高三数学理科复习——三角形中的有关问题【高考要求】:解三角形(正弦定理、余弦定理及其应用)(B)
- 格式:doc
- 大小:155.04 KB
- 文档页数:4
高考数学(理)总复习:解三角形题型一 利用正、余弦定理解三角形 【题型要点解析】关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【例1】△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2,(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .【解析】 (1)由题设及A +B +C =π,sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得:b 2=a 2+c 2-2ac cos B=(a +c )2-2ac (1+cos B )=36-2×172×⎪⎭⎫ ⎝⎛+17151 =4.所以b =2.题组训练一 利用正、余弦定理解三角形1.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =2,S △ABC=2,则b 的值为( )A.3B.322 C .2 2D .2 3【解析】 ∵在锐角△ABC 中,sin A =223,S △ABC =2,∴cos A =1-sin 2A =13,12bc sin A =12bc ·223=2,∴bc =3①,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴(b +c )2=a 2+2bc (1+cos A )=4+6×⎪⎭⎫⎝⎛+311=12, ∴b +c =23②.由①②得b =c =3,故选A. 【答案】 A2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.【解析】 ∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B . 由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35. 【答案】 353.已知△ABC 是斜三角形,内角A ,B ,C 所对的边的长分别为a ,b ,c .若c sin A =3a cos C .(1)求角C ;(2)若c =21,且sin C +sin(B -A )=5sin 2A ,求△ABC 的面积.【解析】 (1)根据a sin A =c sin C,可得c sin A =a sin C , 又∵c sin A =3a cos C ,∴a sin C =3a cos C , ∴sin C =3cos C ,∴tan C =sin Ccos C =3,∵C ∈(0,π),∴C =π3.(2)∵sin C +sin(B -A )=5sin 2A ,sin C =sin (A +B ), ∴sin (A +B )+sin (B -A )=5sin 2A , ∴2sin B cos A =2×5sin A cos A . ∵△ABC 为斜三角形, ∴cos A ≠0,∴sin B =5sin A . 由正弦定理可知b =5a ,① ∵c 2=a 2+b 2-2ab cos C ,∴21=a 2+b 2-2ab ×12=a 2+b 2-ab ,②由①②解得a =1,b =5,∴S △ABC =12ab sin C =12×1×5×32=534.题型二 正、余弦定理的实际应用 【题型要点解析】应用解三角形知识解决实际问题一般分为下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【例2】某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE .为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值.【解析】 (1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中, BE =BD 2+DE 2=335(km). 故道路BE 的长度为335km.(2)设∠ABE =α,∵∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE =335sinπ3=65,∴AB =65sin ⎪⎭⎫⎝⎛-απ32,AE =65sin α.∴S △ABE =12AB ·AE sin π3=9325sin ⎪⎭⎫⎝⎛-απ32·sin α =9325⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-4162sin 21πα≤9325⎪⎭⎫ ⎝⎛+4121 =273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE面积的最大值为273100km 2题组训练二 正、余弦定理的实际应用1.如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.【解析】设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,∴由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2×3h ×h 3×⎪⎭⎫⎝⎛-21,解得h =1039,故塔的高度为1039 m.【答案】 10392.如图,在第一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求x 的值;(2)求P 到海防警戒线AC 的距离. 【解析】 (1)依题意,有P A =PC =x , PB =x -1.5×8=x -12. 在△P AB 中,AB =20, cos ∠P AB =P A 2+AB 2-PB 22P A ·AB=x 2+202-(x -12)22x ·20=3x +325x ,同理,在△P AC 中,AC =50,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x .∵cos ∠P AB =cos ∠P AC , ∴3x +325x =25x,解得x =31. (2)作PD ⊥AC 于点D ,在△ADP 中,由cos ∠P AD =2531,得sin ∠P AD =1-cos 2∠P AD =42131, ∴PD =P A sin ∠P AD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米. 题型三 三角函数与解三角形问题 【题型要点】解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【例3】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sin A -sin C b =sin A -sin Ba +c .(Ⅰ)求C ;(Ⅱ)若cos A =17,求cos(2A -C )的值.【解析】 (Ⅰ)由sin A -sin C b =sin A -sin B a +c 及正弦定理得a -c b =a -ba +c ,∴a 2-c 2=ab -b 2,整理得a 2+b 2-c 2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,又0<C <π,所以C =π3.(Ⅱ)由cos A =17知A 为锐角,又sin 2A +cos 2A =1,所以sin A =1-cos 2A =437,故cos2A=2cos 2A -1=-4749,sin2A =2sin A cos A =2×437×17=8349,所以cos(2A -C )=cos ⎪⎭⎫ ⎝⎛-32πA =cos2A cos π3+sin2A sin π3=-4749×12+8349×32=-2398.题组训练三 三角函数与解三角形问题已知函数f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 的对边为a ,b ,c ,已知f (A )=32,a =2,B =π3,求△ABC 的面积.【解析】 (1)f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x =sin 2x cos π6+cos 2x sin π6+cos 2x=32sin 2x +32cos 2x =3⎪⎪⎭⎫ ⎝⎛+x x 2cos 232sin 21 =3sin ⎪⎭⎫⎝⎛+32πx . 令-π2+2k π≤2x +π3≤π2+2k π⇒-5π12+k π≤x +π3≤π12+k π,k ∈Z .f (x )的单调递增区间为:⎥⎦⎤⎢⎣⎡++-ππππk k 12,125,k ∈Z .(2)由f (A )=32,sin ⎪⎭⎫ ⎝⎛+32πA =12, 又0<A <2π3,π3<2A +π3<5π3,因为2A +π3=5π6,解得:A =π4.由正弦定理a sin A =bsin B ,得b =6,又由A =π4,B =π3可得:sin C =6+24.故S △ABC =12ab sin C =3+32.题型四 转化与化归思想在解三角形中的应用 【题型要点】利用正弦、余弦定理解三角形的模型示意图如下:【例4】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积. 【解析】 (1)证明:a cos 2C 2+c cos 2A2=a ·1+cos C 2+c ·1+cos A 2=32b ,即a (1+cos C )+c (1+cos A )=3b . ①由正弦定理得:sin A +sin A cos C +sin C +cos A sin C =3sin B , ② 即sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C =2sinB.由正弦定理得,a +c =2b , ③ 故a ,b ,c 成等差数列.(2)由∠B =60°,b =4及余弦定理得: 42=a 2+c 2-2ac cos 60°,∴(a +c )2-3ac =16, 又由(1)知a +c =2b ,代入上式得4b 2-3ac =16. 又b =4,所以ac =16, ④∴△ABC 的面积S =12ac sin B =12ac sin 60°=4 3.题组训练四 转化与化归思想在解三角形中的应用 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7.(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.【解析】 (1)在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =7+1-427=277. (2)设∠BAC =α,则α=∠BAD -∠CAD . 因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =217,sin ∠BAD =1-cos 2∠BAD =32114. 于是sin ∠BAC =sin (∠BAD -∠CAD )=sin ∠BAD cos ∠CAD -cos ∠BAD ·sin ∠CAD =32114×277-⎪⎪⎭⎫ ⎝⎛-1417×217=32. 在△ABC 中,由正弦定理得,BC =AC ·sin ∠BACsin ∠CBA=7×32216=3. 【专题训练】 一、选择题1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且b 2=a 2+bc ,A =π6,则内角C 等于( )A.π6 B.π4 C.3π4D.π4或3π4【解析】 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,即a 2-b 2=c 2-2bc cos A ,由已知,得a 2-b 2=-bc ,则c 2-2bc cos π6=-bc ,即c =(3-1)b ,由正弦定理,得sin C=(3-1)sin B =(3-1)sin ⎪⎭⎫⎝⎛-C 65π, 化简,得sin C -cos C =0,解得C =π4,故选B.【答案】 B2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.3+1B.3-1 C .4 D .2【解析】 法一 由余弦定理可得(22)2=22+a 2-2×2×a cos π4,即a 2-22a -4=0,解得a =2+6或a =2-6(舍去),△ABC 的面积S =12ab sin C =12×2×(2+6)sin π4=12×2×22×(6+2)=3+1,选A.法二 由正弦定理b sin B =c sin C ,得sin B =b sin C c =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1.【答案】 A3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43C .-43D .-34【解析】 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,则结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C.【答案】 C4.如图,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A.223B.24 C.64D.63【解析】 依题意得:BD =AD =DE sin A =22sin A ,∠BDC =∠ABD +∠A =2∠A .在△BCD 中, BC sin ∠BDC =BD sin C ,则4sin 2A =22sin A ×23=423sin A ,即42sin A cos A =423sin A,由此解得cos A =64,选C.【答案】 C5.如图所示,为测一建筑物的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得建筑物顶端的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则该建筑物的高度为( )A .(30+303) mB .(30+153) mC .(15+303) mD .(15+153) m【解析】 设建筑物高度为h ,则h tan 30°-h tan 45°=60,即(3-1)h =60,所以建筑物的高度为h =(30+303)m.【答案】 A6.在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则三角形ABC 中最小角的正弦值等于( )A.45B.34C.35D.74【解析】 ∵20aBC →+15bCA →+12cAB →=0,∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0.∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴三角形ABC 中最小角为角A , ∴cos A =b 2+c 2-a22bc =169a 2+259a 2-a 22×43×53a 2=45,∴sin A =35,故选C. 【答案】 C 二、填空题7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若(a +b -c )(a +b +c )=ab ,c =3,当ab 取得最大值时,S △ABC =________.【解析】 因为(a +b -c )(a +b +c )=ab ,a 2+b 2-c 2=-ab ,所以cos C =-12,所以sinC =32,由余弦定理得(3)2=a 2+b 2+ab ≥3ab ,即ab ≤1,当且仅当a =b =1时等号成立.所以S △ABC =34. 【答案】348.已知△ABC 中,AB =1,sin A +sin B =2sin C ,S △ABC =316sin C ,则cos C =________. 【解析】 ∵sin A +sin B =2sin C ,由正弦定理可得a +b =2c .∵S △ABC =316sin C ,∴12ab sin C =316sin C ,sin C ≠0,化为ab =38.由余弦定理可得c 2=a 2+b 2-2ab cos C =(a +b )2-2ab-2ab cos C ,∴1=(2)2-2×38(1+cos C ),解得cos C =13.【答案】139.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )·sin C ,则△ABC 面积的最大值为________.【解析】 由正弦定理得(2+b )(a -b )=(c -b )c , 即(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3,又b 2+c 2-a 2=bc ≥2bc -4,即bc ≤4,故S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立,则△ABC 面积的最大值为 3. 【答案】310.如图,△ABC 中,AB =4,BC =2,∠ABC =∠D =60°,若△ADC 是锐角三角形,则DA +DC 的取值范围是________.【解析】 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =12,即AC =2 3.设∠ACD =θ(30°<θ<90°),则在△ADC 中,由正弦定理得23sin 60°=DA sin θ=DCsin (120°-θ),则DA +DC =4[sin θ+sin(120°-θ)]=4⎪⎪⎭⎫ ⎝⎛+θθcos 23sin 23=43sin(θ+30°),而60°<θ+30°<120°,43sin 60°<DA +DC ≤43sin 90°,即6<DA +DC ≤4 3.【答案】 (6,43] 三、解答题11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35. (1)求b 和sin A 的值;(2)求sin ⎪⎭⎫⎝⎛+42πA 的值. 【解析】 (1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B =13,所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎪⎭⎫⎝⎛+42πA =sin 2A cos π4+cos 2A sin π4=7226. 12.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.【解析】(1)∵AD ∶AB =2∶3,∴可设AD =2k ,AB =3k .又BD =7,∠DAB =π3,∴由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,∴AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)∵AB ⊥BC ,∴cos ∠DBC =sin ∠ABD =217,∴sin ∠DBC =277,∴BD sin ∠BCD =CDsin ∠DBC,∴CD=7×27732=433.。
