2017-2018学年福建省泉州市鲤城区北片区七年级(下)期末数学试卷-普通用卷
- 格式:docx
- 大小:118.33 KB
- 文档页数:12
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √-1B. πC. 0.1010010001...D. √42. 已知a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. ab > 0D. a/b < 03. 下列函数中,有最小值的是()A. y = x^2B. y = -x^2C. y = x^2 + 2x + 1D. y = x^2 - 2x + 14. 已知三角形的三边长分别为3,4,5,则这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形5. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰梯形D. 圆6. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2 + 2abB. (a - b)^2 = a^2 - 2ab + b^2 - 2abC. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2 + 2ab7. 已知一元二次方程x^2 - 5x + 6 = 0,则方程的解是()A. x1 = 2,x2 = 3B. x1 = 3,x2 = 2C. x1 = 6,x2 = 1D. x1 = 1,x2 = 68. 下列函数中,y = x^2 + 2x + 1是()A. 一次函数B. 二次函数C. 常数函数D. 分式函数9. 下列各数中,无理数是()A. √9B. √16C. √-1D. √2510. 下列图形中,周长最小的是()A. 正方形B. 长方形C. 等腰梯形D. 圆二、填空题(每题5分,共50分)11. 0.5的平方根是__________,3的立方根是__________。
12. 若a + b = 5,ab = 6,则a^2 + b^2的值为__________。
泉州市第八中学2017—2018学年度第二学期期末调研测试七 年 级 数 学 试 题(全卷共五个大题 满分150分 考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.方程20x =的解是A .2x =-B .0x =C .12x =- D .12x =2.以下四个标志中,是轴对称图形的是A .B .C .D .3.解方程组⎩⎨⎧=+=-②①,.102232y x y x 时,由②-①得A .28y =B .48y =C .28y -=D .48y -= 4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为 A .2 B .3 C .7 D .16 5.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是 A .x >3 B .x ≥3 C .x >1 D .x6.将方程31221+=--x x 去分母,得到的整式方程是 A .()()12231+=--x x B .()()13226+=--x x C .()()12236+=--x x D .22636+=--x x 7.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 的形状是A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 8.已知x m =是关于的方程26x m +=的解,则m 的值是5题图-1PA .-3B .3C .-2D .29.下列四组数中,是方程组20,21,32x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是A .1,2,3.x y z =⎧⎪=-⎨⎪=⎩B .1,0,1.x y z =⎧⎪=⎨⎪=⎩C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为 A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的 度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.在方程21x y -=中,当1x =-时,y = . 14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 .17.若不等式组0,0x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出发,点Q 以每秒1个单位的速度沿A →D →C→B …ABECDF10题图12题图A ′15题图DEABC以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整 个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 19.解方程组:,.202321x y x y -=⎧⎨+=⎩ 20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?21题图23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数.24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元. (1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?ADBCE23题图五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±.例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x参考阅读材料,解答下列问题: (1)方程|x +3|=4的解为 ; (2)解不等式:|x -3|≥5;-2(3)解不等式:|x -3|+|x +4|≥926.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.CABDMP26题图1BDMNAC PQ26题图2泉州市第八中学2017-2018学年度二学期期末调研测试七年级数学试题参考答案及评分意见一、选择题:13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分 将3y =代入①,得 6x =.………………………………………………………6分∴原方程组的解为6,3.x y =⎧⎨=⎩………………………………………………………7分20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 解得 4x =.…………………………………………………………………………9分 经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,(1)正确画出△A 1B 1C 1.………………………4分(2)正确画出△A 2B 2C 2.………………………8分(3)正确画出点P . ……………………10分21题答图∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分 解得 6a ≥.答:该水果每千克售价至少为6元. ·············· 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为=-2或=8,∴不等式|x -3|≥5的解集为≤-2或≥8. ··········· 8分(3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得=4;若x 对应的点在-4的左边,可得=-5, ∴方程|x -3|+|x +4|=9的解是=4或=-5,∴不等式|x -3|+|x +4|≥9的解集为≥4或≤-5. ······· 12分AM PCM BMCP AABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····················· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ····················· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN ,∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ·········· 10分由(2)知:A M ∠=∠21, 又由轴对称性质知:∠M =∠N ,∴A BQC ∠+︒=∠4190.………………………………………8分………………………………………6分。
