2015选修4-4极坐标新学案
- 格式:doc
- 大小:173.50 KB
- 文档页数:3
圆锥曲线的统一极坐标方程教学目标掌握三种圆锥曲线的统一极坐标方程,了解统一方程中常数的几何意义.会根据已知条件求三种圆锥曲线的极坐标方程,能根据圆锥曲线的统一极坐标方程进行有关计算.通过建立三种二次曲线的统一极坐标方程,对学生进行辩证统一的思想教育.教学重点:圆锥曲线统一的极坐标方程,会根据条件求出圆锥曲线的统一极坐标方程.教学难点:运用圆锥曲线统一的极坐标方程解决有关计算问题.教学疑点:双曲线左支所对应的θ范围,双曲线的渐近线的极坐标方程.活动设计:1.活动:思考、问答、讨论.2.教具:尺规、挂图.教学过程:一、问题引入大家已经学过,椭圆、双曲线、抛物线有两种几何定义,其中,第二定义把三种圆锥曲线统一起来了,请回忆后说出三种圆锥曲线的第二定义.学生1答:列定点F(焦点)的距离与列定直线l(准线)的距离比是一个常数e(离心e∈(0,1)时椭圆,e∈(1,f∞)时双曲线,e=1时抛物线.二、数学构建建立统一方程在极坐标系中,同样可以根据圆锥曲线的几何定义,求出曲线的极坐标方程.过F作FK⊥l于K,以F为极点,KF延长线为极轴,建立极坐标系.设M(ρ,θ)是曲线上任一点,连MF,作MA⊥l于A,MB⊥l于B(如图3-24).|FK|=常数,设为p.∵|MA|=|BK|=|KF|+|FB|,∴|MA|=p+ρcosθ.这就是圆锥曲线统一的极坐标方程.三、知识理解对圆锥曲线的统一极坐标方程,请思考讨论并深入了解下述几个要点:(1)必须以双曲线右焦点和椭圆的左焦点为极点,Ox轴方向向右,尚若Ox方向向左,其方程如何?(讨论后)学生2答:无需重新求方程,只须两个极坐标系Ox与Ox′之间的坐标关系作坐标转换(图3-25).(2)根据统一的极坐标方程,由几何条件求出e、p后即可写出曲线的极坐标方程,这要明确e、p的几何意义分别是离心率和焦准距(ep为有关几何量e,p,a,b,c?(讨论后)学生3答:此式为统一极坐标方程的标准式得到一个二元一次方程组,使问题的计算得以简化.e∈(0,1)时,表椭圆.e=1时,表抛物线.e∈(1,+∞)时,表双曲线.但注意到,e>1时,1-ecosθ≤0关于θ有解,而ep>0,这样ρ<0,甚至无意义.前面学过,通常情况下,ρ≥0,这就似乎出现矛盾,如何解决这一矛盾?(讨论后)学生4答:(如图3-26)上面推导统一方程过程中,当m在左支时,|MA|=|BK|=此时方程与右支的情况不同.这时,若设θ=θ′+π,ρ′=-ρ,上述推导与分析实际上是:若射线OP与双曲线有两个交点;当视θ=∠xOP时,则ρ>0(∵cosθ<0),此时所表点是右支上的点;当视θ=∠xOP-π时,则ρ<0,此时所表点是左支上的点.综上知,e>1时,统一极坐标方程所表双曲线情况是:若ρ>0,即1-ecosθ>0,则表右支;若ρ<0,即1-ecosθ<0,则表左支;取θ∈[0,2π),则θ范围所对曲线如下:线左支;条渐近线.如图3-27所示,只有掌握这一对应关系,才能在有关计算中不会造成混乱和错误.四、应用举例线交椭圆于M、N两点,设∠F2F1M=θ(0≤θ<π),求θ的值,使|MN|等于短轴长.解:以F1为极点,F1F2为极轴建立极坐标系椭圆的极坐标方程为设M(ρ1,θ)、N(ρ2,θ+π),则五、课堂小结(1)三种圆锥曲线的统一极坐标方程,常数的几何意义.(2)曲线的极坐标方程求法,根据极坐标方程确定a、b、c的注意点及进行有关计算.(3)双曲线左、右支所对的ρ及θ的范围.六、布置作业1.第二教材.2.选择题:线方程是(C) A .ρcosθ=1 B .ρcosθ=2(2)椭圆、双曲线、抛物线三条曲线的焦点是极点(椭圆左焦点和双曲线右焦点),它们的图形如图3-28所示,则图中编号为①、②、③的曲线应分别是(D).A .椭圆、双曲线、抛物线B .抛物线、椭圆、双曲线C .椭圆、抛物线、双曲线D .双曲线、抛物线、椭圆双曲线θρcos 5115-=的两渐近线的夹角是 。
高中数学选修4-4教案1极坐标的概念教学目标:使学生理解极坐标系的概念;两点之间的距离。