专题24 正弦定理、余弦定理及其应用近几年高考对解三角形问题考查,大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.与平面几何相结合的问题,要注重几何图形的特点的利用.由于新教材将正弦定理、余弦定理列入平面向量的应用,与平面向量相结合的命题将会出现.另外,“结构不良问题”作为实验,给予考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象.同时,也增大了解题的难度.【重点知识回眸】(一)正弦、余弦定理1.在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 的外接圆半径,则 定理正弦定理余弦定理内容2sin sin sin a b cR A B C=== a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 变形(1)a =2R sin A ,b =2R sin B , c =2R sin C ;(2)a ∶b ∶c =sin A ∶sin B ∶sin C ; (3)a +b +c sin A +sin B +sin C =asin A=2R cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2. 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边、或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B C a A=3.余弦定理的变式应用:公式通过边的大小(角两边与对边)可以判断出A 是钝角还是锐角 当222b c a +>时,cos 0A >,即A 为锐角;当222b c a +=(勾股定理)时,cos 0A =,即A 为直角; 当222b c a +<时,cos 0A <,即A 为钝角 (二)三角形常用面积公式 (1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为内切圆半径).(三)常用结论 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sinA +B 2=cosC 2;(4)cos A +B 2=sin C2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.三角形中的大角对大边在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 5.海伦公式:()()()()1,2S p p a p b p c p a b c =---=++ 6.向量方法:()()2212S a ba b=⋅-⋅ (其中,a b 为边,a b 所构成的向量,方向任意)证明:()2222222111sin sin 1cos 244S ab C S a b C a b C =⇒==- ()()221cos 2S ab ab C ∴=-cos a b ab C ⋅=∴ ()()2212S a b a b =⋅-⋅坐标表示:()()1122,,,a x y b x y =,则122112S x y x y =- 7.三角形内角和A B C π++=(两角可表示另一角).()sin()sin sin A B C C π+=-= ()cos()cos cos A B C C π+=-=-8.三角形的中线定理与角平分线定理(1)三角形中线定理:如图,设AD 为ABC 的一条中线,则()22222AB AC AD BD +=+ (知三求一)证明:在ABD 中2222cos AB AD BD AD BD ADB =+-⋅ ① 2222cos AC AD DC AD DC ADC =+-⋅ ②D 为BC 中点 BD CD ∴=ADB ADC π∠+∠= cos cos ADB ADC ∴=-∴ ①+②可得:()22222AB AC AD BD +=+(2)角平分线定理:如图,设AD 为ABC 中BAC ∠的角平分线,则AB BDAC CD=证明:过D 作DE ∥AC 交AB 于EBD BEDC AE∴= EDA DAC ∠=∠ BBEAD 为BAC ∠的角平分线EAD DAC ∴∠=∠ EDA EAD ∴∠=∠EAD ∴为等腰三角形 EA ED ∴= BD BE BEDC AE ED ∴==而由BED BAC 可得:BE ABED AC=AB BDAC CD ∴=(四)测量中的几个常用术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线(两者在同一铅垂平面内)所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角,方位角θ的范围是[0°,360°)方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)α例:(1)北偏东α:(2)南偏西α:坡角与坡度坡面与水平面所成锐二面角叫坡角(θ为坡角);坡面的垂直高度与水平宽度之比叫坡度(坡比),即i =hl=tan θ135°的始边是指北方向线,始边顺时针方向旋转135°得到终边;方向角南偏西30°的始边是指南方向线,向西旋转30°得到终边.【典型考题解析】热点一 利用正、余弦定理解三角形【典例1】(2021·全国·高考真题(文))在ABC 中,已知120B =︒,19AC 2AB =,则BC =( ) A .1 B 2C 5D .3【答案】D 【解析】 【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯, 即:22150a a +-=,解得:3a =(5a =-舍去), 故3BC =. 故选:D.【典例2】(2020·山东·高考真题)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C 2sin cos c B A =,则tan A 等于( ) A .3 B .13- C .3或13-D .-3或13【答案】A 【解析】 【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得22sin()sin A C B +=⇒=,最后利用两角和的正切公式,即可得到答案; 【详解】222sin cos tan 222a b c CC C ab +-==⇒=,4C π∴>,2sin sin sin a b cR A B C===, 2sin sin cos sin sin cos A B C C B A B ∴⋅⋅+⋅⋅=, 22sin()sin A C B ∴+=⇒=4B π∴=, tan 1B ∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A.【典例3】(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ;(2)证明:2222a b c =+ 【答案】(1)5π8; (2)证明见解析. 【解析】 【分析】(1)根据题意可得,()sin sin C C A =-,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再根据正弦定理,余弦定理化简即可证出. (1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =. (2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a c b b c a b c a a b c +--+-=+--+-,化简得: 2222a b c =+,故原等式成立.【总结提升】1.解三角形的常用方法:(1)直接法:观察题目中所给的三角形要素,使用正余弦定理求解(2)间接法:可以根据所求变量的个数,利用正余弦定理,面积公式等建立方程,再进行求解 2.解三角形的常见题型及求解方法(1)已知两角A ,B 与一边a ,由A +B +C =π及a sin A =b sin B =c sin C ,可先求出角C 及b ,再求出c .(2)已知两边b ,c 及其夹角A ,由a 2=b 2+c 2-2bc cos A ,先求出a ,再求出角B ,C . (3)已知三边a ,b ,c ,由余弦定理可求出角A ,B ,C .(4)已知两边a ,b 及其中一边的对角A ,由正弦定理a sin A =bsin B 可求出另一边b 的对角B ,由C =π-(A +B ),可求出角C ,再由a sin A =c sin C 可求出c ,而通过a sin A =bsin B 求角B 时,可能有一解或两解或无解的情况.热点二 三角形面积问题【典例4】(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知345,cos 5a c C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积. 【答案】5(2)22. 【解析】 【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及45a c =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积. (1)由于3cos 5C =, 0πC <<,则4sin 5C =.因为45a c =, 由正弦定理知4sin 5A C ,则55sin A C ==(2)因为45a c =,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a +--+-====, 即26550a a +-=,解得5a =,而4sin 5C =,11b =, 所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=. 【典例5】(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123313S S S B -+==. (1)求ABC 的面积; (2)若2sin sin A C =,求b .【答案】2 (2)12 【解析】 【分析】(1)先表示出123,,S S S ,再由1233S S S -+=2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB AC =,即可求解.(1)由题意得222212313333,,2S a S S =⋅===,则2221233333S S S -+==即2222a c b +-=,由余弦定理得222cos 2a c b B ac+-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则2122cos 13B ⎛⎫=- ⎪⎝⎭132cos ac B ==12sin 2ABCS ac B ==(2)由正弦定理得:sin sin sin b a c B A C ==,则223294sin sin sin sin sin 42b a c ac B A C A C =⋅===,则3sin 2b B =,31sin 22b B ==. 【规律方法】 1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键. 2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 热点三 三角形的周长问题【典例6】(2022·北京·高考真题)在ABC 中,sin 23C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为3ABC 的周长. 【答案】(1)6π(2)663 【解析】 【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值; (2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长. (1)解:因为()0,C π∈,则sin 0C >32sin cos C C C =, 可得3cos C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 6322ABCSab C a ===3a = 由余弦定理可得22232cos 4836243612c a b ab C =+-=+-⨯=,23c ∴= 所以,ABC 的周长为36a b c ++=.【典例7】(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长. 【答案】(1)见解析 (2)14 【解析】 【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证; (2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解. (1)证明:因为()()sin sin sin sin C A B B C A -=-,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-,所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅, 即()22222222222a cb a bc b c a +-+--+-=-, 所以2222a b c =+; (2)解:因为255,cos 31a A ==, 由(1)得2250b c +=,由余弦定理可得2222cos a b c bc A =+-, 则50502531bc -=, 所以312bc =, 故()2222503181b c b c bc +=++=+=, 所以9b c +=,所以ABC 的周长为14a b c ++=. 【规律方法】求边,就寻求与该边(或两边)有关联的角,利用已知条件列方程求解.【典例7】反映的“整体代换”思想,具有一定的技巧性. 热点四 判断三角形的形状【典例8】(2020·海南·高考真题)在①3ac ①sin 3c A =,①3=c b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】 【分析】方法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解. 【详解】[方法一]【最优解】:余弦定理 由sin 3sin AB 可得:3ab=()3,0a m b m m ==>, 则:22222232cos 323c a b ab C m m m m m =+-=+-⨯=,即c m =. 若选择条件①:据此可得:2333ac m m m =⨯==1m ∴=,此时1c m ==. 若选择条件②:据此可得:222222231cos 222b c a m m m A bc m +-+-===-, 则:213sin 12A ⎛⎫=-- ⎪⎝⎭3sin 3c A m ==,则:23c m ==若选择条件③: 可得1c mb m==,c b =,与条件3=c b 矛盾,则问题中的三角形不存在. [方法二]:正弦定理 由,6C A B C ππ=++=,得56A B π=-. 由sin 3sin A B ,得5sin 36B B π⎛⎫-= ⎪⎝⎭,即13cos 32B B B =, 得3tan B =.由于0B π<<,得6B π=.所以2,3b c A π==.若选择条件①:由sin sin a c A C=,得2sin sin 36a cππ=,得3a c =. 解得1,3c b a ===.所以,选条件①时问题中的三角形存在,此时1c =. 若选择条件②: 由sin 3c A =,得2sin33c π=,解得3c =23b c == 由sin sin a c A C=,得2sin sin 36a cππ=,得36a c ==. 所以,选条件②时问题中的三角形存在,此时23c =.若选择条件③:由于3c b 与b c =矛盾,所以,问题中的三角形不存在. 【整体点评】方法一:根据正弦定理以及余弦定理可得,,a b c 的关系,再根据选择的条件即可解出,是本题的通性通法,也是最优解;方法二:利用内角和定理以及两角差的正弦公式,消去角A ,可求出角B ,从而可得2,,36b c A B C ππ====,再根据选择条件即可解出.【典例9】(2020·全国·高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ; (2)若3b c -=,证明:△ABC 是直角三角形. 【答案】(1)3A π=;(2)证明见解析【解析】 【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出;(2)根据余弦定理可得222b c a bc +-=,将3b c -=代入可找到,,a b c 关系, 再根据勾股定理或正弦定理即可证出. 【详解】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①, 又3b c -=②, 将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =, 所以3a c =, 故222b a c =+, 即ABC 是直角三角形. 【总结提升】1.判定三角形形状的两种常用途径2.判定三角形的形状的注意点在判断三角形的形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解. 3.确定三角形要素的条件: (1)唯一确定的三角形:① 已知三边(SSS ):可利用余弦定理求出剩余的三个角② 已知两边及夹角(SAS ):可利用余弦定理求出第三边,进而用余弦定理(或正弦定理)求出剩余两角 ③ 两角及一边(AAS 或ASA ):利用两角先求出另一个角,然后利用正弦定理确定其它两条边 (2)不唯一确定的三角形① 已知三个角(AAA ):由相似三角形可知,三个角对应相等的三角形有无数多个.由正弦定理可得:已知三个角只能求出三边的比例:::sin :sin :sin a b c A B C =② 已知两边及一边的对角(SSA ):比如已知,,a b A ,所确定的三角形有可能唯一,也有可能是两个.