泉州市第八中学2017—2018学年度第二学期期末调研测试七 年 级 数 学 试 题(全卷共五个大题 满分150分 考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.方程20x =的解是A .2x =-B .0x =C .12x =- D .12x =2.以下四个标志中,是轴对称图形的是A .B .C .D .3.解方程组⎩⎨⎧=+=-②①,.102232y x y x 时,由②-①得A .28y =B .48y =C .28y -=D .48y -= 4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为 A .2 B .3 C .7 D .16 5.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是 A .x >3 B .x ≥3 C .x >1 D .x ≥6.将方程31221+=--x x 去分母,得到的整式方程是 A .()()12231+=--x x B .()()13226+=--x x C .()()12236+=--x x D .22636+=--x x 7.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 的形状是A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 8.已知x m =是关于x 的方程26x m +=的解,则m 的值是A .-3B .3C .-2D .29.下列四组数中,是方程组20,21,32x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是5题图-118题图P A .1,2,3.x y z =⎧⎪=-⎨⎪=⎩ B .1,0,1.x y z =⎧⎪=⎨⎪=⎩ C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩ D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为 A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的 度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.在方程21x y -=中,当1x =-时,y = . 14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 .17.若不等式组0,0x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.… A BECDF10题图12题图A′15题图 DEABC19.解方程组:,.202321x y x y -=⎧⎨+=⎩ 20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数.ADBCE23题图21题图24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元. (1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±.例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满-2-1足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题: (1)方程|x +3|=4的解为 ; (2)解不等式:|x -3|≥5;(3)解不等式:|x -3|+|x +4|≥926.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.C ABDMP26题图1BDMNAC PQ26题图2泉州市第八中学2017-2018学年度二学期期末调研测试七年级数学试题参考答案及评分意见13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩ ………………………………………………………7分20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:(1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 解得 4x =.…………………………………………………………………………9分 经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分(2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分解得 6a ≥.答:该水果每千克售价至少为6元. ····························································· 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,A M PCM BMCP A ABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ············································· 8分(3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ······························· 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····························································································· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ··························································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··············································· 10分由(2)知:A M ∠=∠21, ………………………………………8分………………………………………6分又由轴对称性质知:∠M =∠N ,∴A BQC ∠+︒=∠4190.。
泉州市第八中学2017—2018学年度第二学期期末调研测试七 年 级 数 学 试 题(全卷共五个大题 满分150分 考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.方程20x =的解是A .2x =-B .0x =C .12x =- D .12x =2.以下四个标志中,是轴对称图形的是A .B .C .D .3.解方程组⎩⎨⎧=+=-②①,.102232y x y x 时,由②-①得A .28y =B .48y =C .28y -=D .48y -= 4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为 A .2 B .3 C .7 D .16 5.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是 A .x >3 B .x ≥3 C .x >1 D .x ≥6.将方程31221+=--x x 去分母,得到的整式方程是 A .()()12231+=--x x B .()()13226+=--x x C .()()12236+=--x x D .22636+=--x x 7.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 的形状是A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 8.已知x m =是关于x 的方程26x m +=的解,则m 的值是A .-3B .3C .-2D .29.下列四组数中,是方程组20,21,32x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是5题图18题图P A .1,2,3.x y z =⎧⎪=-⎨⎪=⎩ B .1,0,1.x y z =⎧⎪=⎨⎪=⎩ C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩ D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为 A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的 度数为 A .30° B .50° C .80° D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.在方程21x y -=中,当1x =-时,y = .14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 .17.若不等式组0,0x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.解方程组:,.202321x y x y -=⎧⎨+=⎩20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩…A BECDF10题图12题图′15题图 DEABC四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数.24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.ADBCE23题图21题图(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±. 例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为 ; (2)解不等式:|x -3|≥5;-2-1(3)解不等式:|x -3|+|x +4|≥926.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.泉州市第八中学2017-2018学年度二学期期末调研测试七年级数学试题参考答案及评分意见一、选择题:CABDMP26题图1BDMNAC PQ26题图213.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩ ………………………………………………………7分20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 解得 4x =.…………………………………………………………………………9分 经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,(1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分解得 6a ≥.答:该水果每千克售价至少为6元. ····························································· 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ············································ 8分(3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ······························ 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.A M PCM BMCP A ABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ···························································································· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ·························································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ·············································· 10分由(2)知:A M ∠=∠21, 又由轴对称性质知:∠M =∠N ,∴A BQC ∠+︒=∠4190.………………………………………8分………………………………………6分。
