同学们更好地准备中考数学。
详细的知识点、公式推导和例题解析可以参考相关教材和辅导资料。
上海中考数学知识点总结新一、数与式1.整数、有理数、无理数、实数的概念及它们之间的关系。
2.实数的近似数及其应用。
3.代数式:含有字母的算式。
4.代数式的化简、展开和因式分解。
5.二次根式的化简与近似计算。
二、方程与不等式1.一元一次方程及其应用。
2.一元二次方程及其应用。
3.一元一次不等式及其应用。
4.一元二次不等式及其应用。
三、函数1.函数的概念及表示法。
2.线性函数的性质及图象。
3.一次函数、二次函数及其图象。
4.反比例函数及其图象。
5.导数的概念及计算。
四、图形的性质1.点、线、面、角的概念。
2.直线与平面的位置关系。
3.平行线与垂直线的性质。
4.同位角与内错角的性质。
5.平行四边形与特殊四边形的性质。
6.三角形的基本性质。
7.三角形的分类及其性质。
8.圆的相关概念及性质。
五、空间与图形运动1.空间坐标系的建立及应用。
2.直线与平面的位置关系。
3.空间中的图形运动。
4.图形的平移、旋转、对称等变换。
六、数据与统计1.统计中的基本概念。
2.统计中的图表和图形。
3.列数据的分组、统计和分析。
4.事件的概念与性质。
七、几何证明1.几何证明的基本思想与方法。
2.证明方法的灵活运用。
3.利用已知条件论证结论的正确性。
4.聪明构造和直观推理的应用。
以上是上海中考数学的主要知识点总结,包含了数与式、方程与不等式、函数、图形的性质、空间与图形运动、数据与统计以及几何证明等内容。
熟练掌握这些知识点,可以帮助学生更好地应对中考数学考试。
上海中考数学复习要点一、整数运算1.整数的加减乘除运算。
2.整数加减法的应用。
二、分数与小数1.分数和小数的相互转换。
2.分数的加减乘除运算。
3.分数的化简与约分。
三、代数式与简单方程1.代数式的运算。
2.一元一次方程的解法。
3.文字题中的一元一次方程。
四、几何基础1.直线、线段、射线的概念与特点。
2.角的概念与特点。
3.三角形的分类与特点。
4.四边形的分类与特点。
5.梯形、平行四边形、矩形、正方形、菱形的性质。
6.圆的概念、元素及性质。
五、平面图形的认识1.平面图形的特点。
2.等边三角形、等腰三角形、直角三角形的性质。
3.同边角、同位角、内错角、内反角的概念与性质。
4.平行线、垂直线与四边形之间的关系。
5.合同图形的判定。
六、比例与相似1.比例与比例的性质。
2.身高、体重等的比例问题。
3.相似图形的概念与性质。
七、数的运算1.小数的加减乘除运算。
2.平方根与简单的开方运算。
3.百分数的计算。
4.比例、百分比、利率的关系。
八、统计与概率1.统计图表的分析。
2.数据的计算。
3.简单的概率计算。
九、函数1.一元一次函数的概念与性质。
2.函数图象的认识。
十、三角函数1.正弦、余弦、正切的概念与性质。
2.三角函数在直角三角形中的应用。
十一、空间几何与解题思路1.空间图形的特征与性质。
2.空间图形的正视图、侧视图与俯视图的认识与绘制。
3.平面与空间几何的运用。
以上是上海中考数学的复习要点,希望对你的复习有所帮助。
祝你取得好成绩!。
上海中考数学知识点梳理第一单元数与运算一、数的整除1.内容要目数的整除性、奇数和偶数、因数和倍数、素数和合数,公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。
2.基本要求(1)知道数的整除性、奇数和偶数、素数和合数、因数和倍数、公倍数和公因素等的意义;知道能被2、5整除的正整数的特征。
(2)会用短除法分解素因数;会求两个正整数的最大公因素和最小公倍数。
3.重点和难点重点是会正确地分解素因数,并会求两个正整数的最大公因数和最小公倍数。
难点是求两个正整数的最小公倍数。
4.知识结构二、实数1.内容要目实数的概念,实数的运算。
近似计算以及科学记数法。
2.基本要求(1)理解开方及方根的意义,知道无理数的概念,知道实数与数轴上的点具有一一对应的关系。