其原因在于当使用正弦定理求B 时,sin sin sin sin a b b A B A B a =⇒=,而0,,22B πππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,一个sin B 可能对应两个角(1个锐角,1个钝角),所以三角形可能不唯一.(判定是否唯一可利用三角形大角对大边的特点)热点五 正弦定理、余弦定理实际应用【典例10】(2021·全国·高考真题(理))魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距【答案】A 【解析】 【分析】利用平面相似的有关知识以及合分比性质即可解出. 【详解】 如图所示:由平面相似可知,,DE EH FG CGAB AH AB AC==,而 DE FG =,所以 DE EH CG CG EH CG EHAB AH AC AC AH CH--====-,而 CH CE EH CG EH EG =-=-+, 即CG EH EG EG DE AB DE DE CG EH CG EH-+⨯=⨯=+--=+⨯表高表距表高表目距的差. 故选:A.【典例11】(2021·全国·高考真题(理))2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45ACB ∠'''=︒,60A BC ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差AA CC ''-3 1.732≈)( )A .346B .373C .446D .473【答案】B 【解析】 【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得''A B ,进而得到答案. 【详解】过C 作'CH BB ⊥,过B 作'BD AA ⊥,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+, 由题,易知ADB △为等腰直角三角形,所以AD DB =. 所以''100''100AA CC DB A B -=+=+. 因为15BCH ∠=︒,所以100''tan15CH C B ==︒在'''A B C 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===︒︒︒︒︒,而62sin15sin(4530)sin 45cos30cos 45sin 30-︒=︒-︒=︒︒-︒︒=, 所以210042''100(31)27362A B ⨯==≈-,所以''''100373AA CC A B -=+≈. 故选:B .【典例12】(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少? (长度精确到0.1m ,面积精确到0.01m²) 【答案】(1)23.3m(2)当8.7AE =时,梯形FEBC 的面积有最大值,最大值为255.14 【解析】 【分析】(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ⊥,15DH AD ==,在直角HED △和直角FHD △中分别求出,EH HF ,从而得出答案.(2)先求出梯形AEFD 的面积的最小值,从而得出梯形FEBC 的面积的最大值. (1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ⊥,15DH AD == 则AE EH =,所以直角ADE 与直角HED △全等 所以20ADE HDE ∠=∠=︒在直角HED △中,tan2015tan20EH DH =︒=︒90250HDF ADE ∠=︒-∠=︒在直角FHD △中,tan5015tan50HF AD =︒=︒()sin 20sin5015tan 20tan5015cos20cos50EF EH HF ︒︒⎛⎫=+=︒+︒=+ ⎪︒︒⎝⎭()sin 2050sin 20cos50cos20sin501515cos20cos50cos20cos50︒+︒︒︒︒+︒︒=⨯=⨯︒︒︒︒sin 70151523.3cos 20cos50cos50︒=⨯=≈︒︒︒(2)设ADE θ∠=,902HDF θ∠=︒-,则15tan AE θ=,()15tan 902FH θ=︒- ()115151515tan 15tan 90215tan 222tan 2EFDS EF DH θθθθ⎛⎫=⨯⨯=⎡+︒-⎤=+ ⎪⎣⎦⎝⎭ 11515tan 22ADESAD AE θ=⨯⨯=⨯ 所以梯形AEFD 的面积为215152251tan 30tan 2tan 2tan 222tan ADEDEFS S Sθθθθθ⎛⎫-⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭2251225122533tan 23tan 4tan 4tan 2θθθθ⎛⎫=+≥⨯⨯= ⎪⎝⎭ 当且当13tan tan θθ=,即3tan θ=时取得等号,此时315tan 15538.7AE θ===≈ 即当3tan θ=时,梯形AEFD 2253则此时梯形FEBC 的面积有最大值22531530255.14⨯≈ 所以当8.7AE =时,梯形FEBC 的面积有最大值,最大值为255.14 热点五 平面几何中的解三角形问题【典例13】(2021·浙江·高考真题)在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,23AM =AC =___________,cos MAC ∠=___________. 【答案】 13239【解析】 【分析】由题意结合余弦定理可得=8BC ,进而可得AC ,再由余弦定理可得cos MAC ∠. 【详解】由题意作出图形,如图,在ABM 中,由余弦定理得2222cos AM AB BM BM BA B =+-⋅⋅,即21124222BM BM =+-⨯⨯,解得=4BM (负值舍去),所以=2=2=8BC BM CM ,在ABC 中,由余弦定理得22212cos 464228522AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=, 所以13AC =在AMC 中,由余弦定理得222239cos 2223213AC AM MC MAC AM AC +-∠=⋅⨯⨯. 故答案为:213239【典例14】(2020·江苏·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值. 【答案】(1)5sin C (2)2tan 11DAC ∠=.【解析】 【分析】(1)方法一:利用余弦定理求得b ,利用正弦定理求得sin C .(2)方法一:根据cos ADC ∠的值,求得sin ADC ∠的值,由(1)求得cos C 的值,从而求得sin ,cos DAC DAC ∠∠的值,进而求得tan DAC ∠的值. 【详解】(1)[方法一]:正余弦定理综合法由余弦定理得22222cos 922325b a c ac B =+-=+-⨯=,所以5b = 由正弦定理得sin 5sin sin sin c b c B C C B b =⇒==. [方法二]【最优解】:几何法过点A 作AE BC ⊥,垂足为E .在Rt ABE △中,由2,45c B,可得1AE BE ==,又3a =,所以2EC =.在Rt ACE 中,225AC AE EC =+5sin 5C ==(2)[方法一]:两角和的正弦公式法由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以23sin 1cos 5ADC ADC ∠=-∠=.由于,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin C C =- 所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅325452555⎛⎫=-= ⎪⎝⎭. 由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以2115cos 1sin DAC DAC ∠=-∠=所以sin 2tan cos 11DAC DAC DAC ∠∠==∠. [方法二]【最优解】:几何法+两角差的正切公式法在(1)的方法二的图中,由4cos 5ADC ∠=-,可得4cos cos()cos 5ADE ADC ADC π∠=-∠=-∠=,从而4sin 4sin cos ,tan 5cos 3DAE DAE ADE DAE DAE ∠∠=∠=∠==∠.又由(1)可得tan 2EC EAC AE ∠==,所以tan tan 2tan tan()1tan tan 11EAC EAD DAC EAC EAD EAC EAD ∠-∠∠=∠-∠==+∠⋅∠.[方法三]:几何法+正弦定理法在(1)的方法二中可得1,2,5AE CE AC === 在Rt ADE △中,45,cos sin 3AE AD ED AD ADE ADE ===∠=∠,所以23CD CE DE =-=. 在ACD △中,由正弦定理可得25sin sin CD DAC C AD ∠=⋅=, 由此可得2tan 11DAC ∠=. [方法四]:构造直角三角形法如图,作AE BC ⊥,垂足为E ,作DG AC ⊥,垂足为点G .在(1)的方法二中可得1,2,5AE CE AC ===由4cos 5ADC ∠=-,可得243cos ,sin 1cos 55ADE ADE ADE ∠=∠=-∠.在Rt ADE △中,22542,,sin 333AE AD DE AD AE CD CE DE ADE ==-==-=∠.由(1)知5sin C =Rt CDG △中,222545sin DG CD C CG CD DG =⋅==-=,从而115AG AC CG =-=在Rt ADG 中,2tan 11DG DAG AG ∠==. 所以211DAC ∠=. 【整体点评】(1)方法一:使用余弦定理求得5b =sin C ;方法二:抓住45°角的特点,作出辅助线,利用几何方法简单计算即得答案,运算尤其简洁,为最优解;(2)方法一:使用两角和的正弦公式求得DAC ∠的正弦值,进而求解;方法二:适当作出辅助线,利用两角差的正切公式求解,运算更为简洁,为最优解;方法三:在几何法的基础上,使用正弦定理求得DAC ∠的正弦值,进而得解;方法四:更多的使用几何的思维方式,直接作出含有DAC ∠的直角三角形,进而求解,也是很优美的方法. 【典例15】(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长. 条件①:2c b =;条件②:ABC 的周长为423+ 条件③:ABC 33【答案】(1)6π;(2)答案不唯一,具体见解析. 【解析】 【分析】(1)由正弦定理化边为角即可求解; (2)若选择①:由正弦定理求解可得不存在;若选择②:由正弦定理结合周长可求得外接圆半径,即可得出各边,再由余弦定理可求; 若选择③:由面积公式可求各边长,再由余弦定理可求. 【详解】(1)2cos c b B =,则由正弦定理可得sin 2sin cos C B B =, 23sin 2sin 3B π∴==23C π=,0,3B π⎛⎫∴∈ ⎪⎝⎭,220,3B π⎛⎫∈ ⎪⎝⎭,23B π∴=,解得6B π=;(2)若选择①:由正弦定理结合(1)可得3sin 231sin 2c Cb B=== 与2c b =矛盾,故这样的ABC 不存在; 若选择②:由(1)可得6A π=,设ABC 的外接圆半径为R , 则由正弦定理可得2sin 6a b R R π===,22sin33c R R π=, 则周长23423a b c R R ++==+ 解得2R =,则2,23a c ==由余弦定理可得BC 边上的中线的长度为:()222312231cos76π+-⨯⨯⨯若选择③:由(1)可得6A π=,即a b =,则211333sin 22ABCSab C a ===,解得3a = 则由余弦定理可得BC 边上的中线的长度为:22233212cos 3322342a a b b π⎛⎫+-⨯⨯⨯++⨯= ⎪⎝⎭【总结提升】与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系. 具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解; (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.【精选精练】一、单选题1.(2022·贵州贵阳·高三开学考试(文))“云楼”是白云区泉湖公园的标志性建筑,也是来到这里必打卡的项目之一,它端坐于公园的礼仪之轴,建筑外形主体木质结构,造型独特精巧,是泉湖公园的“阵眼”和“灵魂”,同时也是泉湖历史与发展变化的资料展示馆.小张同学为测量云楼的高度,如图,选取了与云楼底部D 在同一水平面上的A ,B 两点,在A 点和B 点测得C 点的仰角分别为45°和30°,测得257AB =150ADB ∠=︒,则云楼的高度CD 为( )A .20米B .25米C .7D .257【答案】B【分析】设CD x =,由锐角三角函数得到AD x =,3BD x =,再在ABD △中利用余弦定理求出x ,即可得解.【详解】解:依题意45CAD ︒∠=,30CBD ︒∠=, 设CD x =,在Rt ACD △、Rt BCD 中,tan 1CD CAD AD∠==,3tan 3CD CBD BD ∠==,所以AD x =,3BD x =,在ABD △中由余弦定理2222cos AB AD BD AD BD ADB =+-⋅∠, 即()()22232573232x x x x ⎛⎫=+-⋅⋅- ⎪ ⎪⎝⎭,解得25x =或25x =-(舍去), 所以云楼的高度CD 为25米; 故选:B2.(2022·河南·郑州四中高三阶段练习(文))在ABC 中,角,,A B C 的对边分别为,,a b c ,已知三个向量,cos 2A m a ⎛⎫= ⎪⎝⎭,,cos ,,cos 22B C n b p c ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭共线,则ABC 的形状为( )A .等边三角形B .钝角三角形C .有一个角是6π的直角三角形 D .等腰直角三角形【答案】A【分析】由向量共线的坐标运算可得cos cos 22B Aa b =,利用正弦定理化边为角,再展开二倍角公式整理可得sinsin 22A B=,结合角的范围求得A B =,同理可得B C =,则答案可求. 【详解】向量(,cos )2A m a =,(,cos )2B n b =共线,cos cos 22B A a b ∴=,由正弦定理得:sin cos sin cos 22B A A B =, 2sincos cos 2sin cos cos 222222A A B B B A ∴=,则sin sin 22A B=, 022A π<<,022B π<<,∴22A B =,即A B =.同理可得B C =.ABC ∴形状为等边三角形.故选:A .3.(2022·安徽蚌埠·一模)圭表是我国古代通过观察记录正午时影子长度的长短变化来确定季节变化的一种天文仪器,它包括一根直立的标杆(称为“表”)和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭”).当正午阳光照射在表上时,影子就会落在圭面上,圭面上影子长度最长的那一天定为冬至,影子长度最短的那一天定为夏至.如图是根据蚌埠市(北纬32.92)的地理位置设计的圭表的示意图,已知蚌埠市冬至正午太阳高度角(即ABC ∠)约为33.65,夏至正午太阳高度角(即ADC ∠)约为80.51.圭面上冬至线和夏至线之间的距离(即BD 的长)为7米,则表高(即AC 的长)约为( )(已知229tan33.65,tan80.5135≈≈)A .4.36米B .4.83米C .5.27米D .5.41米【答案】C【分析】由题意可求出35,229BC AC CD AC ==,再由BD 的长为7米,求出AC ,即可得出答案. 【详解】由图可知229tan33.65,tan80.5135AC AC BC CD =≈=≈, 所以35,229BC AC CD AC ==, 得3577587 5.272295811BD AC AC AC ⎛⎫=-==⇒=≈ ⎪⎝⎭. 故选:C. 二、多选题4.(2022·吉林·延边第一中学高一期中)下列命题错误的是( ) A .三角形中三边之比等于相应的三个内角之比 B .在ABC 中,若sin sin A B >,则A B >C .在ABC 的三边三角共6个量中,知道任意三个,均可求出剩余三个D .当2220b c a +->时,ABC 为锐角三角形;当2220b c a +-=时,ABC 为直角三角形;当2220b c a +-<时,ABC 为钝角三角形 【答案】ACD【分析】对于ACD ,举例判断,对于B ,利用正弦定理结果合三角形的性质判断.【详解】对于A ,等腰直角三角形的三边比为1:1:2,而三个内角的比为1:1:2,所以A 错误, 对于B ,在ABC 中,当sin sin A B >时,由正弦定理可得a b >,因为在三角形中大边对大角,所以A B >,所以B 正确,对于C ,在ABC 中,若三个角,,A B C 确定,则这样的三角形三边无法确定,这样的三角形有无数个,所以C 错误,对于D ,在ABC 中,2220b c a +->时,由余弦定理可知角A 为锐角,而角,B C 的大小无法判断,所以三角形的形状无法判断,所以D 错误, 故选:ACD5.(2021·黑龙江黑河·高二阶段练习)在ABC 中,已知2,3,AB AC AD ==是角A 的平分线,则AD 的长度可能为( ) A .2.1 B .2.2 C .2.3 D .2.4【答案】ABC【分析】过C 作//CE AB 交AD 延长线于E ,由题设可得3AC EC ==且ADB EDC ,进而有23AD ED =,令2AD x =并在ACE 中应用余弦定理求x 范围,即可得AD 范围. 【详解】过C 作//CE AB 交AD 延长线于E ,又AD 是角A 的平分线,得CAE BAE E ∠=∠=∠,故3AC EC ==, 而ADB EDC ,则23AD AB ED EC ==, 令2AD x =,则5AE x =,在ACE 中,22221825cos (1,1)218AC EC AE x ACE AC EC +--∠==∈-⋅, 可得605x <<,则122(0,)5AD x =∈,故A 、B 、C 满足要求.故选:ABC6.(2022·吉林·长春市第二实验中学高一期末)中国南宋时期杰出的数学家秦九韶在《数书九章》中提出了“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.把以上文字写成公式,即222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦S 为三角形的面积,a 、b 、c 为三角形的三边).