2017—2018学年度第二学期期末考试初一数学试题一、填空题(每空1分,共22分)1、如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。
2、从80减少到50,减少了()%;从50增加到80,增加了()%。
3、某班有60人,缺席6人,出勤率是()%。
4、如果3a=5b(a、b≠0),那么a:b=()。
5、一个圆锥的体积12dm3 ,高3dm,底面积是()。
6、甲、乙两数的比是5:8,甲数是150,乙数是()。
7、比较大小:-7○-5 1.5○5 20○-2.4 -3.1○3.18、某服装店一件休闲装现价200元,比原价降低了50元,相当于打()折。
照这样的折扣,原价800元的西装,现价()元。
9、一个圆柱和一个圆锥的体积相等,底面积也相等,圆柱的高是4米,圆锥的是高()米。
10、一桶油连桶称7.5千克,用去一半油后,连桶称还重4.5千克。
桶重()千克,油重()千克。
11、13只鸡放进4个鸡笼里,至少有()只鸡要放进同一个笼子里。
12、一个圆柱形的木料,底面半径是3厘米,高是8厘米,这个圆柱体的表面积是()平方厘米。
如果把它加工成一个最大的圆锥体,削去部分的体积是()立方厘米。
13、找出规律,填一填。
3,11,20,30,(),53,()。
二、判断题:对的在括号打√,错的打×。
(每小题1分共5分)1、0是负数。
()2、书店以50元卖出两套不同的书,一套赚10%,一套亏本10%,书店是不亏也不赚。
()3、时间一定,路程和速度成正比例。
()4、栽120棵树,都成活了,成活率是120%。
()5、圆柱的体积大于与它等底等高的圆锥的体积。
()三、选择题(每题3分,共15分)1、规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A、9吨记为-9吨B、12吨记为+2吨C、6吨记为-4吨D、+3吨表示重量为13吨2、在a12=13中,a的值是()A、12B、4C、6D、83、把长1.2米的圆柱形钢材按2:3:7截成三段,表面积比原来增加56平方厘米,这三段圆钢中最长的一段比最短的一段体积多()A、700立方厘米B、800立方厘米C、840立方厘米D、980立方厘米4、小刚把1000元钱按年利率2.4%存入银行,存期为两年,那么计算到期时她可以从银行取回多少钱(不计利息税),列式正确的是()。
1泉州市第八中学2017—2018学年度第二学期期末调研测试七 年 级 数 学 试 题(全卷共五个大题 满分150分 考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.方程20x =的解是A .2x =-B .0x =C .12x =- D .12x =2.以下四个标志中,是轴对称图形的是A .B .C .D .3.解方程组⎩⎨⎧=+=-②①,.102232y x y x 时,由②-①得A .28y =B .48y =C .28y -=D .48y -= 4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为 A .2 B .3 C .7 D .16 5.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是 A .x >3 B .x ≥3 C .x >1 D .x ≥6.将方程31221+=--x x 去分母,得到的整式方程是 A .()()12231+=--x x B .()()13226+=--x x C .()()12236+=--x x D .22636+=--x x 7.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 的形状是A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 8.已知x m =是关于x 的方程26x m +=的解,则m 的值是A .-3B .3C .-2D .29.下列四组数中,是方程组20,21,32x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是A .1,2,3.x y z =⎧⎪=-⎨⎪=⎩B .1,0,1.x y z =⎧⎪=⎨⎪=⎩C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩A B ECDF10题图5题图218题图P 10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为 A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的 度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.在方程21x y -=中,当1x =-时,y = .14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 . 17.若不等式组0,x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.解方程组:,.202321x y x y -=⎧⎨+=⎩ 20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程… 12题图′15题图 DEABC3或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数.24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元. (1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有ADBCE23题图21题图43% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±.例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为 ; (2)解不等式:|x -3|≥5;(3)解不等式:|x -3|+|x +4|≥9-2-1526.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.泉州市第八中学2017-2018学年度二学期期末调研测试七年级数学试题参考答案及评分意见一、选择题:C ABDMP26题图1BDMNAC PQ26题图2613.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分∴原方程组的解为6,3.x y =⎧⎨=⎩………………………………………………………7分20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 解得 4x =.…………………………………………………………………………9分 经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分(1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图723.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分解得 6a ≥.答:该水果每千克售价至少为6元. ······························································10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ·············································8分(3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,8AM PCM BMCP A ABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5.······························· 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····························································································· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ··························································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··············································· 10分由(2)知:A M ∠=∠21, 又由轴对称性质知:∠M =∠N ,∴A BQC ∠+︒=∠4190.………………………………………8分………………………………………6分。