教学重点:极坐标系、点的极坐标;应能熟练地根据坐标描点及求一个点的坐标、对称点的极坐标教学难点:点的极坐标不惟一是学习的难点.教学过程设计:极坐标系与直角坐标系,虽然是两种不同的描述点位置的方法,但它们的基本观念是一致的,即坐标的观念,即把坐标看成有序实数对。
极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的.一、问题引入教师对直角坐标系作简要回顾如下:建立直角坐标系,使几何问题代数化,将几何问题,由平面几何中的定性研究,转变为解析几何中的定量研究.解析几何的出发点是点用坐标表示,注意以下几点:①一个点的坐标是一对有序实数,点和它的坐标是一一对应的;②直角坐标系有三个要素:原点、单位、坐标轴的方向;③同一点在不同的坐标系中,坐标不同.回顾这些知识后提出问题(回顾知识要点是为了寻求新知识的生长点和突破口):除了直角坐标系,还有没有确定点的位置的方法?学生可能有多种回答,答案可能有以下几中:①用仿射坐标表示一个点,它与直角坐标系的主要区别是坐标轴的夹角不是90°;②用船在岛的南40°东的说法表示方向,再加一个船与岛的距离表示船的位置,这实际上是用方向角及距离表示位置;③把正北定为0°,90°是正西,180°是正南,270°是正东,利用一个角度及一个距离表示点的位置,这实际上是利用方位角表示一个点;④密位法:把一个周角分为6000份,一份称为1密位,其它与方位角表示点的方法相同,只是方向更细些.炮兵常用密位法表示方向.教师对学生回答的各种方法加以概括:一个点可以用不同的坐标系表示,但有两点是一致的,一是建立坐标系一般包括原点,长度单位,角度单位和方向,二是一对有序实数表示平面上一个点,可以通俗地说“平面上点的坐标是点坐落位置的标记,这个标记是一对有序实数”.由此可以转入新课的学习.这样作,教师在不断点拨中,逐步抽象出问题的本质,使学生联想思维水平层层递进,从多方面考虑问题,探求问题答案,达到殊途同归的目的.二、数学构建定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。
选修4-4 坐标系与参数方程第1课时 坐 标 系(对应学生用书(理)192~194页)1. (选修44P 17习题第7题改编)已知点M 的直角坐标是(-1,3),求点M 的极坐标. 解:⎝⎛⎭⎫2,2k π+2π3(k ∈Z )都是极坐标.2. (选修44P 32习题第4题改编)求直线xcos α+ysin α=0的极坐标方程. 解:ρcos θcos α+ρsin θsin α=0,cos (θ-α)=0,取θ-α=π2.3. (选修44P 32习题第5题改编)化极坐标方程ρ2cos θ-ρ=0为直角坐标方程. 解:ρ(ρcos θ-1)=0,ρ=x 2+y 2=0,或ρcos θ=x =1.∴ 直角坐标系方程为x 2+y 2=0或x =1.4. 求极坐标方程ρcos θ=2sin2θ表示的曲线.解:ρcos θ=4sin θcos θ,cos θ=0,或ρ=4sin θ,即ρ2=4ρsin θ,则θ=k π+π2,或x 2+y 2=4y.∴ 表示的曲线为一条直线和一个圆.5. (选修44P 33习题第14题改编)求极坐标方程分别为ρ=cos θ与ρ=sin θ的两个圆的圆心距.解:圆心分别为⎝⎛⎭⎫12,0和⎝⎛⎭⎫0,12,故圆心距为22.1. 极坐标系是由距离(极径)与方向(极角)确定点的位置的一种方法,由于终边相同的角有无数个且极径可以为负数,故在极坐标系下,有序实数对(ρ,θ)与点不一一对应.这点应与直角坐标系区别开来.2. 在极坐标系中,同一个点M 的坐标形式不尽相同,M (ρ,θ)可表示为(ρ,θ+2n π)(n ∈Z ).3. 极坐标系中,极径ρ可以为负数,故M(ρ,θ)可表示为(-ρ,θ+(2n +1)π)(n ∈Z ).4. 特别地,若ρ=0,则极角θ可为任意角.5. 建立曲线的极坐标方程,其基本思路与在直角坐标系中大致相同,即设曲线上任一点M(ρ,θ),建立等式,化简即得.6. 