现有ABC 满足::2:7a b c =ABC 的面积63ABC S =△列结论正确的是( ) A .ABC 的最短边长是2 B .ABC 的三个内角满足2A B C +=C .ABC 221D .ABC 的中线CD 的长为32【答案】BC【分析】依题意设2a t =,3b t =,7c t =(0t >),利用面积公式求出t ,即可求出边长,从而判断A ,再由余弦定理求出C ,即可判断B ,利用正弦定理求出外接圆的半径,即可判断C ,最后由数量积的运算律求出中线CD ,即可判断D.【详解】解:由::2:3:7a b c =,设2a t =,3b t =,7c t =(0t >),因为63ABC S =△,所以2222221749637442t t t t t ⎡⎤⎛⎫+-=+-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,解得2t =,则4a =,6b =,27c =,故A 错误;因为2221636281cos 22462a b c C ab +-+-===⨯⨯,所以π3C =,π2ππ233A B C +=-==,故B 正确; 因为π3C =,所以3sin 2C =,由正弦定理得4212sin 3c R C ==,2213R =,故C 正确; ()12CD CA CB =+,所以()22111361624619442CD CA CB ⎛⎫=+=⨯++⨯⨯⨯= ⎪⎝⎭,故19CD =,故D 错误.故选:BC . 三、填空题7.(2022·贵州·贵阳乐湾国际实验学校高三开学考试(理))在ABC 中,角A ,B ,C 所对的边分别为,,a b c ,且42c =B =4π,若ABC 的面积S =2,则b =___________. 【答案】5【分析】先由面积公式计算1a =,再利用余弦定理计算5b =. 【详解】由三角形面积公式,1sin 22S ac B ==, 所以,1a =.由余弦定理,2222cos 25b a c ac B =+-=.所以,5b =. 故答案为:5.8.(2022·全国·高三专题练习)在△ABC 中,若cos cos A bB a=,则△ABC 的形状是________. 【答案】等腰三角形或直角三角形【分析】由已知及余弦定理可得22222()()0a b c a b ---=,即可判断△ABC 的形状.【详解】由余弦定理,222222cos 2cos 2b c a A bbc a c b B aac+-==+-,化简得22222()()0a b c a b ---=, ∴a b =或222c a b =+,∴△ABC 为等腰三角形或直角三角形. 故答案为:等腰三角形或直角三角形 四、解答题9.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,3sin cos 0a B b A -=.(1)求A ; (2)若3c =3a =ABC 的面积. 【答案】(1)6A π=(2)338【分析】(1)由正弦定理将已知式子统一成角的形式,然后化简可求出角A ; (2)利用余弦定理求出b ,再利用三角形的面积公式可求得结果. (1)因为3sin cos 0a B b A -=所以由正弦定理得3sin sin sin cos A B B A =, 因为()0,B π∈,所以sin 0B ≠, 所以3sin cos A A =,即3tan 3A =, 又因为()0,A π∈,所以6A π=.(2)。
解三角形常考基本问题归类正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。
在近几年高考中主要有以下五大命题热点:一、求解斜三角形中的基本元素:指已知两边一角(或二角一边或三边),求其它三个元素问 题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题.例1、ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( ) A.)33B π++ B.)36B π++ C .6sin()33B π++ D .6sin()36B π++ 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.解:由正弦定理得:32sin sin sin sin sin sin sin()33b c b c b c B C B C B B ππ++====++-, 得b +c=B +sin(23π-B )]=6sin()6B π+. 故三角形的周长为:3+b +c =6sin()36B π++,故选(D). 评注:由于本题是选择题也可取△ABC 为直角三角形时,即B =6π,周长应为33+ 3,故排除(A)、(B)、(C).而选(D).例2、在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A .解:设E 为BC 的中点,连接DE ,则DE //AB ,且36221==AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 2222⋅-+=, x x 6636223852⨯⨯++=,解得1=x ,37-=x (舍去) 故BC =2,从而328cos 2222=⋅-+=B BC AB BC AB AC , 即3212=AC 又630sin =B ,故2sin A =1470sin =A 二、判断三角形的形状:给出三角形中的三角关系式,判断此三角形的形状.例3 在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形解法1:由C B A sin cos sin 2==sin(A +B )=sin A cos B +cos A sin B ,即sin A cos B -cos A sin B =0,得sin(A -B )=0,得A =B .故选(B).解法2:由题意,得cos B =sin 2sin 2C c A a =,再由余弦定理,得cos B =2222a c b ac+-. ∴ 2222a c b ac+-=2c a ,即a 2=b 2,得a =b ,故选(B). 评注:判断三角形形状,通常用两种典型方法:⑴统一化为角,再判断(如解法1),⑵统一化为边,再判断(如解法2).三、解决与面积有关问题:主要是利用正、余弦定理,并结合三角形的面积公式来解题. 例4、在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S =_________ 分析:本题只需由余弦定理,求出边AC ,再运用面积公式S =21AB •AC sin A 即可解决. 解:由余弦定理,得cos A =2222254912102AB AC BC AC AB AC AC +-+-==-∙∙, 解得AC =3.∴ S =21AB •AC sin A =4315. ∴21AB •AC •sin A =21AC •h ,得h =AB • sin A =223,故选(A). 四、求值问题 例5、 在ABC ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、,设c b a 、、满足条件 222a bc c b =-+和321+=b c ,求A ∠和B tan 的值. 分析:本题给出一些条件式的求值问题,关键还是运用正、余弦定理.解:由余弦定理212cos 222=-+=bc a c b A ,因此,︒=∠60A 在△ABC 中,∠C=180°-∠A -∠B=120°-∠B.由已知条件,应用正弦定理BB BC b c sin )120sin(sin sin 321-︒===+ ,21cot 23sin sin 120cos cos 120sin +=︒-︒=B B B B 解得,2cot =B 从而.21tan =B 五、正余弦定理解三角形的实际应用:利用正余弦定理解斜三角形,在实际应用中有着广 泛的应用,如测量、航海、几何等方面都要用到解三角形的知识,例析如下:(一.)测量问题例1 如图1所示,为了测河的宽度,在一岸边选定A 、B 两点,望对岸标记物C ,测得∠CAB=30°,∠CBA=75°,AB=120cm ,求河的宽度。
高考数学二轮复习重要知识点之正弦定理、余弦定理及其应用作者:佚名考大纲求:掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.知识梳理:正弦定理:,余弦定理:推论:正余弦定理的边角交换功能三角形中的基本关系式:主要方法:经过对题目的剖析找到相应的边角交换功能的式子进行变换 .利用正余弦定理能够把边的关系转变为角的关系,也能够把角的关系转变为边的关系。
1.直角三角形中各元素间的关系:如图,在△ ABC 中, C=90°, AB = c,AC = b, BC= a。
(1)三边之间的关系: a2+ b2= c2。
(勾股定理)(2)锐角之间的关系: A + B= 90°;(3)边角之间的关系:(锐角三角函数定义)sinA =cosB=, cosA= sinB=, tanA =。
2.斜三角形中各元素间的关系:如图 6-29,在△ ABC 中, A 、B、C 为其内角, a、b、c 分别表示 A、B、C 的对边。
(1)三角形内角和: A + B+ C=π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。
(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其余两边平方的和减去这两边与它们夹角的余弦的积的两倍。
a2= b2+ c2- 2bccosA;b2= c2+a2- 2cacosB;c2= a2+ b2-2abcosC。
3.三角形的面积公式:(1)△= aha=bhb= chc( ha、hb、 hc 分别表示 a、 b、c 上的高);(2)△= absinC= bcsinA =acsinB;(3)△===;(4)△= 2R2sinAsinBsinC 。
(R 为外接圆半径)(5)△=;(6)△=;;(7)△= rs。
4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(此中起码有一个是边)求其余未知元素的问题叫做解三角形.广义地,这里所说的元素还能够包含三角形的高、中线、角均分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下边两种情况:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形。
高考数学专题--正余弦定理及解三角形高考考点:1、利用正、余弦定理解三角形2、解三角形的实际应用3、解三角形与其他知识的交汇问题解三角形问题一直是近几年高考的重点,主要考查以斜三角形为背景求三角形的基本量、面积或判断三角形的形状,解三角形与平面向量、不等式、三角函数性质、三角恒等变换交汇命题成为高考的热点. 考点1 利用正、余弦定理解三角形 题组一 利用正、余弦定理解三角形调研1 ABC △的内角,,A B C 的对边分别为,,a b c ,已知3cos sin 3b a C a C =+.(1)求A ; (2)若3a =,2bc =,求ABC △的周长.【解析】(1)3cos sin 3b a C a C =+,3,sin sin cos sin sin 3B A C A C ∴=+由正弦定理得,3sin cos cos sin sin cos sin sin 3A C A C A C A C ∴+=+,tan 3A =即,()0πA ∈又,,∴π3A =.(2)22π,32cos3b c bc =+-由余弦定理得,()233b c bc +-=即, 2bc =又,3b c ∴+=,故33ABC +△的周长为.调研2 如图,ABC △中,角,,A B C 的对边分别为,,a b c ,已知3sin cos C cBb =.(1)求角B 的大小;(2)点D 为边AB 上的一点,记BDC θ∠=,若π85π,2,5,25CD AD a θ<<===,求sin θ与b 的值. 【解析】(1)由已知3sin cos C c Bb =,得3sin sin cos sin C CB B =, 因为sin 0C >,所以sin 3tan cos 3B B B==, 因为0πB <<,所以π6B =.(2)在BCD △中,因为sin sin sin CD BC aB BDC θ==∠,所以8525sin sin B BDC=∠,所以25sin 5θ=,因为θ为钝角,所以ADC ∠为锐角,所以()25cos cos π1sin 5ADC θθ∠=-=-=,在ADC △中,由余弦定理,得22252cos(π)5425255b AD CD AD CD θ=+-⨯-=+-⨯⨯=,所以5b =.☆技巧点拨☆利用正、余弦定理解三角形的关键是利用定理进行边角互化.即利用正弦定理、余弦定理等工具合理地选择“边”往“角”化,还是“角”往“边”化.若想“边”往“角”化,常利用“a =2R sin A ,b =2R sin B ,c =2R sin C ”;若想“角”往“边”化,常利用sin A =a 2R ,sin B =b 2R ,sin C =c 2R ,cos C =a 2+b 2-c 22ab等.题组二 与三角形面积有关的问题调研3 如图,在ABC △中,点D 在边AB 上,CD ⊥BC ,AC =53,CD =5,BD =2AD .(1)求AD 的长;(2)求ABC △的面积.【解析】(1) 在ABC △中,因为BD =2AD ,设AD =x (x >0),所以BD =2x .在BCD △中,因为CD ⊥BC ,CD =5,BD =2x ,所以cos ∠CDB =CD BD =52x.在ACD △中,因为AD =x ,CD =5,AC =53,所以cos ∠ADC =AD 2+CD 2-AC 22×AD ×CD =222525x x +-⨯⨯.因为∠CDB +∠ADC =π,所以cos ∠ADC =-cos ∠CDB ,=-52x ,解得x =5.所以AD 的长为5.(2)由(1)求得AB =3x =15,BC =4x 2-25=5 3. 所以cos ∠CBD =BCBD =32,从而sin ∠CBD =12. 所以S △ABC =12×AB ×BC ×sin∠CBA =12×15×53×12=7534.题组三 三角形形状的判断调研4 ABC △中,角,,A B C 的对边分别是,,a b c ,且cos sin a C C b c +=+. (1)求A ;(2)若2,a ABC =△试判断此三角形的形状.【解析】(1)由正弦定理及cos sin a C C b c =+得,sin cos sin sin sin A C A C B C =+,即()sin cos sin sin sin A C A C A C C =++sin cos sin sin A C A C C ⇒-=,∵sin 0C >,()1cos 1sin 302A A A -=⇒-︒=,∵0180A <<︒︒,∴3030150A ︒-︒<-<︒, ∴303060A A -=︒⇒=︒︒.(2)1sin 42S bc A bc ===,由余弦定理得:2222cos a b cbc A =+-=()23b c bc +-()241242b c b c b c ⇒=+-⇒+=⇒==,∵60A =︒,∴60B C ==︒, 故ABC △是等边三角形. ☆技巧点拨☆判断三角形的形状有以下几种思路:(1)转化为三角形的边来判断,可简记为“化角为边”; (2)转化为角的三角函数(值)来判断,可简记为“化边为角”.提醒:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免造成漏解. 考点2 解三角形的实际应用 题组 解三角形的实际应用调研1 某新建的信号发射塔的高度为AB ,且设计要求为:29米AB <<29.5米.为测量塔高是否符合要求,先取与发射塔底部B 在同一水平面内的两个观测点,C D ,测得60BDC ∠=︒,75BCD ∠=︒,40CD =米,并在点C 处的正上方E 处观测发射塔顶部A 的仰角为30°,且1CE =米,则发射塔高AB = A .()2021+米B .()2061+米 C .()4021+米 D .()4061+米【答案】A【解析】画出草图,如图所示,在BDC △中,45DBC ∠=︒,由正弦定理得sin 206sin BDCBC CD DBC ∠=⨯=∠米;在AEF △中,30AEF ∠=︒,所以tan30202AF EF =︒=米, 所以1(2021)AB AF =+=+米.选A .☆技巧点拨☆高度的测量主要是一些底部不能到达或者无法直接测量的物体的高度问题.常用正弦定理或余弦定理计算出物体的顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.这类物体高度的测量是在与地面垂直的竖直平面内构造三角形或者在空间构造三棱锥,再依据条件利用正、余弦定理解其中的一个或者几个三角形,从而求出所需测量物体的高度. 调研2 海中一小岛C 的周围()838nmile-内有暗礁,海轮由西向东航行至A 处测得小岛C 位于北偏东75︒,航行8nmile 后,于B 处测得小岛C 在北偏东60︒(如图所示).(1)如果这艘海轮不改变航向,有没有触礁的危险?请说明理由.(2)如果有触礁的危险,这艘海轮在B 处改变航向为东偏南(0αα>)方向航行,求α的最小值. 附:tan7523︒=+.【解析】(1)如图1,过点作直线AB 的垂线,交直线AB 于点D .由已知得15,30,15A CBD ACB ∠=︒∠=︒∠=︒, 所以8nmile AB BC ==,所以在Rt BCD △中,sin CD AB CBD =⋅∠=184nmile 2⨯=.又4838<,所以海轮有触礁的危险. (2)如图2,延长CD 至E ,使()838nmileCE =,故()8312nmileDE =,由(1)得43nmile tan30CDBD ==︒,所以83tan 2343DE DBE BD ∠===.因为tan7523︒=+所以tan152323︒==-+.即tan tan15DBE ∠=︒,所以15DBE ∠=︒. 故海轮应按东偏南15°的方向航行. ☆技巧点拨☆解决此类问题的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.解题时应认真审题,结合图形去选择正、余弦定理,这是最重要的一步. 考点3 解三角形与其他知识的交汇问题 题组一 解三角形与三角恒等变换相结合调研1 在ABC △中,,,a b c 分别为角,,A B C 的对边,已知7,2c ABC=△的面积为33又tan tan A B +)3tan tan 1.A B =-(1)求角C 的大小; (2)求a b +的值.