(2)理解实数概念,掌握实数的加、减、乘、除、乘方、开方等运算的法制,会正确进行实数的运算。
(3)会用计算器进行实数的运算,初步掌握估算、近似计算的基本方法和科学记数法。
3.重点和难点重点是理解实数概念,会正确进行实数的运算。
难点是认识实数与数轴上的点的一一对应关系。
4.知识结构第二单元 方程与代数一、整式与分式 1.内容要目 代数式,整式的加减法,同底数幂的乘法和除法,幂的乘方,积的乘方。
单项式的乘法和除法,单项式与多项式的乘法,多项式除以单项式,多项式的乘法。
乘法公式:22222()();()2a b a b a b a b a ab b +-=-±=±+因式分解:提取公因式法,公式法,十字相乘法,分组分解法。
分式,分式的基本性质,约分,最简分式,通分,分式的乘除法,分式的加减法,整数的指数幂,整数指数幂的运算。
2.基本要求(1)理解用字母表示数的意义;理解代数式的有关概念。
(2)通过列代数式,掌握文字语言与数学式子的表述之间的转换,领悟字母“代”数的数学思想;会求代数式的值。
(3)掌握整式的加、减、乘、除及乘方的运算法则,掌握平方差公式、两数和(差)的平方公式。
完整版)上海中考数学知识点梳理3)掌握整式的加减法、单项式的乘法和除法、多项式的乘法和除法,以及分式的基本性质、约分、通分、乘除法和加减法等运算法则。
3.重点和难点重点是掌握整式和分式的基本性质和运算法则,以及因式分解的方法。
难点是理解代数式的概念和文字语言与数学式子的转换,以及分式的加减法。
4.知识结构代数式整式单项式多项式加减法乘法除法因式分解分式约分通分乘除法加减法二、方程与不等式1.内容要目一元一次方程及其应用,一元二次方程及其应用,简单的分式方程和含有绝对值的方程。
一元一次不等式及其应用,一元二次不等式及其应用,简单的分式不等式和含有绝对值的不等式。
2.基本要求1)掌握解一元一次方程及其应用的方法,理解解方程的意义。
2)掌握解一元二次方程及其应用的方法,理解二次函数的基本性质。
3)掌握解简单的分式方程和含有绝对值的方程的方法,理解绝对值的概念和性质。
4)掌握解一元一次不等式及其应用的方法,理解不等式的意义。
5)掌握解一元二次不等式及其应用的方法,理解二次函数的基本性质。
6)掌握解简单的分式不等式和含有绝对值的不等式的方法,理解绝对值的概念和性质。
3.重点和难点重点是掌握解一元一次方程和不等式、一元二次方程和不等式的方法,以及含有绝对值的方程和不等式的解法。
难点是理解二次函数的基本性质和绝对值的概念和性质,以及运用它们解题的能力。
4.知识结构一元一次方程及应用一元二次方程及应用分式方程和含有绝对值的方程一元一次不等式及应用一元二次不等式及应用分式不等式和含有绝对值的不等式本文介绍了数学中的几个重要概念和解法,包括二次根式、一次方程与不等式组、一元二次方程以及代数方程。
其中,二次根式的性质包括最简和同类,以及分母有理化的方法。
在一次方程与不等式组中,主要包括概念、解法、性质和应用,例如一元一次方程的解法、二元一次方程组的解法、不等式的解集和利用数轴表示不等式的解集等。
在一元二次方程中,涉及到解法、根的判别式和应用,例如利用开平方法、因式分解法和公式法解特殊的一元二次方程,以及利用判别式判断实数根的情况。
上海初中数学知识点汇总
③边角关系:三角函数的定义。
注意:尽量避免使用中间数据和除法。
三、对实际问题的处理1.俯、仰角
2.方位角、象限角
3.坡度
4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
★重点★解直角三角形第
十章
圆一、圆的基本
性质
1.圆的定义(两种)
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等
圆、同圆、同心圆。
3.“三点定圆”定理
4.垂径定理及其推论
5.“等对等”定理及其推论
6.与圆有关的角:
⑴圆心角定义(等对等定理)
⑵圆周角定义(圆周角定理,与圆心角的关系)
⑶弦切角定义(弦切角定理)
弦切角的度数等于它所夹的弧的圆心角的度数的一半.