泉州市第八中学2017—2018学年度第二学期期末调研测试七 年 级 数 学 试 题(全卷共五个大题 满分150分 考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.方程20x =的解是A .2x =-B .0x =C .12x =- D .12x =2.以下四个标志中,是轴对称图形的是A .B .C .D .3.解方程组⎩⎨⎧=+=-②①,.102232y x y x 时,由②-①得A .28y =B .48y =C .28y -=D .48y -= 4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为 A .2 B .3 C .7 D .16 5.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是 A .x >3 B .x ≥3 C .x >1 D .x ≥6.将方程31221+=--x x 去分母,得到的整式方程是 A .()()12231+=--x x B .()()13226+=--x x C .()()12236+=--x x D .22636+=--x x 7.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 的形状是A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 8.已知x m =是关于x 的方程26x m +=的解,则m 的值是A .-3B .3C .-2D .29.下列四组数中,是方程组20,21,32x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是A .1,2,3.x y z =⎧⎪=-⎨⎪=⎩B .1,0,1.x y z =⎧⎪=⎨⎪=⎩C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8,ABECDF10题图5题图18题图B CP 则四边形ABFD 的周长为 A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的 度数为 A .30° B .50° C .80° D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.在方程21x y -=中,当1x =-时,y = .14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 .17.若不等式组0,0x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21axy x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 19.解方程组:,.202321x y x y -=⎧⎨+=⎩ 20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.…12题图′15题图 DEABC22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数.24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?ADBCE 23题图五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±. 例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为 ; (2)解不等式:|x -3|≥5;(3)解不等式:|x -3|+|x +4|≥926.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.AMPMA-2-1泉州市第八中学2017-2018学年度二学期期末调研测试七年级数学试题参考答案及评分意见13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩ ………………………………………………………7分20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 解得 4x =.…………………………………………………………………………9分 经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分(1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图AM PCM BMCP AABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBCMCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分解得 6a ≥.答:该水果每千克售价至少为6元.······························································ 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ············································· 8分(3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ······························ 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°,解得 20k =°.∴360A k ∠==°. ···········································(2)证明:(3)猜想A BQC ∠+︒=∠4190.··························································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··············································· 10分由(2)知:A M ∠=∠21, 又由轴对称性质知:∠M =∠N ,∴A BQC ∠+︒=∠4190.………………………………………8分………………………………………6分。
泉州市第八中学2017—2018学年度第二学期期末调研测试七 年 级 数 学 试 题(全卷共五个大题 满分150分 考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.方程20x =的解是A .2x =-B .0x =C .12x =- D .12x =2.以下四个标志中,是轴对称图形的是A .B .C .D .3.解方程组⎩⎨⎧=+=-②①,.102232y x y x 时,由②-①得A .28y =B .48y =C .28y -=D .48y -= 4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为 A .2 B .3 C .7 D .16 5.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是 A .x >3 B .x ≥3 C .x >1 D .x6.将方程31221+=--x x 去分母,得到的整式方程是 A .()()12231+=--x x B .()()13226+=--x x C .()()12236+=--x x D .22636+=--x x 7.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 的形状是A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 8.已知x m =是关于的方程26x m +=的解,则m 的值是5题图-1PA .-3B .3C .-2D .29.下列四组数中,是方程组20,21,32x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是A .1,2,3.x y z =⎧⎪=-⎨⎪=⎩B .1,0,1.x y z =⎧⎪=⎨⎪=⎩C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为 A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的 度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.在方程21x y -=中,当1x =-时,y = . 14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 .17.若不等式组0,0x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出发,点Q 以每秒1个单位的速度沿A →D →C→B …ABECDF10题图12题图A ′15题图DEABC以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整 个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 19.解方程组:,.202321x y x y -=⎧⎨+=⎩ 20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?21题图23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数.24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元. (1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?ADBCE23题图五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±.