常用曲线的极坐标方程(1) 经过点A(a ,0)与极轴垂直的直线的极坐标方程为ρcos θ=a. (2) 经过点A(0,a)与极轴平行的直线的极坐标方程为ρsin θ=a. (3) 圆心在A(a ,0),且过极点的圆的极坐标方程为ρ=2acos θ.7. 以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位.平面内任一点P 的直角坐标(x ,y)与极坐标(ρ,θ)可以互换,公式是⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ和⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx . [备课札记]题型1 求极坐标方程例1 如图,AB 是半径为1的圆的一条直径,C 是此圆上任意一点,作射线AC ,在AC 上存在点P ,使得AP·AC =1,以A 为极点,射线AB 为极轴建立极坐标系.(1) 求以AB 为直径的圆的极坐标方程; (2) 求动点P 的轨迹的极坐标方程; (3) 求点P 的轨迹在圆内部分的长度.解:(1) 易得圆的极坐标方程为ρ=2cos θ.(2) 设C(ρ0,θ),P (ρ,θ),则ρ0=2cos θ,ρ0ρ=1.∴ 动点P 的轨迹的极坐标方程为ρcos θ=12.(3) 所求长度为 3. 备选变式(教师专享)求以点A(2,0)为圆心,且过点B ⎝⎛⎭⎫23,π6的圆的极坐标方程.解:由已知圆的半径为 AB =22+(2 3)2-2×2×2 3cos π6=2.又圆的圆心坐标为A(2,0),所以圆过极点, 所以圆的极坐标方程是ρ=4cosθ.题型2 极坐标方程与直角坐标方程的互化例2 在极坐标系中,设圆ρ=3上的点到直线ρ(cos θ+3sin θ)=2的距离为d.求d 的最大值.解:将极坐标方程ρ=3化为普通方程,得圆:x 2+y 2=9.极坐标方程ρ(cos θ+3sin θ)=2化为普通方程,得直线:x +3y =2. 在x 2+y 2=9上任取一点A(3cos α,3sin α). 则点A 到直线的距离为d =|3cos α+33sin α-2|2=|6sin (α+30°)-2|2,∴ 所求d 的最大值为4. 变式训练在极坐标系中,圆C 的方程为ρ=2 2sin ⎝⎛⎭⎫θ+π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的方程为y =2x +1,判断直线l 和圆C 的位置关系.解:ρ=22sin ⎝⎛⎭⎫θ+π4即ρ=2(sin θ+cos θ),两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ),得圆C 的直角坐标方程为(x -1)2+(y -1)2=2,圆心C 到直线l 的距离d =|2-1+1|22+12=255<2,所以直线l 和圆C 相交.题型3 极坐标的应用例3 若两条曲线的极坐标方程分别为ρ=1与ρ=2cos ⎝⎛⎭⎫θ+π3,它们相交于A 、B 两点,求线段AB 的长.解:(解法1)联立方程⎩⎪⎨⎪⎧ρ=1,ρ=2cos ⎝⎛⎭⎫θ+π3,得交点坐标为A(1,0),B ⎝⎛⎭⎫1,-2π3(注意坐标形式不唯一).在△OAB 中,根据余弦定理,得AB 2=1+1-2×1×1×cos 2π3=3,所以AB = 3.(解法2)由ρ=1,得x 2+y 2=1.∵ ρ=2cos ⎝⎛⎭⎫θ+π3=cos θ-3sin θ,∴ ρ2=ρcos θ-3·ρsin θ,∴ x 2+y 2-x +3y =0.由⎩⎨⎧x 2+y 2=1,x 2+y 2-x +3y =0,得A(1,0)、B ⎝⎛⎭⎫-12,-32,∴AB =⎝⎛⎭⎫1+122+⎝⎛⎭⎫0+322= 3.备选变式(教师专享)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a(a>0) 的一个交点在极轴上,求a 的值.