【解析】(1)因为)tan tan 3tan tan 1,A B A B +=-所以()tan A B +=tan tan 3,1tan tan A BA B +=--又因为,,A B C 为ABC △的内角,所以2π,3A B +=所以π.3C =(2)由133sin 22ABC S ab C ==△及π,3C =得6,ab =又()2222221cos 222a b c ab a b c C ab ab +--+-===,7,2c = 所以11.2a b +=题组二 解三角形与平面向量相结合调研2 如图,在ABC △中,已知点D 在边BC 上,且0AD AC ⋅=,22sin 3BAC ∠=,32AB =,3BD =.(1)求AD 的长; (2)求cos C .【解析】(1)因为0,AD AC ⋅=所以,AD AC ⊥所以πsin sin cos ,2BAC BAD BAD ⎛⎫∠=+∠=∠ ⎪⎝⎭即22cos BAD ∠=. 在ABD △中,由余弦定理,可知2222cos BD AB AD AB AD BAD =+-⋅⋅∠,即28150,AD AD -+=解得5,AD =或3AD =. 因为,AB AD >所以3AD =.(2)在ABD △中,由正弦定理,可知,sin sin BD ABBAD ADB =∠∠又由2cos 3BAD ∠=可知1sin ,3BAD ∠= 所以sin 6sin AB BAD ADB BD ∠∠==.因为π,2ADB DAC C C ∠=∠+=+所以6cos 3C =.强化训练:1.在ABC △中,π4B,BC 边上的高等于13BC ,则cos AA .31010 B .1010C .1010D .31010【答案】C【解析】设BC 边上的高为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD =.由余弦定理,知22222225910cos 210225AB AC BC AD AD AD A AB AC AD AD+-+-===-⋅⨯⨯,故选C . 2.ABC △的内角A 、B 、C 的对边分别为a 、b 、c ,已知ABC △的面积为315,4a =2,b =3,则sin aA =A .463B .161515C .4153D .463或161515【答案】D3.已知()cos17,cos73AB =︒︒,()2cos77,2cos13BC =︒︒,则ABC △的面积为__________.【答案】3【解析】由题意得1c AB ==,2a CB ==,·BC BA =2cos77cos172cos13cos73-︒︒-︒︒=()2cos77cos17sin77sin17-︒︒+︒︒=()2cos 7717-︒-︒=1-;而·cos BC BA AB CB B ==2cos B =1-,解得1cos 2B =-,所以3sin B =.所以ABC △的面积13sin 2S ac B ==.4.已知ABC △中,π2A =,角A B C 、、所对的边分别为a b c 、、,点D 在边BC 上,1AD =,且BD =2,DC BAD ∠=2DAC ∠,则sin sin BC =__________. 【答案】325.如图,为了测量河对岸A B 、两点之间的距离,观察者找到一个点C ,从点C 可以观察到点A B 、;找到一个点D ,从点D 可以观察到点A C 、;找到一个点E ,从点E 可以观察到点B C 、.并测量得到一些据:2CD =,23CE =,45D ∠=︒,105ACD ∠=︒,48.19ACB ∠=︒,75BCE ∠=︒,60E ∠=︒,则A B 、两点之间的距离为__________.(其中cos48.19︒取近似值23)10【解析】由题意知,在ACD △中,30A =︒.由正弦定理得sin4522sin 30CD AC ︒==︒在BCE △中,45CBE ∠=︒,由正弦定理得sin603 2.sin 45CE BC ︒==︒在ABC △中,由余弦定理得2222cos 10AB AC BC AC BC ACB =+⋅∠=﹣,∴10.AB = 6.在ABC △中,,,a b c 分别是内角,,A B C 的对边,且()3cos ,sin cos cos sin 05B A B c A B =--⋅=.(1)求边b 的值;(2)求ABC △的周长的最大值. 【答案】(1) 1b =;(2) 51+.7.在ABC △中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+.(1)求角C ;(2)若ABC △的面积为32S c=,求ab 的最小值.【答案】(1)2π3;(2) 12.8.在ABC △中,设内角,,A B C 的对边分别为,,a b c ,向量()cos ,sin A A =m ,向量()2sin ,cos ,2A A =-+=n m n . (1)求角A 的大小; (2)若42b =,且2c a =,求ABC △的面积.【答案】(1) π4;(2)16. 【解析】(1)2+m n =()()22cos 2sin sin cos A A A A +-++=()422cos sin 4A A +-=+π4cos 4A ⎛⎫+ ⎪⎝⎭,ππ44cos 4,cos 0,44A A ⎛⎫⎛⎫∴++=∴+= ⎪ ⎪⎝⎭⎝⎭ 又()0,πA ∈,∴ππ42A +=,则π4A =. (2)由余弦定理得2222cos a b c bc A =+-,即()()222π4222422cos 4a a a =+-⨯⨯, 解得42a =,∴8c =, ∴124281622ABC S =⨯⨯⨯=△.9.ABC △的内角A 、B 、C 所对的边分别为,,a b c ,且sin sin a A b B +=sin 2sin .c C a B +(1)求角C ;(2)求π3sin cos 4A B ⎛⎫-+ ⎪⎝⎭的最大值. 【答案】(1)π4;(2) 2.10.设()f x =π13sin cos sin .22222x x x ⎫⎛⎫++-⎪ ⎪⎭⎝⎭(1)求()f x 的单调递增区间;(2)在ABC △中,,,a b c 分别为角,,A B C 的对边,已知π1,332f A a ⎛⎫+=-= ⎪⎝⎭,求ABC △面积的最大值.【答案】(1) 2ππ2π,2π,33k k k ⎡⎤-++∈⎢⎥⎣⎦Z ;(2) 34.11. ABC △中,D 是BC 上的点,AD 平分BAC ∠,ABD △面积是ADC △面积的2倍. (Ⅰ) 求sin sin B C∠∠; (Ⅱ)若1AD =,22DC =,求BD 和AC 的长. 【答案】(Ⅰ)12;(Ⅱ)1.12.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A .(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求ABC △的周长.【答案】(1)23;(2)3【解析】(1)由题设得21sin 23sin a ac B A =,即1sin 23sin a c B A=. 由正弦定理得1sin sin sin 23sin A C B A=. 故2sin sin 3B C =. (2)由题设及(1)得1cos cos sin sin 2B C B C -=-,即1cos()2B C +=-. 所以2π3B C +=,故π3A =. 由题设得21sin 23sin a bc A A=,即8bc =. 由余弦定理得229b c bc +-=,即2()39b c bc +-=,得b c +=.故△ABC的周长为3【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.13.ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin 2B A C +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .【答案】(1)1517;(2)2.。
正弦定理和余弦定理应用举例【考点梳理】1.应用正弦定理和余弦定理解三角形的常见题型主要有测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).图①图②(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°等.(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的正切值.【教材改编】1.(必修5 P19A组T7改编)如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km,速度为1 000 km/h,飞行员先看到山顶的俯角为30°,经过1 min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1 km)()A.11.4 km B.6.6 kmC.6.5 km D.5.6 km[答案] B[解析] ∵AB =1 000×1 000×160=50 0003 m , ∴BC =AB sin 45°·sin 30°=50 00032m. ∴航线离山顶h =50 00032×sin 75°≈11.4 km. ∴山高为18-11.4=6.6 km.2.(必修5 P 19A 组T 1改编)一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为( )A .15 2 kmB .30 2 kmC .45 2 kmD .60 2 km[答案] B[解析] 如图所示,依题意有AB =15×4=60,∠DAC =60°,∠CBM =15°, ∴∠MAB =30°,∠AMB =45°.在△AMB 中,由正弦定理,得60sin 45°=BM sin 30°,解得BM =302,故选B.3.(必修5 P 14例5改编)如图,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30 m ,并在点C 测得塔顶A 的仰角为60°,则塔高AB 等于( )A .5 6 mB .15 3 mC .5 2 mD .15 6 m[答案] D[解析] 在△BCD 中,∠CBD =180°-15°-30°=135°.由正弦定理得BC sin 30°=30sin 135°,解得BC =152(m).在Rt △ABC 中,AB =BC tan ∠ACB =152×3=156(m).4.(必修5 P 24A 组T 5改编)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m[答案] C[解析] 如图,在△ACD 中,∠CAD =90°-30°=60°,AD =60 m ,所以CD =AD ·tan 60°=603(m).在△ABD 中,∠BAD =90°-75°=15°,所以BD =AD ·tan 15°=60(2-3)(m). 所以BC =CD -BD =603-60(2-3)=120(3-1)(m).5.(必修5 P 13练习T 1改编)如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.此船的航速是________n mile/h.[答案] 32[解析] 设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.6.(必修5 P 15练习T 1改编)如图,在山脚A 测得山顶P 的仰角为α,沿倾斜角为β的斜坡向上走a 米到达B ,在B 测得山顶P 的仰角为γ,则山高PQ =________米.[答案] a sin αsin (γ-β)sin (γ-α)[解析] 在△APB 中,∠P AB =α-β,∠APB =γ-α,∠ABP =180°-(γ-β),由正弦定理得AP sin ∠ABP =AB sin ∠APB, ∴AP =a sin [180°-(γ-β)]sin (γ-α) =a sin (γ-β)sin (γ-α),∴PQ =AP sin α=a sin αsin (γ-β)sin (γ-α).7.(必修5 P 13例3改编)如图所示,为测量一树的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.[答案] 30+30 3[解析] 在△P AB 中,∠P AB =30°,∠APB =15°,AB =60,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=22×32-22×12=6-24,由正弦定理得PB sin 30°=AB sin 15°, ∴BP =12×606-24=30(6+2),∴树的高度为PB ·sin 45°=30(6+2)×22=(30+303)m.8.(必修5 P 15例6改编)某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔轮在方位角为45°,距离为10 n mile 的C 处,并测得渔轮正沿方位角为105°的方向,以9 n mile/h 的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h 的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.⎝ ⎛⎭⎪⎫注:sin 22°≈3314 [解析] 如图所示,根据题意可知AC =10,∠ACB =120°,设舰艇靠近渔轮所需的时间为t h ,并在B 处与渔轮相遇,则AB =21t ,BC =9t ,在△ABC 中,根据余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 120°,所以212t 2=102+81t 2+2×10×9t ×12,即360t 2-90t -100=0,解得t =23或t =-512(舍去).所以舰艇靠近渔轮所需的时间为23 h.此时AB =14,BC =6.在△ABC 中,根据正弦定理,得BC sin ∠CAB=AB sin 120°,所以sin ∠CAB =6×3214=3314,即∠CAB ≈22°或∠CAB ≈158 °(舍去),即舰艇航行的方位角为45°+22°=67°. 所以舰艇以67°的方位角航行,需23 h 才能靠近渔轮.9.(必修5 P 11例2改编)如图,隔河看两目标A 与B ,但不能到达,在岸边先选取相距3千米的C ,D 两点,同时,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.[解析] 在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°,∴AC =CD = 3 km.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°.∴BC =3sin 75°sin 60°=6+22.在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos 75°=3+2+3-3=5, ∴AB =5(km),∴A ,B 之间的距离为 5 km.。
1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题2.本部分是高考中的重点考查内容,主要考查利用正、余弦定理解三角形、判断三角形的形状,求三角形的面积等3.命题形式多种多样,解答题以综合题为主,常与三角恒等变换、平面向量相结合热点题型一应用正弦、余弦定理解三角形例1、(2018年浙江卷)在△ABC中,角A,B,C所对的边分别为a,b,c.若a =,b=2,A=60°,则sin B=___________,c=___________.【答案】(1). (2). 3【解析】由正弦定理得,所以由余弦定理得(负值舍去).【变式探究】【2017山东,理9】在中,角,,的对边分别为,,.若为锐角三角形,且满足,则下列等式成立的是(A)(B)(C)(D)【答案】A【解析】所以,选A.【变式探究】(1)在锐角△ABC中,角A,B所对的边长分别为a,b。
若2a sin B=3b,则角A等于() A.π3 B.π4 C.π6(2)在△ABC中,角A,B,C所对的边分别为a,b,c。
若a=1,c=42,B=45°,则sin C=________。
答案:(1)A (2)45解析:(1)在△ABC中,由正弦定理及已知得2sin A·sin B=3sin B,∵B为△ABC的内角,∴sin B≠0。
∴sin A=32.又∵△ABC为锐角三角形,∴A∈⎝⎛⎭⎫0,π2,∴A=π3。
C∆AB A B C a b c C∆AB()sin12cosC2sin cosC cos sinCB+=A+A2a b=2b a=2A=B2B=Asin()2sin cos2sin cos cos sinA CBC A C A C++=+2sin cos sin cos2sin sin2B C A C B A b a=⇒=⇒=(2)由余弦定理,得b 2=a 2+c 2-2ac cos B =1+32-82×22=25,即b =5。