例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x参考阅读材料,解答下列问题: (1)方程|x +3|=4的解为 ; (2)解不等式:|x -3|≥5;-2(3)解不等式:|x -3|+|x +4|≥926.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.CABDMP26题图1BDMNAC PQ26题图2泉州市第八中学2017-2018学年度二学期期末调研测试七年级数学试题参考答案及评分意见一、选择题:13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分 将3y =代入①,得 6x =.………………………………………………………6分∴原方程组的解为6,3.x y =⎧⎨=⎩………………………………………………………7分20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 解得 4x =.…………………………………………………………………………9分 经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,(1)正确画出△A 1B 1C 1.………………………4分(2)正确画出△A 2B 2C 2.………………………8分(3)正确画出点P . ……………………10分21题答图∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分 解得 6a ≥.答:该水果每千克售价至少为6元. ·············· 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为=-2或=8,∴不等式|x -3|≥5的解集为≤-2或≥8. ············ 8分(3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得=4;若x 对应的点在-4的左边,可得=-5, ∴方程|x -3|+|x +4|=9的解是=4或=-5,∴不等式|x -3|+|x +4|≥9的解集为≥4或≤-5. ······· 12分AM PCM BMCP AABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····················· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ······················ 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN ,∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ·········· 10分由(2)知:A M ∠=∠21, 又由轴对称性质知:∠M =∠N ,∴A BQC ∠+︒=∠4190.………………………………………8分………………………………………6分。
2017-2018学年福建省泉州市鲤城区北片区七年级(下)期末数学试卷一、选择题(共40分,每小题4分)1.(4分)下列是二元一次方程的是()A.3x﹣2=10B.4x=3a C.3x﹣y2=0D.3x﹣y=4xy 2.(4分)若a>b,则下列式子中错误的是()A.a﹣2>b﹣2B.a+3>b+3C.﹣5a>﹣5b D.3.(4分)下列长度的三条线段能组成三角形的是()A.2,3,5B.7,4,2C.3,4,8D.3,3,44.(4分)在下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.5.(4分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.6.(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10B.9C.8D.67.(4分)我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是()A.3x﹣2=2x+9B.3(x﹣2)=2x+9C.D.3(x﹣2)=2(x+9)8.(4分)如果x=﹣1是关于x的方程x+2k﹣3=0的解,则k的值是()A.﹣1B.1C.﹣2D.29.(4分)若不等式组无解,则m的取值范围是()A.m>2B.m<2C.m≥2D.m≤210.(4分)如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(共24分,每小题4分)11.(4分)方程2x﹣5=0的解为.12.(4分)用一种正五边形或正八边形的瓷砖铺满地面(填“能”或“不能”).13.(4分)若(m﹣1)x|m|+5=0是关于x的一元一次方程,则m=.14.(4分)已知,则x+y+z的值为.15.(4分)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=.16.(4分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有(填序号).三、解答题(共86分)17.(8分)解方程:5x﹣2(3﹣2x)=﹣3.18.(8分)解方程组19.(8分)解不等式组:20.(8分)已知△ABC中,DE∥BC,∠AED=50°,CD平分∠ACB,求∠CDE的度数.21.(8分)如图,根据要求画图.(1)把△ABC向右平移5个方格,画出平移的图形.(2)以点B为旋转中心,把△ABC顺时针方向旋转90°,画出旋转后的图形.22.(10分)为落实优秀传统文化进校园,某校计划购进“四书”、“五经”两套图书供学生借阅,已知这两套图书单价和为660元,一套“四书”比一套“五经”的2倍少60元.(1)分别求出这两套图书的单价;(2)该校购买这两套图书不超过30600元,且购进“四书”至少33套,“五经”的套数是“四书”套数的2倍,该校共有哪几种购买方案?23.(10分)已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.24.(12分)如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后分钟时,甲乙两人第一次在正方形的顶点处相遇;(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是.25.(14分)探索新知:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.(1)一个角的平分线这个角的“巧分线”;(填“是”或“不是”)(2)如图2,若∠MPN=α,且射线PQ是∠MPN的“巧分线”,则∠MPQ=;(用含α的代数式表示出所有可能的结果)深入研究:如图2,若∠MPN=60°,且射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当PQ与PN成180°时停止旋转,旋转的时间为t秒.(3)当t为何值时,射线PM是∠QPN的“巧分线”;(4)若射线PM同时绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN的“巧分线”时t的值.2017-2018学年福建省泉州市鲤城区北片区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共40分,每小题4分)1.(4分)下列是二元一次方程的是()A.3x﹣2=10B.4x=3a C.3x﹣y2=0D.3x﹣y=4xy【解答】解:A、是一元一次方程,故A错误;B、是二元一次方程,故B正确;C、是二元二次方程,故C错误;D、是二元二次方程,故D错误;故选:B.2.(4分)若a>b,则下列式子中错误的是()A.a﹣2>b﹣2B.a+3>b+3C.﹣5a>﹣5b D.【解答】解:A、不等式的两边都减2,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号的方向不变,故B正确;C、不等式的两边都乘(﹣5),不等号的方向改变,故C错误;D、不等式的两边都除以3,不等号的方向不变,故D正确;故选:C.3.(4分)下列长度的三条线段能组成三角形的是()A.2,3,5B.7,4,2C.3,4,8D.3,3,4【解答】解:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选:D.4.(4分)在下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,符合题意;B、是轴对称图形,又是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,是中心对称图形,不符合题意.故选:A.5.(4分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【解答】解:由(1)得x>﹣1,由(2)得x≤1,所以﹣1<x≤1.故选B.6.(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10B.9C.8D.6【解答】解:设多边形有n条边,由题意得:180°(n﹣2)=360°×3,解得:n=8.故选:C.7.(4分)我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是()A.3x﹣2=2x+9B.3(x﹣2)=2x+9C.D.3(x﹣2)=2(x+9)【解答】解:设车x辆,根据题意得:3(x﹣2)=2x+9.故选:B.8.(4分)如果x=﹣1是关于x的方程x+2k﹣3=0的解,则k的值是()A.﹣1B.1C.﹣2D.2【解答】解:∵x=﹣1是关于x的方程x+2k﹣3=0的解,∴﹣1+2k﹣3=0,解得,k=2,故选:D.9.