解:曲线C 1的直角坐标方程是2x +y =1,曲线C 2的普通方程是直角坐标方程x 2+y 2=a 2,因为曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a(a>0)的一个交点在极轴上,所以C 1与x 轴交点横坐标与a 值相等,由y =0,x =22,知a =22.1. (2013·安徽)在极坐标系中,求圆ρ=2cos θ的垂直于极轴的两条切线方程. 解:在极坐标系中,圆心坐标ρ=1,θ=0,半径r =1,所以左切线方程为θ=π2,右切线满足cos θ=2ρ,即ρcos θ=2.2. (2013·天津)已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝⎛⎭⎫4,π3,求|CP|.解:由ρ=4cos θ得ρ2=4ρcos θ,即x 2+y 2=4x ,所以(x -2)2+y 2=4,圆心C(2,0).点P 的极坐标为⎝⎛⎭⎫4,π3,即ρ=4,θ=π3,所以x =ρcos θ=4cos π3=2,y =ρsin θ=4sin π3=23,即P(2,23),所以|CP|=2 3.3. (2013·上海)在极坐标系中,求曲线ρ=cos θ+1与ρcos θ=1的公共点到极点的距离.解:联立方程组得ρ(ρ-1)=1=1±52.又ρ≥0,故所求为1+52.4. 在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:∵ 圆C 的圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,∴ 在ρsin ⎝⎛⎭⎫θ-π3=-32中令θ=0,得ρ=1.∴ 圆C 的圆心坐标为(1,0). ∵ 圆C 经过点P ⎝⎛⎭⎫2,π4,∴ 圆C 的半径为PC =(2)2+12-2×1×2cos π4=1.∴ 圆C 经过极点.∴ 圆C 的极坐标方程为ρ=2cos θ.1. (2013·北京)在极坐标系中,求点⎝⎛⎭⎫2,π6到直线ρsin θ=2的距离.解:在极坐标系中,点⎝⎛⎭⎫2,π6化为直角坐标为(3,1),直线ρsin θ=2化为直角坐标方程为y =2.(3,1)到y =2的距离1,即为点⎝⎛⎭⎫2,π6到直线ρsin θ=2的距离1.2. (2013·福建)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线上.(1) 求a 的值及直线的直角坐标方程;(2) 圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos αy =sin α,(α为参数),试判断直线与圆的位置关系.解:(1) 由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上,可得a = 2.所以直线的方程可化为ρcos θ+ρsin θ=2,从而直线的直角坐标方程为x +y -2=0.(2) 由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆心为(1,0),半径r =1, 因为圆心到直线的距离d =22<1,所以直线与圆相交. 3. 在极坐标系中,已知曲线C 1:ρ=12sin θ,曲线C 2:ρ=12cos ⎝⎛⎭⎫θ-π6.(1) 求曲线C 1和C 2的直角坐标方程;(2) 若P 、Q 分别是曲线C 1和C 2上的动点,求PQ 的最大值.解:(1) 因为ρ=12sin θ,所以ρ2=12ρsin θ,所以x 2+y 2-12y =0,即曲线C 1的直角坐标方程为x 2+(y -6)2=36.又ρ=12cos ⎝⎛⎭⎫θ-π6,所以ρ2=12ρ⎝⎛⎭⎫cos θcos π6+sin θsin π6,所以x 2+y 2-63x -6y =0,即曲线C 2的直角坐标方程为(x -33)2+(y -3)2=36.(2) PQ max =6+6+(33)2+32=18.4. 圆O 1和圆O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ.(1) 把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2) 求经过圆O 1、圆O 2交点的直线的直角坐标方程.解:以极点为原点、极轴为x 轴正半轴建立平面直角坐标系,两坐标系中取相同的长度单位.(1) x =ρcos θ,y =ρsin θ,由ρ=4cos θ得ρ2=4ρcos θ,所以x 2+y 2=4x.即圆O 1的直角坐标方程为x 2+y 2-4x =0,同理圆O 2的直角坐标方程为x 2+y 2+4y =0.(2) 由⎩⎪⎨⎪⎧x 2+y 2-4x =0,x 2+y 2+4y =0,解得⎩⎪⎨⎪⎧x 1=0,y 1=0,⎩⎪⎨⎪⎧x 2=2,y 2=-2,即圆O 1、圆O 2交于点(0,0)和(2,-2),故过交点的直线的直角坐标方程为y =-x.由于平面上点的极坐标的表示形式不唯一,即(ρ,θ),(ρ,2π+θ),(-ρ,π+θ),(-ρ,-π+θ),都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程ρ=θ,点M ⎝⎛⎭⎫π4,π4可以表示为⎝⎛⎭⎫π4,π4+2π或⎝⎛⎭⎫π4,π4-2π或⎝⎛⎭⎫-π4,5π4等多种形式,其中,只有⎝⎛⎭⎫π4,π4的极坐标满足方程ρ=θ.请使用课时训练(A )第1课时(见活页).[备课札记]。
1.极坐标系-湘教版选修4-4教案一、教学目标1.会利用极坐标系描述平面内的点和曲线;2.掌握直角坐标系和极坐标系的相互转化方法;3.理解常见曲线的极坐标方程;4.熟练掌握曲线的参数方程和极坐标方程的相互转化方法。
二、教学内容1. 极坐标系1.极坐标系的定义;2.极坐标系的画法;3.极坐标系与直角坐标系的相互转化;4.极坐标系中点的坐标表示。
2. 常见曲线的极坐标方程1.极坐标方程的基本概念;2.直线的极坐标方程;3.圆的极坐标方程;4.伯努利双曲线的极坐标方程;5.阿基米德螺线的极坐标方程;6.网格线的极坐标方程。
3. 曲线的参数方程和极坐标方程的相互转化1.曲线的参数方程的概念;2.曲线的参数方程与极坐标方程的相互转化方法;3.利用参数方程和极坐标方程求曲线的长度和面积。
三、教学重点和难点教学重点:1.掌握如何利用极坐标系描述平面内的点和曲线;2.熟悉常见曲线的极坐标方程。
教学难点:1.极坐标系与直角坐标系的相互转化;2.曲线的参数方程和极坐标方程的相互转化方法;3.利用参数方程和极坐标方程求曲线的长度和面积。
四、教学过程1. 极坐标系1.介绍极坐标系的定义和画法;2.说明极坐标系中点的坐标表示;3.操作演示极坐标系与直角坐标系的相互转化方法;4.练习题。
2. 常见曲线的极坐标方程1.介绍极坐标方程的基本概念;2.列举常见曲线的极坐标方程和性质;3.操作演示如何求解常见曲线的极坐标方程;4.练习题。
3. 曲线的参数方程和极坐标方程的相互转化1.介绍曲线参数方程的概念;2.操作演示如何将曲线参数方程转换为极坐标方程;3.操作演示如何将极坐标方程转换为曲线参数方程;4.练习题。
五、教学方法本节课教学采用讲解和操作演示相结合的教学方法,同时适当加入互动环节以及举一反三的辅助拓展。
六、教学评价与反思本节课教学评价:教学目标达成,教学过程清晰易懂,教学方法多种多样,学生积极参与课堂互动,达到了预期效果。
选修4-4“极坐标与参数方程”教材分析与教学建议房山教师进修学校中学数学教研室张吉一、地位与作用选修专题4-4的《坐标系与参数方程》作为选修系列的二个可选专题安排在高三上学习,这是平面解析几何初步、平面向量、三角函数等内容的综合应用和进一步深化,要求学生通过本专题的学习,掌握极坐标和参数方程的基本概念,了解曲线的多种表现形式,体会从实际问题中抽象出数学问题的过程,对培养学生探究数学问题的兴趣和能力,体会数学在实际中的应用价值,提高应用意识和实践能力具有重要的意义。
这两个专题是解析几何内容的延续。
从上述安排可见,“课标”构建的解析几何课程体系,是以坐标法为核心,依“直线与方程——圆与方程——圆锥曲线与方程——极坐标系与参数方程”为顺序,螺旋上升、循序渐进地展开内容。