§4.6 正弦定理、余弦定理及解三角形1. 正弦、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .3. 在△ABC 中,已知a 、b 和A 时,解的情况如下:4. 实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°等. (3)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). (4)坡度:坡面与水平面所成的二面角的正切值.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)在△ABC 中,A >B 必有sin A >sin B .( √ )(2)若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,那么a 的取值范围是(3,2).( √ ) (3)若△ABC 中,a cos B =b cos A ,则△ABC 是等腰三角形.( √ ) (4)在△ABC 中,tan A =a 2,tan B =b 2,那么△ABC 是等腰三角形.( × )(5)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( × )2. (2013·湖南)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a sin B =3b ,则角A 等于( )A.π12B.π6C.π4D.π3答案 D解析 在△ABC 中,利用正弦定理得 2sin A sin B =3sin B ,∴sin A =32. 又A 为锐角,∴A =π3.3. (2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sinA ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0<A <π,得A =π2,所以△ABC 为直角三角形.4. 在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.答案 27解析 由正弦定理知AB sin C =3sin 60°=BCsin A, ∴AB =2sin C ,BC =2sin A .又A +C =120°,∴AB +2BC =2sin C +4sin(120°-C ) =2(sin C +2sin 120°cos C -2cos 120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角, 由于0°<C <120°,且α是第一象限角, 因此AB +2BC 有最大值27.5. 一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为______ km. 答案 30 2解析 如图所示,依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°, 在△AMB 中,由正弦定理得60sin 45°=BM sin 30°,解得BM =30 2 (km).题型一 正、余弦定理的简单应用例1 (1)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A 等于( )A .30°B .60°C .120°D .150°(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C ,则sin B +sin C 的最大值为( )A .0B .1C.12D. 2思维启迪 (1)由sin C =23sin B 利用正弦定理得b 、c 的关系,再利用余弦定理求A . (2)要求sin B +sin C 的最大值,显然要将角B ,C 统一成一个角,故需先求角A ,而题目给出了边角之间的关系,可对其进行化边处理,然后结合余弦定理求角A . 答案 (1)A (2)B解析 (1)∵sin C =23sin B ,由正弦定理得c =23b , ∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,又A 为三角形的内角,∴A =30°.(2)已知2a sin A =(2b +c )sin B +(2c +b )sin C , 根据正弦定理,得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,又A 为三角形的内角,∴A =120°.故sin B +sin C =sin B +sin(60°-B )=32cos B +12sin B =sin(60°+B ), 故当B =30°时,sin B +sin C 取得最大值1.思维升华 (1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. (2)解题中注意三角形内角和定理的应用及角的范围限制.(1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C 等于( )A.725B .-725C .±725D.2425(2)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________. 答案 (1)A (2)π6解析 (1)由正弦定理b sin B =csin C ,将8b =5c 及C =2B 代入得bsin B =85b sin 2B ,化简得1sin B =852sin B cos B ,则cos B =45,所以cos C =cos 2B =2cos 2B -1=2×(45)2-1=725,故选A.(2)∵A +C =2B 且A +B +C =π,∴B =π3.由正弦定理知:sin A =a sin B b =12,又a <b ,∴A <B ,∴A =π6.题型二 正弦定理、余弦定理的综合应用例2 (2012·课标全国)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sinC -b -c =0. (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .思维启迪 利用正弦定理将边转化为角,再利用和差公式可求出A ;面积公式和余弦定理相结合,可求出b ,c .解 (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.思维升华 有关三角形面积问题的求解方法: (1)灵活运用正、余弦定理实现边角转化.(2)合理运用三角函数公式,如同角三角函数的基本关系、二倍角公式等.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4. 又∵△ABC 的面积为3,∴12ab sin C =3,ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由sin C +sin(B -A )=sin 2A , 得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0, 当cos A =0时,∵0<A <π, ∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A , 由正弦定理得a =b , 即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形. 题型三 解三角形的实际应用例3 某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔轮在方位角为45°,距离为10 n mile 的C 处,并测得渔轮正沿方位角为105°的方向,以9 n mile/h 的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h 的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.思维启迪 本题中所涉及的路程在不断变化,但舰艇和渔轮相遇时所用时间相等,先设出所用时间t ,找出等量关系,然后解三角形.解 如图所示,根据题意可知AC =10,∠ACB =120°,设舰艇靠近渔轮所需的时间为t h ,并在B 处与渔轮相遇,则AB =21t ,BC =9t ,在△ABC 中,根据余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 120°,所以212t 2=102+92t 2+2×10×9t ×12,即360t 2-90t -100=0,解得t =23或t =-512(舍去).所以舰艇靠近渔轮所需的时间为23 h .此时AB =14,BC =6.在△ABC 中,根据正弦定理得BC sin ∠CAB =ABsin 120°,所以sin ∠CAB =6×3214=3314,即∠CAB ≈21.8°或∠CAB ≈158.2°(舍去). 即舰艇航行的方位角为45°+21.8°=66.8°.所以舰艇以66.8°的方位角航行,需23h 才能靠近渔轮.思维升华 求解测量问题的关键是把测量目标纳入到一个可解三角形中,三角形可解,则至少要知道这个三角形的一条边长.解题中注意各个角的含义,根据这些角把需要的三角形的内角表示出来,注意不要把角的含义弄错,不要把这些角与要求解的三角形的内角之间的关系弄错.在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端对于山坡的斜度为15°,如图所示,向山顶前进100 m 后,又从B 点测得斜度为45°,设建筑物的高为50 m .求此山对于地平面的斜度θ的余弦值.解 在△ABC 中,∠BAC =15°,∠CBA =180°-45°=135°,AB =100 m , 所以∠ACB =30°.由正弦定理,得100sin 30°=BC sin 15°,即BC =100sin 15°sin 30°.在△BCD 中,因为CD =50,BC =100sin 15°sin 30°,∠CBD =45°,∠CDB =90°+θ,由正弦定理,得50sin 45°=100sin 15°sin 30°sin (90°+θ),解得cos θ=3-1.因此,山对地面的斜度的余弦值为3-1.代数式化简或三角运算不当致误典例:(12分)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.易错分析 (1)从两个角的正弦值相等直接得到两角相等,忽略两角互补情形; (2)代数运算中两边同除一个可能为0的式子,导致漏解; (3)结论表述不规范. 规范解答解 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .[4分]方法一 由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .[8分]在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰或直角三角形.[12分] 方法二 由正弦定理、余弦定理得: a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0. 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰或直角三角形.[12分]温馨提醒 (1)判断三角形形状要对所给的边角关系式进行转化,使之变为只含边或只含角的式子然后判断;注意不要轻易两边同除以一个式子.(2)在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.方法与技巧1. 应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2. 正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C -2sin B ·sin C ·cos A ,可以进行化简或证明. 3. 合理利用换元法、代入法解决实际问题. 失误与防范1. 在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2. 利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题1. 在△ABC ,已知∠A =45°,AB =2,BC =2,则∠C 等于( )A .30°B .60°C .120°D .30°或150°答案 A解析 在△ABC 中,AB sin C =BC sin A ,∴2sin C =2sin 45°,∴sin C =12,又AB <BC ,∴∠C <∠A ,故∠C =30°.2. △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cb<cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形答案 A解析 依题意得sin Csin B <cos A ,sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sin B cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,B 为钝角,△ABC 是钝角三角形.3. (2012·湖南)△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394答案 B解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去). ∴BC 边上的高为AB ·sin B =3×32=332. 4. (2013·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cosA =12b ,且a >b ,则∠B 等于( )A.π6B.π3C.2π3D.5π6答案 A解析 由条件得a b sin B cos C +c b sin B cos A =12,依正弦定理,得sin A cos C +sin C cos A =12,∴sin(A +C )=12,从而sin B =12,又a >b ,且B ∈(0,π),因此B =π6.5. 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知b 2=c (b +2c ),若a =6,cos A=78,则△ABC 的面积等于 ( )A.17B.15C.152D .3答案 C解析 ∵b 2=c (b +2c ),∴b 2-bc -2c 2=0, 即(b +c )·(b -2c )=0,∴b =2c .又a =6,cos A =b 2+c 2-a 22bc =78,解得c =2,b =4.∴S △ABC =12bc sin A =12×4×2×1-(78)2=152.二、填空题6. (2013·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sinB ,则角C =________. 答案2π3解析 由已知条件和正弦定理得:3a =5b ,且b +c =2a , 则a =5b 3,c =2a -b =7b 3cos C =a 2+b 2-c 22ab =-12,又0<C <π,因此角C =2π3.7. 在△ABC 中,若b =5,∠B =π4,tan A =2,则a =________.答案 210解析 由tan A =2得sin A =2cos A . 又sin 2A +cos 2A =1得sin A =255. ∵b =5,∠B =π4,根据正弦定理,有a sin A =bsin B ,∴a =b sin A sin B =2522=210.8. 如图,设A ,B 两点在河的两岸,一测量者在点A 的同侧的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为________. 答案 50 2 m 解析 由正弦定理得AB sin ∠ACB =ACsin B,所以AB =AC ·sin ∠ACBsin B =50×2212=50 2.三、解答题9. (2013·北京)在△ABC 中,a =3,b =26,∠B =2∠A .(1)求cos A 的值; (2)求c 的值.解 (1)在△ABC 中,由正弦定理 a sin A =b sin B ⇒3sin A =26sin 2A =262sin A cos A,∴cos A =63. (2)由余弦定理,a 2=b 2+c 2-2bc cos A ⇒32=(26)2+c 2-2×26c ×63则c 2-8c +15=0. ∴c =5或c =3.当c =3时,a =c ,∴A =C .由A +B +C =π,知B =π2,与a 2+c 2≠b 2矛盾.∴c =3舍去.故c 的值为5.10.(2013·江西)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知cos C +(cos A -3sin A )cos B =0. (1)求角B 的大小;(2)若a +c =1,求b 的取值范围.解 (1)由已知得-cos(A +B )+cos A cos B -3sin A cos B =0 即有sin A sin B -3sin A cos B =0, 因为sin A ≠0,所以sin B -3cos B =0, 即3cos B =sin B . 因为0<B <π, 所以sin B >0, 所以cos B >0, 所以tan B =3, 即B =π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos B , 因为a +c =1,cos B =12,所以b 2=(a +c )2-3ac ≥(a +c )2-3⎝⎛⎭⎫a +c 22=14(a +c )2=14, ∴b ≥12.又a +c >b ,∴b <1,∴12≤b <1.B 组 专项能力提升 (时间:25分钟,满分:43分)1. △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba等于( )A .2 3B .2 2C. 3D. 2答案 D解析 ∵a sin A sin B +b cos 2A =2a , ∴sin A sin A sin B +sin B cos 2A =2sin A , ∴sin B =2sin A ,∴b a =sin Bsin A= 2.2. 有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为( )A .1B .2sin 10°C .2cos 10°D .cos 20°答案 C解析 如图,∠ABC =20°,AB =1,∠ADC =10°, ∴∠ABD =160°.在△ABD 中,由正弦定理得AD sin 160°=ABsin 10°,∴AD =AB ·sin 160°sin 10°=sin 20°sin 10°=2cos 10°.3. (2013·浙江)在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =________. 答案63解析 因为sin ∠BAM =13,所以cos ∠BAM =223.如图,在△ABM 中,利用正弦定理,得BM sin ∠BAM =AM sin B ,所以BM AM =sin ∠BAM sin B =13sin B =13cos ∠BAC .在Rt △ACM 中,有CMAM =sin ∠CAM =sin(∠BAC -∠BAM ).由题意知BM =CM ,所以13cos ∠BAC=sin(∠BAC -∠BAM ).化简,得22sin ∠BAC cos ∠BAC -cos 2∠BAC =1. 所以22tan ∠BAC -1tan 2∠BAC +1=1,解得tan ∠BAC = 2.再结合sin 2∠BAC +cos 2∠BAC =1,∠BAC 为锐角可解得sin ∠BAC =63.4. (2012·江西)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a . (1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.(1)证明 由b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a ,应用正弦定理,得sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A , sin B ⎝⎛⎭⎫22sin C +22cos C -sin C⎝⎛⎭⎫22sin B +22cos B =22, 整理得sin B cos C -cos B sin C =1, 即sin(B -C )=1.由于0<B ,C <34π,从而B -C =π2.(2)解 B +C =π-A =3π4,因此B =5π8,C =π8.由a =2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8,所以△ABC 的面积S =12bc sin A =2sin 5π8sin π8=2cos π8sin π8=12.5. 已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x+2sin x cos x -3在x =A 处取得最大值. (1)求f (x )的值域及周期; (2)求△ABC 的面积.解 (1)因为A ,B ,C 成等差数列, 所以2B =A +C ,又A +B +C =π, 所以B =π3,即A +C =2π3.因为f (x )=23sin 2x +2sin x cos x - 3 =3(2sin 2x -1)+sin 2x =sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3, 所以T =2π2=π.又因为sin ⎝⎛⎭⎫2x -π3∈[-1,1], 所以f (x )的值域为[-2,2]. (2)因为f (x )在x =A 处取得最大值, 所以sin ⎝⎛⎭⎫2A -π3=1. 因为0<A <23π,所以-π3<2A -π3<π,故当2A -π3=π2时,f (x )取到最大值,所以A =512π,所以C =π4.由正弦定理,知3sin π3=csinπ4⇒c = 2. 又因为sin A =sin ⎝⎛⎭⎫π4+π6=2+64, 所以S △ABC =12bc sin A =3+34.。