(4分)若不等式组无解,则m的取值范围是()A.m>2B.m<2C.m≥2D.m≤2【解答】解:,∵解不等式①得:x>2,不等式②的解集是x<m,又∵不等式组无解,∴m≤2,故选:D.10.(4分)如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°【解答】解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC,∴∠BAC=∠DEC,∠1+∠2=180°.故选:B.二、填空题(共24分,每小题4分)11.(4分)方程2x﹣5=0的解为x=2.5.【解答】解:方程2x﹣5=0,移项得:2x=5,解得:x=2.5,故答案为:x=2.512.(4分)用一种正五边形或正八边形的瓷砖不能铺满地面(填“能”或“不能”).【解答】解:根据平面镶嵌的条件,可知用一种正五边形或正八边形的瓷砖不能铺满地面.13.(4分)若(m﹣1)x|m|+5=0是关于x的一元一次方程,则m=﹣1.【解答】解:由题意,得|m|=1,且m﹣1≠0,解得m=﹣1,故答案为:﹣1.14.(4分)已知,则x+y+z的值为10.【解答】解:,①+②+③得:2(x+y+z)=20,则x+y+z=10,故答案为:1015.(4分)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=30°.【解答】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=75°,∴∠ACC′=∠AC′C=∠BAC=75°,∴∠CAC′=180°﹣2×75°=30°;由题意知:∠BAB′=∠CAC′=30°,故答案为30°.16.(4分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有①②③④(填序号).【解答】解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=∠EAC,∠DCA=∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣(∠EAC+∠ACF)=180°﹣(∠ABC+∠ACB+∠ABC+∠BAC)=180°﹣(180°﹣∠ABC)=90°﹣∠ABC,∴③正确;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴④正确;故答案为:①②③④三、解答题(共86分)17.(8分)解方程:5x﹣2(3﹣2x)=﹣3.【解答】解:去括号得:5x﹣6+4x=﹣3,移项、合并得:9x=3,系数化为1得:x=.18.(8分)解方程组【解答】解:②﹣①得;3x=6∴x=2把代入①解得:y=∴原方程组的解是19.(8分)解不等式组:【解答】解:由①得:x<2,由②得:x≥0,不等式组的解集为:0≤x<2.20.(8分)已知△ABC中,DE∥BC,∠AED=50°,CD平分∠ACB,求∠CDE的度数.【解答】解:∵DE∥BC,∠AED=50°,∴∠ACB=∠AED=50°,∵CD平分∠ACB,∴∠BCD=∠ACB=25°,∵DE∥BC,∴∠EDC=∠BCD=25°.21.(8分)如图,根据要求画图.(1)把△ABC向右平移5个方格,画出平移的图形.(2)以点B为旋转中心,把△ABC顺时针方向旋转90°,画出旋转后的图形.【解答】解:如图所示,(1)△A1B1C1即为平移后的图形;(2)△A2BC2即为旋转后的图形.22.(10分)为落实优秀传统文化进校园,某校计划购进“四书”、“五经”两套图书供学生借阅,已知这两套图书单价和为660元,一套“四书”比一套“五经”的2倍少60元.(1)分别求出这两套图书的单价;(2)该校购买这两套图书不超过30600元,且购进“四书”至少33套,“五经”的套数是“四书”套数的2倍,该校共有哪几种购买方案?【解答】解:(1)设五经的单价为x元,则四书的单价为(2x﹣60)元,依题意得x+2x﹣60=660,解得x=240,∴2x﹣60=420,∴五经的单价为240元,则四书的单价为420元;(2)设购买四书a套,五经b套,依题意得,解得33≤a≤34,∵a为正整数,∴a=33或34,∴当a=33时,b=66;当a=34时,b=68;∴该校共有2种购买方案:①四书33套,五经66套;②四书34套,五经68套.23.(10分)已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.【解答】解:(1)∵360°÷180°=2,630°÷180°=3…90°,∴甲的说法对,乙的说法不对,360°÷180°+2=2+2=4.答:甲同学说的边数n是4;(2)依题意有(n+x﹣2)×180°﹣(n﹣2)×180°=360°,解得x=2.故x的值是2.24.(12分)如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后2分钟时,甲乙两人第一次在正方形的顶点处相遇;(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是(6,13).【解答】解:(1)∵两个人的速度之和是85米每分钟,分钟后两人第一次相遇.如果要两人在顶点相遇,则:每个人所走的路程均为10的整数倍,且两个人所走路程之和为10+40n(n是整数).S=10+40n,n为0、1、2、3…n①S甲=55t可以被10整除t为2、4、6…②S乙=30t也可以被10整除t为甲方取值即可,∵S=S甲+S乙,整理得:55t+30t=10+40n,即:85t=10+40n,∴n=③,由①②③得:当t=2时,两人第一次在顶点相遇.此时甲走了110米,乙走了60米,相遇在点D.(2)甲、乙相遇则两者走时间相同,设甲走x米,则乙走x=x米,∵要相遇在正方形顶点,∴x和x都要为10的整数倍且x+x+10=x+10为40的整数倍(除第一次走10米相遇,以后每次相遇都要再走40米),∴(a﹣)×85=40(b﹣1)+20,由上式可知:当a=6时,甲走了330米,甲走到点B,乙走了180米,乙走到点D,解得:b=13.故答案为:(6,13).25.(14分)探索新知:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.(1)一个角的平分线是这个角的“巧分线”;(填“是”或“不是”)(2)如图2,若∠MPN=α,且射线PQ是∠MPN的“巧分线”,则∠MPQ=α或α或α;(用含α的代数式表示出所有可能的结果)深入研究:如图2,若∠MPN=60°,且射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当PQ与PN成180°时停止旋转,旋转的时间为t秒.(3)当t为何值时,射线PM是∠QPN的“巧分线”;(4)若射线PM同时绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN的“巧分线”时t的值.【解答】解:(1)一个角的平分线是这个角的“巧分线”;(填“是”或“不是”)故答案为:是(2)∵∠MPN=α,∴∠MPQ=α或α或α;故答案为α或α或α;深入研究:(3)依题意有①10t=60+×60,解得t=9;②10t=2×60,解得t=12;③10t=60+2×60,解得t=18.故当t为9或12或18时,射线PM是∠QPN的“巧分线”;(4)依题意有①10t=(5t+60),解得t=2.4;②10t=(5t+60),解得t=4;③10t=(5t+60),解得t=6.故当t为2.4或4或6时,射线PQ是∠MPN的“巧分线”.。
泉州市第八中学2017—2018学年度第二学期期末调研测试七 年 级 数 学 试 题(全卷共五个大题 满分150分 考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.方程20x =的解是A .2x =-B .0x =C .12x =- D .12x =2.以下四个标志中,是轴对称图形的是A .B .C .D .3.解方程组⎩⎨⎧=+=-②①,.102232y x y x 时,由②-①得A .28y =B .48y =C .28y -=D .48y -= 4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为 A .2 B .3 C .7 D .16 5.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是 A .x >3 B .x ≥3 C .x >1 D .x ≥6.将方程31221+=--x x 去分母,得到的整式方程是 A .()()12231+=--x x B .()()13226+=--x x C .()()12236+=--x x D .22636+=--x x 7.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 的形状是A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 8.已知x m =是关于x 的方程26x m +=的解,则m 的值是A .-3B .3C .-2D .29.下列四组数中,是方程组20,21,32x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是A .1,2,3.x y z =⎧⎪=-⎨⎪=⎩B .1,0,1.x y z =⎧⎪=⎨⎪=⎩C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8,ABECDF10题图5题图-118题图BCP 则四边形ABFD 的周长为A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的 度数为 A .30° B .50° C .80° D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.在方程21x y -=中,当1x =-时,y = .14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 .17.若不等式组0,x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 19.解方程组:,.202321x y x y -=⎧⎨+=⎩ 20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.