二、直线和圆
的位置关系
1.三种位置及判定与性质:
2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题。
上海数学中考知识点数学中考是对初中数学知识的一次全面考查,对于上海的考生来说,了解并掌握相关知识点是取得好成绩的关键。
以下将为大家详细梳理上海数学中考的主要知识点。
一、数与代数1、实数包括有理数和无理数。
有理数的运算规则,如加减乘除、乘方等,要熟练掌握。
无理数如根号 2、π 等的概念和基本性质也要清楚。
实数的大小比较、绝对值、相反数等都是常见考点。
2、代数式整式的加减乘除运算,特别是幂的运算规则(同底数幂相乘、幂的乘方、积的乘方等)。
因式分解的方法,如提公因式法、公式法(平方差公式、完全平方公式)。
分式的化简求值,要注意分母不能为零。
3、方程与不等式一元一次方程、二元一次方程组的解法及应用。
一元二次方程的求根公式、根的判别式,以及用配方法、公式法求解。
不等式的性质和解法,一元一次不等式组的解集。
4、函数一次函数的图像与性质,包括斜率、截距的意义,以及用待定系数法求函数解析式。
反比例函数的图像与性质,重点是其对称性和增减性。
二次函数的图像与性质是重点中的重点,包括开口方向、对称轴、顶点坐标、最值等,同时要能根据题目条件灵活运用配方法、公式法求函数解析式。
二、图形与几何1、三角形三角形的基本性质,如内角和定理、外角性质。
全等三角形的判定方法(SSS、SAS、ASA、AAS、HL),相似三角形的判定和性质,包括相似比的应用。
直角三角形的勾股定理及其逆定理。
2、四边形平行四边形、矩形、菱形、正方形的性质和判定定理。
多边形的内角和与外角和公式。
3、圆圆的基本性质,如垂径定理、圆心角定理、圆周角定理。
直线与圆的位置关系(相离、相切、相交),以及切线的性质和判定。
圆与圆的位置关系。
4、图形的变换平移、旋转、轴对称的性质和作图。
三、统计与概率1、数据的收集与整理普查和抽样调查的区别,总体、个体、样本、样本容量的概念。
2、数据的分析平均数、中位数、众数的计算和意义,方差的计算和意义,用于反映数据的集中趋势和离散程度。
上海中考数学知识点上海中考数学知识点概述一、数与代数1. 有理数的混合运算- 绝对值、相反数、有理数的加、减、乘、除运算 - 有理数的乘方、平方根、立方根2. 整式的运算- 单项式与多项式的概念- 整式的加减、乘除运算- 因式分解:提公因式、公式法、分组分解法3. 代数式的化简与求值- 代数式的化简- 代数式的求值4. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 不等式及其解集- 一元一次不等式(组)的解法5. 函数的概念与性质- 函数的定义- 函数的表示方法:图像、表格、解析式- 函数的性质:定义域、值域、单调性、特殊点6. 二元一次方程组- 二元一次方程组的解法:代入法、消元法- 线性方程组的应用问题7. 一元二次方程- 一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法- 一元二次方程根的判别式- 一元二次方程的应用问题二、几何1. 平面图形的认识- 点、线、面的基本性质- 角的概念及其分类:邻角、对顶角、同位角、内错角2. 三角形- 三角形的基本性质- 等边三角形、等腰三角形的性质- 三角形的内角和定理- 三角形的外角性质3. 四边形- 平行四边形的性质与判定- 矩形、菱形、正方形的性质与判定- 梯形的性质与判定4. 圆的基本性质- 圆的定义及其性质- 圆的对称性- 圆周角、圆心角、弦、弧的关系5. 圆的位置关系- 点与圆的位置关系- 直线与圆的位置关系- 圆与圆的位置关系6. 面积与体积的计算- 平面图形的面积计算:长方形、正方形、三角形、梯形、圆 - 立体图形的体积计算:长方体、正方体、圆柱、圆锥7. 相似与全等- 全等三角形的判定- 相似三角形的判定与性质- 相似多边形与相似比8. 解析几何- 坐标系中点的位置表示- 平面直角坐标系中直线的方程- 圆的标准方程三、统计与概率1. 统计- 统计调查- 频数与频率- 统计图表的绘制与解读:条形图、折线图、饼图2. 概率- 随机事件的概率- 概率的计算- 简单事件的概率分布四、综合应用题- 结合实际情境,运用所学数学知识解决实际问题- 理解题目要求,分析问题,运用适当的数学工具和方法- 逻辑清晰地表述解题过程和结果请注意,本文仅为上海中考数学知识点的概述,具体的教学大纲和考试要求可能会有所变化。
上海中考数学知识点总结今天给大家汇总了考试中常出错的七个模块的易错知识点,同学们务必记住哦!一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。
以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时学生易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。
五个基本数的计算:0 指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。
精确度,有效数字。
这个上海还没有考过,知道就好!易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0 的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带X 公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。
易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。