二、“课标”对参数方程、极坐标内容的安排选修4-4的《坐标系与参数方程》:1.第一讲坐标系(1)回顾在平面直角坐标系中刻画点的位置的方法,体会坐标系的作用。
(2)通过具体例子,了解在平面直角坐标系伸缩变换下平面图形的变化情况。
(3)能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化。
(4)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。
2.第二讲参数方程(1)通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
(2)分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程。
(3)举例说明某些曲线用参数方程表示比用普通方程表示更方便,感受参数方程的优越性。
(4)完成一个学习总结报告。
报告应包括三方面内容:1)知识的总结。
对本专题整体结构和内容的理解,进一步认识数形结合思想,思考本专题与高中其他内容之间的关系。
2)拓展。
通过查阅资料、调查研究、访问求教、独立思考,进一步探讨参数方程、摆线的应用。
3)学习本专题的感受、体会。
极坐标系【学习目标】1.能在极坐标系中用极坐标刻画点的位置。
2.体会在极坐标系和平面直角坐标系中刻画点的位置的区别。
【学习重难点】1.理解坐标系的作用。
2.了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。
3.能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化。
4.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。
通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义。
5.了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别。
【学习过程】一、基础知识1.平面直角坐标系中的伸缩变换:设点(,)P x y 在变换ϕ://,(0),(0)x x y y λλμμ⎧=>⎪⎨=>⎪⎩的作用下对应到点///(,)P x y ,则称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
2.在平面内取一个定点O 为极点。
引一条射线OX 为叫做极轴。
再选定一个长度单位和角度单位及它的正方向(通常取逆时针方向)。
这样就建立了一个极坐标系。
对于平面内的点M ,设||OM =ρ, θXOM =∠,称ρ、θ为点M 的极径、极角,有序数对(,)ρθ就叫做M 的极坐标。
[ 强调 ] :一般地0ρ≥,当极角θ的取值范围是[0,2)π时,平面上的点(除去极点)就与极坐标(,)ρθ建立一一对应的关系,否则点与极坐标就不是一一对应。
极点的极坐标是(0,)θ,其中极角θ是任意角。
3.负极径的规定:在极坐标系中,极径ρ允许取负值,当0ρ<时,点(,)M ρθ位于极角的终边的反向延长线上,且||||OM ρ=,(,)M ρθ可以表示为(,2)k ρθπ+,或(,(21))k ρθπ-++()k Z ∈4.直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两坐标系中取相同的长度单位。