…12题图′15题图 DEABC22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数.24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?ADBCE 23题图五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±. 例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.(1)方程|x +3|=4的解为 ; (2)解不等式:|x -3|≥5;(3)解不等式:|x -3|+|x +4|≥926.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.AMPMA泉州市第八中学2017-2018学年度二学期期末调研测试七年级数学试题参考答案及评分意见13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩ ………………………………………………………7分20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 解得 4x =.…………………………………………………………………………9分 经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分(1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图AM PCM BMCP AABC ACD M ABC MBC ACD MCD ABC ACD MB MC ABCACD A MBCMCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分解得 6a ≥.答:该水果每千克售价至少为6元.······························································ 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ············································· 8分 (3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ······························ 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°,∴ 34140k k +=°,解得 20k =°.∴360A k ∠==°. ···········································(2)证明:(3)猜想A BQC ∠+︒=∠4190.··························································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··············································· 10分 由(2)知:A M ∠=∠21, 又由轴对称性质知:∠M =∠N ,∴A BQC ∠+︒=∠4190.………………………………………8分………………………………………6分。
2017-2018学年福建省泉州市鲤城区北片区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列是二元一次方程的是()A. 3x−2=10B. 4x=3aC. 3x−y2=0D. 3x−y=4xy2.若a>b,则下列式子中错误的是()A. a−2>b−2B. a+3>b+3C. −5a>−5bD. a3>b33.下列长度的三条线段能组成三角形的是()A. 2,3,5B. 7,4,2C. 3,4,8D. 3,3,44.在下列图形中,是中心对称图形,但不是轴对称图形的是()A. B. C. D.5.把不等式组x+2≤32x+1>−1的解集表示在数轴上,下列选项正确的是()A. B.C. D.6.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A. 10B. 9C. 8D. 67.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是()A. 3x−2=2x+9B. 3(x−2)=2x+9C. x3+2=x2−9 D. 3(x−2)=2(x+9)8.如果x=−1是关于x的方程x+2k−3=0的解,则k的值是()A. −1B. 1C. −2D. 29.若不等式组x<mx−2<3x−6无解,则m的取值范围是()A. m>2B. m<2C. m≥2D. m≤210.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A. 150∘B. 180∘C. 210∘D. 225∘11.方程2x−5=0的解为______.12.用一种正五边形或正八边形的瓷砖______铺满地面(填“能”或“不能”).13.若(m−1)x|m|+5=0是关于x的一元一次方程,则m=______.14.已知x+y=4y+z=7x+z=9,则x+y+z的值为______.15.如图,在△ABC中,∠CAB=75∘,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′//AB,则∠BAB′=______.16.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD//BC;②∠ACB=2∠ADB;③∠ADC=90∘−∠ABD;④∠BDC=12∠BAC.其中正确的结论有______(填序号).三、计算题(本大题共1小题,共6.0分)17.解方程:5x−2(3−2x)=−3.四、解答题(本大题共8小题,共64.0分)18.解方程组4x−3y=6x−3y=019.解不等式组:2(x−1)≥x−2 ②3x−6<0 ①20.已知△ABC中,DE//BC,∠AED=50∘,CD平分∠ACB,求∠CDE的度数.21.如图,根据要求画图.(1)把△ABC向右平移5个方格,画出平移的图形.(2)以点B为旋转中心,把△ABC顺时针方向旋转90∘,画出旋转后的图形.22.为落实优秀传统文化进校园,某校计划购进“四书”、“五经”两套图书供学生借阅,已知这两套图书单价和为660元,一套“四书”比一套“五经”的2倍少60元.(1)分别求出这两套图书的单价;(2)该校购买这两套图书不超过30600元,且购进“四书”至少33套,“五经”的套数是“四书”套数的2倍,该校共有哪几种购买方案?23.已知n边形的内角和θ=(n−2)×180∘.(1)甲同学说,θ能取360∘;而乙同学说,θ也能取630∘.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360∘,用列方程的方法确定x.24.如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后______分钟时,甲乙两人第一次在正方形的顶点处相遇;(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是______.25.探索新知:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.(1)一个角的平分线______这个角的“巧分线”;(填“是”或“不是”)(2)如图2,若∠MPN=α,且射线PQ是∠MPN的“巧分线”,则∠MPQ=______;(用含α的代数式表示出所有可能的结果)深入研究:如图2,若∠MPN=60∘,且射线PQ绕点P从PN位置开始,以每秒10∘的速度逆时针旋转,当PQ与PN成180∘时停止旋转,旋转的时间为t秒.(3)当t为何值时,射线PM是∠QPN的“巧分线”;(4)若射线PM同时绕点P以每秒5∘的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN的“巧分线”时t的值.答案和解析【答案】1. B2. C3. D4. A5. B6. C7. B8. D9. D10. B11. x=2.512. 不能13. −114. 1015. 30∘16. ①②③④17. 解:去括号得:5x−6+4x=−3,移项、合并得:9x=3,系数化为1得:x=13.18. 解:4x−3y=6 ②x−3y=0 ①②−①得;3x=6∴x=2把代入①解得:y=23∴原方程组的解是x=2 y=2319. 解:由①得:x<2,由②得:x≥0,不等式组的解集为:0≤x<2.20. 解:∵DE//BC,∠AED=50∘,∴∠ACB=∠AED=50∘,∵CD平分∠ACB,∴∠BCD=12∠ACB=25∘,∵DE//BC,∴∠EDC=∠BCD=25∘.21. 解:如图所示,(1)△A1B1C1即为平移后的图形;(2)△A2BC2即为旋转后的图形.22. 解:(1)设五经的单价为x元,则四书的单价为(2x−60)元,依题意得x+2x−60=660,∴五经的单价为240元,则四书的单价为420元;(2)设购买四书a套,五经b套,依题意得420a+240b≤30600a≥33b=2a,解得33≤a≤34,∵a为正整数,∴a=33或34,∴当a=33时,b=66;当a=34时,b=68;∴该校共有2种购买方案:①四书33套,五经66套;②四书34套,五经68套.23. 解:(1)∵360∘÷180∘=2,630∘÷180∘=3…90∘,∴甲的说法对,乙的说法不对,360∘÷180∘+2=2+2=4.答:甲同学说的边数n是4;(2)依题意有(n+x−2)×180∘−(n−2)×180∘=360∘,解得x=2.故x的值是2.24. 2;(6,13)25. 是;12α或13α或23α【解析】1. 解:A、是一元一次方程,故A错误;B、是二元一次方程,故B正确;C、是二元二次方程,故C错误;D、是二元二次方程,故D错误;故选:B.二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2. 