正弦、余弦定理及解三角形【考纲要求】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题. 【知识网络】【考点梳理】要点一、三角形中的边与角之间的关系约定:ABC ∆的三个内角A 、B 、C 所对应的三边分别为a 、b 、c . 1.边的关系:(1) 两边之和大于第三边:a b c +>,a c b +>,c b a +>;两边之差小于第三边:a b c -<,a c b -<,c b a -<; (2) 勾股定理:ABC ∆中,22290a b c C +=⇔=︒. 2.角的关系:ABC ∆中,A B C π++=,222C B A ++=2π (1)互补关系:sin()sin()sin A B C C π+=-= cos()cos()cos A B C C π+=-=- tan()tan()tan A B C C π+=-=-(2)互余关系:sinsin()cos 2222A B C Cπ+=-= cos cos()sin 2222A B C C π+=-=tan tan()cot 2222A B C C π+=-=3.直角三角形中的边与角之间的关系 Rt ABC ∆中,90C =︒(如图),有:ccC c b B c a A ====1sin ,sin ,sin , 应用解三角形正弦定理 余弦定理cos ,cos ,cos 0b aA B C c c===.要点二、正弦定理、余弦定理1.正弦定理:在—个三角形中,各边和它所对角的正弦的比相等.即:2s i n s i ns i n abc R A B C ===(R 为ABC ∆的外接圆半径)⇒⎪⎩⎪⎨⎧===CR c B R b AR a sin 2sin 2sin 2 2. 余弦定理:三角形任意一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
考点17 正、余弦定理及解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形气宇问题. 2.应用能够运用正弦定理、余弦定理等知识和方式解决一些与测量和几何计算有关的实际问题. 一、正弦定理 1.正弦定理在ABC △中,假设角A ,B ,C 对应的三边别离是a ,b ,c ,那么各边和它所对角的正弦的比相等,即sin sin sin a b c ==A B C.正弦定理对任意三角形都成立. 2.常见变形 〔1〕sin sin sin ,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c====== 〔2〕;sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++ 〔3〕::sin :sin :sin ;a b c A B C = 〔4〕正弦定理的推行:===2sin sin sin a b c R A B C,其中R 为ABC △的外接圆的半径. 3.解决的问题〔1〕两角和任意一边,求其他的边和角; 〔2〕两边和其中一边的对角,求其他的边和角. 4.在ABC △中,a ,b 和A 时,三角形解的情况 二、余弦定理 1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,2.余弦定理的推论从余弦定理,可以取得它的推论:222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===. 3.解决的问题〔1〕三边,求三个角;〔2〕两边和它们的夹角,求第三边和其他两角. 4.利用余弦定理解三角形的步骤 三、解三角形的实际应用 1.三角形的面积公式设ABC △的三边为a ,b ,c ,对应的三个角别离为A ,B ,C ,其面积为S .〔1〕12S ah = (h 为BC 边上的高); 〔2〕111sin sin sin 222S bc A ac B ab C ===;〔3〕1()2S r a b c =++(r 为三角形的内切圆半径).2.三角形的高的公式h A =b sin C =c sin B ,h B =c sin A =a sin C ,h C =a sin B =b sin A .3.测量中的术语 〔1〕仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①). 〔2〕方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). 〔3〕方向角相对于某一正方向的水平角.①北偏东α,即由指北方向顺时针旋转α抵达目标方向(如图③); ②北偏西α,即由指北方向逆时针旋转α抵达目标方向; ③南偏西等其他方向角类似. 〔4〕坡角与坡度①坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角);②坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比. 4.解三角形实际应用题的步骤考向一 利用正、余弦定理解三角形利用正、余弦定理求边和角的方式:〔1〕按照题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.〔2〕选择正弦定理或余弦定理或二者结合求出待解问题.一般地,若是式子中含有角的余弦或边的二次式,要考虑用余弦定理;若是碰到的式子中含有角的正弦或边的一次式时,那么考虑用正弦定理;以上特征都不明显时,那么要考虑两个定理都有可能用到.〔3〕在运算求解进程中注意三角恒等变换与三角形内角和定理的应用. 常见结论:〔1〕三角形的内角和定理:在ABC △中,π A B C ++=,其变式有:πA B C +=-,π222A B C+=-等. 〔2〕三角形中的三角函数关系:i in(s n s )A B C =+; ()s os co c A B C =-+;sincos 22A B C +=; cos sin 22A B C+=. 典例1 在ABC △中,内角所对的边别离为,假设,,那么ca的值为 A .1 B .33 C .55D .77【答案】D典例2 ABC △的内角的对边别离为,且.(1)求; (2)假设,线段的垂直平分线交于点,求的长.【解析】(1)因为,所以.由余弦定理得 ,又,所以. 〔2〕由〔1〕知,按照余弦定理可得,所以.由正弦定理得,即2522sin 22B =,解得.从而25cos 5B =. 设的中垂线交于点,因为在Rt BDE △中,,所以15cos 2255BE BD B ===, 因为为线段的中垂线,所以.1.在ABC △中,a ,b ,c 别离是角A ,B ,C 的对边,且2sin sin cos sin cos C B a BB b A -=,那么A = A .π6 B .π4C .π3D .2π32.在ABC △中,边上一点知足,.〔1〕假设,求边的长;〔2〕假设,求.考向二 三角形形状的判断利用正、余弦定理判定三角形形状的两种思路:〔1〕“角化边〞:利用正弦、余弦定理把条件转化为只含边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.〔2〕“边化角〞:利用正弦、余弦定理把条件转化为只含内角的三角函数间的关系,通过三角恒等变换,得出内角间的关系,从而判断出三角形的形状,此时要注意应用πA B C ++=这个结论.提示:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以避免造成漏解. 典例3 在ABC △中,角,,A B C 所对的边别离是,,a b c ,知足3cos cos sin sin cos 2A C A CB ++=,且,,a b c 成等比数列.〔1〕求角B 的大小; 〔2〕假设2,2tan tan tan a c ba A C B+==,试判断三角形的形状. 〔2〕由2tan tan tan a c bA C B+=,得cos cos 2cos sin sin sin a A c C b B A C B +=, 利用正弦定理可得cos cos 2cos 1A C B +==,又因为2π3A C +=,所以π3A C ==, 所以ABC △是等边三角形.3.在ABC △中,,,别离为角,,所对的边,假设,那么ABC △A .必然是锐角三角形B .必然是钝角三角形C .必然是斜三角形D .必然是直角三角形考向三 与面积、范围有关的问题〔1〕求三角形面积的方式①假设三角形中一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.②假设三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形适当选择面积公式是解题的关键.〔2〕三角形中,面积求边、角的方式三角形面积公式中含有两边及其夹角,故按照题目的特点,假设求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解;假设求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 典例4 在ABC △中,角的对边别离为,且.〔1〕求角; 〔2〕假设,求ABC △面积的最大值.【解析】〔1〕由和正弦定理得,,,解得.〔2〕由余弦定理得:,即,整理得:.∵〔当且仅当取等号〕,∴,即,,故ABC △面积的最大值为.【名师点睛】在解决三角形问题中,面积公式最常常利用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应历时,应注意灵活性,两角和一边,该三角形是肯定的,其解是唯一的;两边和一边的对角,该三角形具有不唯一性,通常按照三角函数值的有界性和大边对大角定理进展判断. 典例5 在ABC △中,,是边上的一点.〔1〕假设,求的长;〔2〕假设,求ABC △周长的取值范围.【解析】〔1〕在ADC △中,AD =1,,所以=cos ∠DAC =1×2×cos∠DAC =3,所以cos ∠DAC =.由余弦定理得2222cos CD AC AD AC AD DAC =+∠-⋅⋅=12+1-2×2×1×=7,所以CD =.〔2〕在ABC △中,由正弦定理得2342πsin sin sin sin 3AB BC AC C A B ====, ,ππ30,sin ,1332A A ⎛⎤⎛⎫<<∴+∈ ⎥ ⎪ ⎝⎭⎝⎦.,故ABC △周长的取值范围为. 4.在ABC △中,内角所对的边别离是,.〔1〕求; 〔2〕当时,求的取值范围.5.在ABC △中,内角,,所对的边别离为,,,且ABC △的面积.〔1〕求;〔2〕假设、、成等差数列,ABC △的面积为,求.考向四 三角形中的几何计算几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以够利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把和所求的量尽可能放在同一个三角形中. 典例6 如图,在ABC △中,D 为AB 边上一点,且DA DC =,π4B =,1BC =. 〔1〕假设ABC △是锐角三角形,63DC =,求角A 的大小; 〔2〕假设BCD △的面积为16,求AB 的长. 【解析】〔1〕在BCD △中,π4B =,1BC =,63DC =,由正弦定理得sin sin BC CDBDC B=∠,解得1sin 2BDC ∠==,所以π3BDC ∠=或2π3. 因为ABC △是锐角三角形,所以2π3BDC ∠=. 又DA DC =,所以π3A =. 〔2〕由题意可得1π1sin 246BCD S BC BD =⋅⋅⋅=△,解得3BD =, 由余弦定理得222π2cos4CD BC BD BC BD =+-⋅⋅=251219329+-⨯⨯=,解得CD =,那么AB AD BD CD BD =+=+=. 所以AB6.如图,在ABC △中,角A ,B ,C 的对边别离为a ,b ,c ,(sin cos )a b C C =+. 〔1〕求角B 的大小; 〔2D 为ABC △外一点,2DB =,1DC =,求四边形ABCD 面积的最大值. 考向五 解三角形的实际应用解三角形应用题的两种情形:〔1〕实际问题经抽象归纳后,量与未知量全数集中在一个三角形中,可用正弦定理或余弦定理求解;〔2〕实际问题经抽象归纳后,量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后慢慢求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.研究测量距离问题是高三中的常考内容,既有选择题、填空题,也有解答题,难度一般适中,属中档题.解题时要选取适宜的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解. 典例7 如图,一条巡逻船由南向北行驶,在A 处测得山顶P 在北偏东()1515BAC ︒∠=︒方向上,匀速向北航行20分钟抵达B 处,测得山顶P 位于北偏东60︒方向上,此时测得山顶P 的仰角为60︒,假设山高为 〔1〕船的航行速度是每小时多少千米?〔2〕假设该船继续航行10分钟抵达D 处,问此时山顶位于D 处的南偏东什么方向? 〔2〕在BCD △中,由余弦定理得CD =在BCD △中,由正弦定理得所以山顶位于D 处南偏东45︒方向.7.某新建的信号发射塔的高度为AB ,且设计要求为:29米AB <<.为测量塔高是不是符合要求,先取与发射塔底部B 在同一水平面内的两个观测点,C D ,测得60BDC ∠=︒, 75BCD ∠=︒, 40CD =米,并在点C 处的正上方E 处观测发射塔顶部A 的仰角为30°,且1CE =米,那么发射塔高AB =A .()1米B .()1米C .()1米D .()1米考向六 三角形中的综合问题1.解三角形的应用中要注意与根本不等式的结合,以此考察三角形中有关边、角的范围问题.利用正弦定理、余弦定理与三角形的面积公式,成立如“22,,a b ab a b ++〞之间的等量关系与不等关系,通过根本不等式考察相关范围问题.2.注意与三角函数的图象与性质的综合考察,将二者结合起来,既考察解三角形问题,也注重对三角函数的化简、计算及考察相关性质等.3.正、余弦定理也可能结合平面向量及不等式考察面积的最值或求面积,此时注意应用平面向量的数量积或根本不等式进展求解. 典例8 在ABC △,向量(sin ,1)A =m ,(1,cos )B =n ,且⊥m n . 〔1〕求A 的值;〔2〕假设点D 在边BC 上,且3BD BC =ABC △的面积. 【解析】〔1〕由题意知sin cos 0A B +=⋅=m n ,又πA B C ++=,所以5πsin cos()06A A +-=,πsin()06A -=.6ππ2π(,)663A -∈-,所以π06A -=,即π6A =.〔2〕设||BD x =,由3BD BC =,得||3BC x =,由〔1〕知πA C ==,所以||3BA x =在ABD △1x =,所以3AB BC ==,典例9 ABC △的内角A ,B ,C 所对的边别离为a ,b ,c .〔1〕假设a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );〔2〕假设a ,b ,c 成等比数列,求cos B 的最小值. 【解析】〔1〕因为a ,b ,c 成等差数列,所以a +c =2b . 由正弦定理得sin A +sin C =2sin B . 因为sin B =sin[π-(A +C )]=sin(A +C ), 所以sin A +sin C =2sin(A +C ).〔2〕因为a ,b ,c 成等比数列,所以b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立. 所以cos B 的最小值为12. 8.函数〔〕的图象上相邻的最高点间的距离是.〔1〕求函数的解析式;〔2〕在锐角ABC △中,内角知足,求的取值范围.1.在ABC △中,角A ,B ,C 的对边为a ,b ,c ,假设a =6,b =3,B =60°,那么A = A .45°B .45°或135C .135°D .60°或120°2.在△ABC 中,假设tan A ·tan B <1,那么该三角形必然是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .以上都有可能3.在ABC △中,,,那么角的取值范围是A .B .C .D .4.ABC △中,2AB =,10BC =,1cos 4A =,那么AB 边上的高等于 A .3154B .34C .3152D .35.ABC △的面积为,,那么的最小值为A .B .C .D .6.设ABC △的三个内角所对的边别离为,若是,且,那么ABC △外接圆的半径为A .2B .4C .D .17.ABC △的内角的对边别离为,假设,,那么A .2B .C .D .8.假设ABC △的三个内角所对的边别离是,,且,那么A .10B .8C .7D .49.ABC △的面积为,三个内角,,的对边别离为,,,假设,,那么A .2B .4C .D .10.在ABC △中,D 为BC 边上一点,假设ABD △是等边三角形,且43AC =,那么ADC △的面积的最大值为 .11.