4.1.2 极坐标系1.了解极坐标系.2.会在极坐标系中用极坐标刻画点的位置.3.体会在极坐标系和平面直角坐标系中刻画点的位置的区别.[基础·初探]1.极坐标系(1)在平面上取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O 称为极点,射线Ox 称为极轴.(2)设M 是平面上任一点,ρ表示OM 的长度,θ表示以射线Ox 为始边,射线OM 为终边所成的角.那么,每一个有序实数对(ρ,θ)确定一个点的位置.ρ称为点M 的极径,θ称为点M 的极角.有序实数对(ρ,θ)称为点M 的极坐标.约定ρ=0时,极角θ可取任意角.(3)如果(ρ,θ)是点M 的极坐标,那么(ρ,θ+2k π)或(-ρ,θ+(2k +1)π)(k ∈Z )都可以看成点M 的极坐标.2.极坐标与直角坐标的互化以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位(如图4-1-3所示),平面内任一点M 的直角坐标(x ,y )与极坐标(ρ,θ)可以互化,公式是:⎩⎨⎧x =ρcos θ,y =ρsin θ;或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).图4-1-3通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ<2π.[思考·探究]1.建立极坐标系需要哪几个要素?【提示】 建立极坐标系的要素是:(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向,四者缺一不可.2.为什么点的极坐标不惟一?【提示】 根据我们学过的任意角的概念:一是终边相同的角有无数个,它们相差2π的整数倍,所以点(ρ,θ)还可以写成(ρ,θ+2k π)(k ∈Z );二是终边在一条直线上且互为反向延长线的两角的关系,所以点(ρ,θ)的坐标还可以写成(-ρ,θ+2k π+π)(k ∈Z ).3.将直角坐标化为极坐标时如何确定ρ和θ的值?【提示】 由ρ2=x 2+y 2求ρ时,ρ不取负值;由tan θ=yx (x ≠0)确定θ时,根据点(x ,y )所在的象限取得最小正角.当x ≠0时,θ角才能由tan θ=yx 按上述方法确定.当x =0时,tan θ没有意义,这时又分三种情况:(1)当x =0,y =0时,θ可取任何值;(2)当 x =0,y >0时,可取θ=π2;(3)当x =0,y <0时,可取θ=3π2.[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_____________________________________________________ 解惑:_____________________________________________________ 疑问2:_____________________________________________________ 解惑:_____________________________________________________ 疑问3:_____________________________________________________ 解惑:_____________________________________________________0,0≤θ<2π).图4-1-4【自主解答】 对每个点我们先看它的极径的长,再确定它的极角,因此这些点的极坐标为A ⎝ ⎛⎭⎪⎫7,π6,B ⎝ ⎛⎭⎪⎫4,3π4,C ⎝ ⎛⎭⎪⎫5,7π6,D ⎝ ⎛⎭⎪⎫6,7π4,E ()9,0,F (3,π),G ⎝ ⎛⎭⎪⎫9,3π2. [再练一题]1.已知边长为a 的正六边形ABCDEF ,建立适当的极坐标系,写出各点的极坐标.【导学号:98990003】【解】 以正六边形中心O 为极点,OC 所在直线为极轴建立如图所示的极坐标系.由正六边形性质得:C (a,0),D (a ,π3),E (a ,2π3),F (a ,π),A (a ,43π),B (a ,53π) 或C (a,0),D (a ,π3),E (a ,2π3),F (a ,π),A (a ,-2π3),B (a ,-π3).在极坐标系中,求与点M (3,-π3)关于极轴所在的直线对称的点的极坐标.【自主解答】 极坐标系中点M (ρ,θ)关于极轴对称的点的极坐标为M ′(ρ,2k π-θ)(k ∈Z ),利用这个规律可得对称点的坐标为(3,2k π+π3)(k ∈Z ).[再练一题]2.