解:A、不等式的两边都减2,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号的方向不变,故B正确;C、不等式的两边都乘(−5),不等号的方向改变,故C错误;D、不等式的两边都除以3,不等号的方向不变,故D正确;故选:C.根据不等式的性质,可得答案.本题考查了不等式的性质,熟记不等式的性质是解题关键.3. 解:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选:D.本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.4. 解:A 、不是轴对称图形,是中心对称图形,符合题意; B 、是轴对称图形,又是中心对称图形,不符合题意; C 、是轴对称图形,不是中心对称图形,不符合题意; D 、是轴对称图形,是中心对称图形,不符合题意. 故选:A .根据轴对称图形与中心对称图形的概念求解. 本题考查了中心对称图形与轴对称图形的概念.轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180∘,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5. 解:由(1)得x >−1,由(2)得x ≤1,所以−1<x ≤1.故选B . 本题的关键是先解不等式组,然后再在数轴上表示.本题考查一元一次不等式组的解集及在数轴上的表示方法. 6. 解:设多边形有n 条边,由题意得: 180∘(n −2)=360∘×3, 解得:n =8. 故选:C .设多边形有n 条边,则内角和为180∘(n −2),再根据内角和等于外角和的3倍可得方程180∘(n −2)=360∘×3,再解方程即可.此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180∘(n −2). 7. 解:设车x 辆,根据题意得:3(x −2)=2x +9. 故选:B .设车x 辆,根据乘车人数不变,即可得出关于x 的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8. 解:∵x =−1是关于x 的方程x +2k −3=0的解, ∴−1+2k −3=0, 解得,k =2, 故选:D .根据一元一次方程的解的定义得到算式,计算即可. 本题考查的是一元一次方程的解的定义,掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解是解题的关键. 9. 解: x <m ②x−2<3x−6 ①,∵解不等式①得:x >2,不等式②的解集是x <m ,又∵不等式组 x <m x−2<3x−6无解, ∴m ≤2, 故选:D .求出两个不等式的解集,根据已知得出m ≤2,即可得出选项.本题考查了解一元一次不等式和解一元一次不等式组,关键是能根据已知得出关于m的不等式.∴△ABC≌△EDC,∴∠BAC=∠DEC,∠1+∠2=180∘.故选:B.根据SAS可证得△ABC≌△EDC,可得出∠BAC=∠DEC,继而可得出答案.本题考查全等图形的知识,比较简单,解答本题的关键是判断出△ABC≌△EDC.11. 解:方程2x−5=0,移项得:2x=5,解得:x=2.5,故答案为:x=2.5方程移项,把x系数化为1,即可求出解.此题考查了解一元一次方程,解方程移项时注意要变号.12. 解:根据平面镶嵌的条件,可知用一种正五边形或正八边形的瓷砖不能铺满地面.根据多边形镶嵌成平面图形的条件,因为正五边形的内角为108∘,正八边形的内角为135∘,显然360∘不是它们的倍数可知不能进行平面镶嵌.用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.13. 解:由题意,得|m|=1,且m−1≠0,解得m=−1,故答案为:−1.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.14. 解:x+y=4①y+z=7②x+z=9③,①+②+③得:2(x+y+z)=20,则x+y+z=10,故答案为:10方程组三方程相加即可求出所求.此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15. 解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′//AB,且∠BAC=75∘,∴∠ACC′=∠AC′C=∠BAC=75∘,∴∠CAC′=180∘−2×75∘=30∘;由题意知:∠BAB′=∠CAC′=30∘,故答案为30∘.首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=30∘即可解决问题.此题主要考查了旋转的性质以及平行线的性质,得出AC=AC′,∠BAC=∠ACC′=75∘是解题关键.∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD//BC,∴①正确;∵AD//BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180∘,∴∠ADC=180∘−(∠DAC+∠ACD)=180∘−12(∠EAC+∠ACF)=180∘−12(∠ABC+∠ACB+∠ABC+∠BAC)=180∘−1(180∘−∠ABC)=90∘−12∠ABC,∴③正确;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴④正确;故答案为:①②③④根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180∘,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.17. 先去括号,然后移项、合并同类项,最后化系数为1,得出方程的解.本题考查的是一元一次方程的解法.比较简单.18. 根据二元一次方程组的解法即可求出答案.本题考查二元一次组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.19. 首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.此题主要考查了解一元一次不等式组,关键是正确确定两个不等式的解集.20. 由角平分线的定义,结合平行线的性质,易求∠EDC的度数.考查了平行线的性质和角平分线的定义,这类题首先利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系转化求解.21. (1)分别作出点A、B、C向右平移5个方格所得对应点,再顺次连接可得;(2)分别作出点A、C绕点B顺时针方向旋转90∘所得对应点,再顺次连接可得.本题主要考查作图−旋转变换、平移变换,解题的关键是根据旋转变换和平移变换的定义作出变换后的对应点.22. (1)设五经的单价为x元,则四书的单价为(2x−60)元,依据这两套图书单价和为660元,列方程求解即可;本题考查一元一次方程、一元一次不等式组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用方程的思想和不等式的性质解答.23. (1)根据多边形内角和公式可得n边形的内角和是180∘的倍数,依此即可判断,再根据多边形内角和公式即可求出边数n;(2)根据等量关系:若n边形变为(n+x)边形,内角和增加了360∘,依此列出方程,解方程即可确定x.考查了多边形内角与外角,此题需要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.24. 解:(1)∵两个人的速度之和是85米每分钟,1085分钟后两人第一次相遇.如果要两人在顶点相遇,则:每个人所走的路程均为10的整数倍,且两个人所走路程之和为10+40n(n是整数).S=10+40n,n为0、1、2、3…n①S甲=55t可以被10整除t为2、4、6…②S乙=30t也可以被10整除t为甲方取值即可,∵S=S甲+S乙,整理得:55t+30t=10+40n,即:85t=10+40n,∴n=85t−1040③,由①②③得:当t=2时,两人第一次在顶点相遇.此时甲走了110米,乙走了60米,相遇在点D.(2)甲、乙相遇则两者走时间相同,设甲走x米,则乙走3055x=611x米,∵要相遇在正方形顶点,∴x和611x都要为10的整数倍且x+611x+10=1711x+10为40的整数倍(除第一次走10米相遇,以后每次相遇都要再走40米),∴(a−1085)×85=40(b−1)+20,由上式可知:当a=6时,甲走了330米,甲走到点B,乙走了180米,乙走到点D,解得:b=13.故答案为:(6,13).由于两人不是在同一顶点出发,所以两人第一次在同一顶点相遇,需要通过的距离之和等于周长的整数倍再加一条边的长度,即85t=40n+10,其中n是第一次在同一顶点相遇之前通过的周长的个数.本题的难点在于,如果用经典的数学演绎推理,容易将此题化归为“不定方程”这一学生没有系统学习过的数学模型.所以,没有用合情推理研究本题,是解答此题的一个解题策略层面的方向性错误.学生是否有合理运用“合情推理”的意识,是否知道在怎样的情况下要用合情推理,在怎样的情况下不宜用合情推理,这是学生能否正确选择这道题的解题策略方向的关键所在.25. 解:(1)一个角的平分线是这个角的“巧分线”;(填“是”或“不是”)故答案为:是(2)∵∠MPN=α,∴∠MPQ=12α或13α或23α;故答案为12α或13α或23α;深入研究:(3)依题意有①10t=60+12×60,解得t=9;②10t=2×60,解得t=12;③10t=60+2×60,解得t=18.故当t为9或12或18时,射线PM是∠QPN的“巧分线”;(4)依题意有①10t=13(5t+60),解得t=2.4;②10t=12(5t+60),解得t=4;③10t=23(5t+60),解得t=6.故当t为2.4或4或6时,射线PQ是∠MPN的“巧分线”.(1)根据巧分线定义即可求解;(2)分3种情况,根据巧分线定义即可求解;(3)分3种情况,根据巧分线定义得到方程求解即可;(4)分3种情况,根据巧分线定义得到方程求解即可.本题考查了旋转的性质,巧分线定义,学生的阅读理解能力及知识的迁移能力.理解“巧分线”.的定义是解题的关键.。