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后抵达B 处,测得此山顶在西偏北75的方向上,仰角为30,那么此山的高度CD =___________m. 12.在ABC △中,角,,的对边别离为,,,,,.〔1〕求; 〔2〕求的值.13.在ABC △中,内角A ,B ,C 所对的边别离为a ,b ,c ,向量(,3)b a =m ,(cos ,sin )B A =n ,且∥m n .〔1〕求角B 的大小;〔2〕假设2b =,ABC △的面积为3,求a c +的值.14.如下图,在ABC △中, 点D 为BC 边上一点,且1BD =,E 为AC 的中点,3,2AE =27B =2π3ADB ∠=. 〔1〕求AD 的长; 〔2〕求ADE △的面积.15.在ABC △中,,,A B C 的对边别离为,,a b c ,且cos ,cos ,cos a C b B c A 成等差数列. 〔1〕求B 的值;〔2〕求()22sin cos A A C +-的范围.16.函数〔1〕当时,求的值域;〔2〕在ABC △中,假设求ABC △的面积.1.〔2021山东理科〕在ABC △中,角A ,B ,C 的对边别离为a ,b ,c .假设ABC △为锐角三角形,且知足sin (12cos )2sin cos cos sin B C A C A C +=+,那么以劣等式成立的是A .2a b =B .2b a =C .2A B =D .2B A =2.〔2021新课标全国Ⅱ理科〕在ABC △中,5cos 2C 1BC =,5AC =,那么AB = A .42 B 30C 29D .53.〔2021新课标全国Ⅲ理科〕ABC △的内角A B C ,,的对边别离为a ,b ,c ,假设ABC △的面积为2224a b c +-,那么C = A .π2B .π3C .π4D .π64.〔2021浙江〕△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,那么△BDC 的面积是______,cos ∠BDC =_______.5.〔2021新课标全国Ⅰ理科〕在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =. 〔1〕求cos ADB ∠;〔2〕假设22DC =BC .6.〔2021新课标全国Ⅰ理科〕ABC △的内角A ,B ,C 的对边别离为a ,b ,c ,ABC △的面积为23sin a A.〔1〕求sin B sin C ;〔2〕假设6cos B cos C =1,a =3,求ABC △的周长.7.〔2021新课标全国Ⅱ理科〕ABC △的内角,,A B C 的对边别离为,,a b c ,()2sin 8sin 2B AC +=. 〔1〕求cos B ;〔2〕假设6a c +=,ABC △的面积为2,求b .8.〔2021北京理科〕在△ABC 中,a =7,b =8,cos B =–17. 〔Ⅰ〕求∠A ; 〔Ⅱ〕求AC 边上的高.9.〔2021天津理科〕在ABC △中,内角,,A B C 所对的边别离为,,a b c .a b >,5,6a c ==,3sin 5B =. 〔1〕求b 和sin A 的值; 〔2〕求πsin(2)4A +的值. 1.【答案】C 2.【解析】〔1〕∵,∴在Rt ABD △中,,∴,在ABC △中,,由余弦定理可得,,所以.〔2〕在ACD △中,由正弦定理可得,∵,∴,∵,∴,∴,∵,∴,∴,∴,化简得,即,∵,∴.3.【答案】D 【解析】,利用正弦定理化简得:,整理得:,,,即.那么ABC △.4.【解析】〔1〕由正弦定理可得:,又,变式拓展所以,那么,因为,所以,因为,所以.5.【解析】〔1〕∵,∴,即,∵,∴.〔2〕∵、、成等差数列,∴, 两边同时平方得:,又由〔1〕可知:, ∴,∴,,由余弦定理得,,得,∴.6.【解析】〔1〕在ABC △中,由(sin cos )a b C C =+,得sin sin (sin cos )A B C C =+,即sin()sin (sin cos )B C B C C +=+,cos sin sin sin B C B C ∴=,又sin 0C >,∴cos sin B B =,即tan 1B =,∵(0,π)B ∈,∴π4B =. 〔2〕在BCD △中,2BD =,1DC =,22212212cos 54cos BC D D ∴=+-⨯⨯⨯=-.又π2A =,∴ABC △为等腰直角三角形, 那么21115cos 2244ABC S BC BC BC D =⨯⨯⨯==-△,又1sin sin 2BDC S BD DC D D =⨯⨯=△,55πcos sin 2sin()444四边形ABCD S D D D ∴=-+=+-,故当3π4D =时,四边形ABCD 的面积有最大值,最大值为524+.7.【答案】A【解析】过点E 作EF AB ⊥,垂足为F ,那么,1EF BC BF CE ===米,30AEF ∠=︒, 在BDC △中,由正弦定理得sin 40sin60206sin sin45CD BDC BC CBD ⋅∠⋅︒===∠︒米.在Rt AEF △中,3tan 2062023AF EF AEF =⋅∠=⨯=米. 所以1202AB AF BF =+=+. 8.【解析】〔1〕.因为函数图象上相邻的最高点间的距离是,所以,由,,得,所以.〔2〕由得,即,那么,又,所以.因为ABC △是锐角三角形,所以,那么,所以,故.1.【答案】A【解析】∵a =6,b =3,B =60°,∴由正弦定理可得63sin sin 60A =︒,∴sin A =3622=32⨯.又a <b ,∴A =45°.2.【答案】B 【解析】由条件,得sin sin cos()cos 1,0,0,cos cos cos cos cos cos A B A B CA B A B A B+⋅<><即即 说明cos A ,cos B ,cos C 中有且只有一个为负.因此△ABC 必然是钝角三角形. 3.【答案】A【解析】因为sin sin AB BCC A=,所以,所以,又,那么必为锐角,故.5.【答案】A【解析】由题意知ABC △的面积为,且,所以,即,所以,当且仅当时取得等号,考点冲关所以的最小值为,应选A .6.【答案】D 【解析】因为,所以,即,所以,所以,因为,所以由正弦定理可得ABC △的外接圆半径为11312sin 232a R A =⨯=⨯=,应选D . 7.【答案】D 【解析】∵是三角形的内角,∴,∴,由得561sin 56653sin 395a Bb A⨯===,应选D . 8.【答案】B 【解析】由题意知,即,即,由正弦定理和余弦定理得:,即,即,那么,应选B .9.【答案】A【解析】ABC △的面积为.那么由,可得.化简得,即,所以,解得或〔舍去〕.所以.所以.应选A .10.【答案】43【解析】如图.在ACD △中,2222248cos 222AD DC AC AD DC ADC AD DC AD DC +-+-∠===-⋅⋅1,整理得22482AD DC AD DC AD DC +=-⋅≥⋅,∴16AD DC ⋅≤,当且仅当AD =DC 时取等号, ∴ADC △的面积13sin 4324S AD DC ADC AD DC =⋅∠=⋅≤, ∴ADC △的面积的最大值为43.12.【解析】〔1〕在ABC △中,由余弦定理得,解得.〔2〕在ABC △中,由得,∴,在ABC △中,由正弦定理得,即32sin 31010B =, ∴, 又,故,∴,∴.13.【解析】〔1〕∵∥m n ,∴sin 3cos b A a B =,由正弦定理,得sin sin 3cos B A A B =, ∵sin 0A >,∴sin 3B B =,即tan 3B =∵0πB <<,∴π3B =. 〔2〕由三角形的面积公式1sin 2ABC S ac B =△,得13322ac =⨯,解得4ac =, 由余弦定理2222cos b a c ac B =+-,得221422a c ac =+-⨯2()3a c ac =+-2()12a c =+-, 故4a c +=.〔2〕由〔1〕知2AD =,依题意得23AC AE ==.在ACD △中,由余弦定理得222AC AD DC =+-2cos AD DC ADC ⋅∠,即2π9422cos 3DC DC =+-⨯⨯,即2250DC DC --=,解得16DC =舍去〕.故113332sin 2(16)2222ADC S AD DC ADC +=⋅∠=⨯⨯+⨯=△, 从而133224ADE ADC S S +==△△. 〔2〕因为π3B =, 所以2π3A C +=. π13sin(2)3A =+-.因为2π03A <<,ππ2π33A -<-<,所以3πsin(2)123A -<-≤, 所以()22sin cos A A C +-的范围是1,132⎛⎤-+ ⎥⎝⎦. 16.【解析】〔1〕当,即时,取得最大值3; 当,即时,取得最小值,故的值域为.〔2〕设ABC △中所对的边别离为.即得又,即即易患1.【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【名师点睛】此题较为容易,关键是要利用两角和与差的三角函数公式进展恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,再用正弦定理将角转化为边,取得2a b =.解答三角形中的问题时,三角直通高考形内角和定理是经常常利用到的一个隐含条件,不容无视. 2.【答案】A 【解析】因为所以,选A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要按照正、余弦定理,结合条件,灵活转化为边和角之间的关系,从而抵达解决问题的目的. 41510【解析】取BC 中点E ,由题意:AE BC ⊥, △ABE 中,1cos 4BE ABC AB ∠==,∴1115cos ,sin 14164DBC DBC ∠=-∠=-=, ∴115sin 22△BCD S BD BC DBC =⨯⨯⨯∠=. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=, 解得10cos 4BDC ∠=或10cos 4BDC ∠=-〔舍去〕. 综上可得,△BCD 1510cos 4BDC ∠=.5.【解析】〔1〕在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,所以2sin 5ADB ∠=. 由题设知,90ADB ∠<︒,所以223cos 125ADB ∠=-=〔2〕由题设及〔1〕知,2cos sin BDC ADB ∠=∠=在BCD △中,由余弦定理得25=.所以5BC =.6.【解析】〔1〕由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A=.由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.【名师点睛】在处置解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可利用面积公式成立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“一条边的长度和它所对的角,求面积或周长的取值范围〞或“一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值〞,这种问题的通法思路是:全数转化为角的关系,成立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理和根本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.7.【解析】〔1〕由题设及A B C ++=π,可得2sin 8sin 2BB =,故()sin 41cos B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=,解得cos 1B =(舍去),15cos 17B =.〔2〕由15cos 17B =得8sin 17B =,故14=sin 217△ABC S ac B ac =.又=2ABC S △,那么172ac =.由余弦定理及6a c +=得: 所以2b =.【名师点睛】解三角形问题是高三的高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理,三角形的面积公式等知识进展求解.解题时要灵活利用三角形的边角关系进展“边转角〞“角转边〞,另外要注意22,,a c ac a c ++三者之间的关系,这样的题目小而活,备受命题者的青睐.8.【解析】〔Ⅰ〕在△ABC 中,∵cos B =–17,∴B ∈〔π2,π〕,∴sin B =.由正弦定理得sin sin a b A B =⇒7sin A ,∴sin A . ∵B ∈〔π2,π〕,∴A ∈〔0,π2〕,∴∠A =π3.〔Ⅱ〕在△ABC 中,∵sin C =sin 〔A +B 〕=sin A cos B +sin B cos A 11()72-+.如下图,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=7=,∴AC . 9.【解析】〔1〕在ABC △中,因为a b >,故由3sin 5B =,可得4cos 5B =.由及余弦定理,有2222cos 13b a c ac B =+-=,所以b =由正弦定理sin sin a b A B =,得sin sin a B A b ==.所以,b sin A〔2〕由〔1〕及a c <,得cos A =, 所以12sin 22sin cos 13A A A ==,25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 444A A A +=+=. 【名师点睛】〔1〕利用正弦定理进展“边转角〞可寻求角的关系,利用“角转边〞可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.〔2〕利用正、余弦定理解三角形是高三的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进展解题.。
高三数学理科复习——三角形中的有关问题
【高考要求】:解三角形(正弦定理、余弦定理及其应用)(B )
【教学目标】: 掌握正弦定理,能用正弦定理解三角形.
掌握余弦定理,能用余弦定理解三角形.
运用正、余弦定理等知识和方法解决一些与测量和
几何计算有关的实际问题.
【教学重难点】:正、余弦定理的理解和应用
【知识复习与自学质疑】
一、问题
1、正弦定理的内容是什么?它有哪些变形?能解决三角形当中什么样的问题?
2、余弦定理的内容是什么?它有哪些变形?能解决三角形当中什么样的问题?
3、你了解方向角、方位角、仰角、俯角、坡度、坡角等名词吗?
二、练习
1、在ABC
中,若030a b A ==,则c =
2、在ABC 中,下列三角函数式:
(1)sin()sin ;(2)cos()cos ;
(3)tan()tan ;(4)cos()cos .2222
A B C B C A A B C B C A ++++++⋅⋅其中恒为定值的是 3、在ABC 中,若060A =,边AB 的长为2,ABC
的面积为2
,则BC= 4、关于x 的方程22cos cos cos 02
C x x A B --=有一个根为1,则ABC 一定是 三角形
5、在ABC
中,已知222,23,a b c bc b c a =++==ABC 的面积为
6、在ABC
中,已知060,1,ABC A b S ===,则sin sin sin a b c A B C
++=++ 二、【例题精讲】 例1、已知下列三角形中的两边及一边的对角,先判断三角形是否有解?有解的作出解答 (1)07,8,105a b A === (2)010,20,80a b A ===
(3
)010,60b c C === (4
)06,30a b A ===
例2、在ABC 中,角,,A B C 所对的边,,a b c 成等比数列
(1)求证:0;3B π<≤
(2)求1sin 2sin cos B y B B
+=+的取值范围
例3、在ABC 中,已知2222()sin()()sin()a b A B a b A B +-=-+,试判断该三角形的形状
例4、在海岸A 处,发现北偏东45方向,距离A 处)
1海里的B 处有一艘走私船。
在
A 处北偏西75的方向。
距离A 处2海里C 处的缉私艇奉命以的速度追截走私船。
此时,走私船正以10n mile/h 的速度从
B 处向北偏东30方向逃窜。
问缉私船沿什么方向能最快追上走私船?
例5、如图,在半径R 、圆心角为60的扇形AB 弧上任取一点P ,作扇形的内接矩形PNMQ ,使点Q 在OA 上,点M ,N 在OB 上,求这个矩形面积的最大值及相应的AOP ∠的值。
三、【矫正反馈】
1、在锐角ABC 中,若C=2B,则
c b
的范围是 2、(1)在ABC 中,若cos cos sin sin A B A B >,则ABC 是 三角形
(2)在ABC 中,若1tan tan 0A B -<,则ABC 是 三角形
(3)在ABC 中,若sin 2sin 2A B =,则ABC 是 三角形
3、在ABC 中,已知001,45,30b c C B +===,则b =
4、在等腰三角形ABC 中,若顶角A 的余弦值为35-
,则其底角B 的正弦值为
5、在ABC 中,若sin cos 2,32
A A AC A
B +=
==,求tan A 的值和ABC 的面积
6、满足条件2,AB AC ==的三角形ABC 的面积的最大值
7、在三角形ABC 中三个角A ,B ,C 的对边边长分别为3,4,6,cos cos cos a b c b A ca B ab C ===++则的值为
8、如图,建筑物AB 高4m 。
另一个建筑物CD 与AB 的水平
距离BC 为5m 。
现在AB 的顶部A 测得CD 的视角为60,
则CD 的高(精确到0.01m )为
9、隔河看到两目标A,B ,但不能到达,在岸边选取相距C ,D 两点。
并测得
75,45,30,45ACB BCD ADC ADB ∠=∠=∠=∠=(A,B,C,D 在同一平面)。
求目标A,B 之间的距离。
【迁移应用】
1、在ABC 中,若,,a b c 成等比数列,且22a
c ac bc -=-,试求: (1)角A 的度数 (2)
sin b B c 的值
2、在ABC 中,若cos cos 2B b C a c
=-+
(1)求角B 的大小 (2)若4b a c =
+=,求ABC 的面积
3、某观测站C在A城的南偏西20方向。
由A城出发有一条公路,走向是南偏东40,由C 处测得与C相距31千米的B处,有一个人正在沿公路向A走去,走了20千米后到D处。
此时CD间的距离是21千米。
问此人还要走多少千米就可到达A城?。