在极坐标系中,点A 的极坐标为⎝ ⎛⎭⎪⎫3,π6(限定ρ>0,0≤θ<2π).(1)点A 关于极轴对称的点的极坐标是________; (2)点A 关于极点对称的点的极坐标是________. (3)点A 关于直线θ=π2对称的点的极坐标是________. 【解析】 通过作图如图可求解为【答案】 (1)(3,11π6) (2)(3,7π6) (3)(3,5π6)(1)把点M 的极坐标⎝ ⎭⎪⎫8,2π3化成直角坐标;(2)把点P 的直角坐标(6,-2)化成极坐标(ρ>0,0≤θ<2π).【自主解答】 (1)x =8cos 2π3=-4,y =8sin 2π3=43,因此,点M 的直角坐标是(-4,43).(2)ρ=(6)2+(-2)2=22, tan θ=-26=-33, 又因为点P 在第四象限且0≤θ≤2π,得θ=11π6.因此,点P 的极坐标为(22,11π6).[再练一题]3.(1)把点A 的极坐标(2,7π6)化成直角坐标;(2)把点P 的直角坐标(1,-3)化成极坐标(ρ>0,0≤θ<2π). 【解】 (1)x =2cos 7π6=-3, y =2sin 7π6=-1,故点A 的直角坐标为(-3,-1).(2)ρ=12+(-3)2=2,tan θ=-31=- 3.又因为点P 在第四象限且0≤θ<2π,得θ=5π3. 因此点P 的极坐标是(2,5π3).在极坐标系中,已知A ⎝ ⎭⎪⎫3,-π3,B ⎝ ⎭⎪⎫1,2π3,求A 、B 两点之间的距离.【思路探究】 将点的极坐标化为直角坐标,在用两点间距离公式求解. 【自主解答】 对于A (3,-π3), x =3cos(-π3)=32;y =3sin(-π3)=-332, ∴A (32,-332).对于B (1,2π3),x =1×cos 2π3=-12,y =1×sin 2π3=32,∴B (-12,32). ∵AB =(32+12)2+(-332-32)2=4+12=4,∴A 、B 两点之间的距离为4.有些问题在用极坐标表示时没有现成的解法,但在直角坐标系中却是一个常见的问题.因此,换一个坐标系,把极坐标系中的元素换成直角坐标系中的元素,问题就可以迎刃而解了.如果题目要求用极坐标作答,那么解完再用极坐标表示就行了.[再练一题]4.在极坐标系中,已知三点:A (4,0)、B ⎝ ⎛⎭⎪⎫4,3π2、C ⎝ ⎛⎭⎪⎫ρ,π6.(1)求直线AB 与极轴所成的角;(2)若A 、B 、C 三点在一条直线上,求ρ的值.【解】 (1)点A 的直角坐标为(4,0),点B 的直角坐标为(0,-4),直线AB 在直角坐标系中的方程为x -y =4.故直线AB 与x 轴所成角为π4.(2)点C 的直角坐标为⎝ ⎛⎭⎪⎫32ρ,12ρ,代入直线方程得 32ρ-12ρ=4,解得ρ=83-1=4(3+1).[真题链接赏析](教材第17页习题4.1第6题)将下列各点的极坐标化为直角坐标:⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫6,-π3,⎝ ⎛⎭⎪⎫-2,11π6,(5,π),⎝ ⎛⎭⎪⎫4,-3π2, ⎝ ⎛⎭⎪⎫-42,3π4.已知下列各点的直角坐标,求它们的极坐标.(1)A (3,3);(2)B (-2,-23); (3)C (0,-2);(4)D (3,0).【命题意图】 本题主要考查极坐标与直角坐标的互化,属基础题. 【解】 (1)由题意可知:ρ=32+(3)2=23,tan θ=33,所以θ=π6,所以点A 的极坐标为(23,π6). (2)ρ=(-2)2+(-23)2=4,tan θ=-23-2=3,又由于θ为第三象限角,故θ=43π,所以B 点的极坐标为(4,43π).(3)ρ=02+(-2)2=2.θ为32π,θ在y 轴负半轴上,所以点C 的极坐标为(2,32π).(4)ρ=32+02=3,tan θ=03=0,故θ=0.所以D 点的极坐标为(3,0).1.点P (-2,2)的极坐标(θ∈[0,2π))为________. 【解析】 由ρ=x 2+y 2=(-2)2+22=22, tan θ=2-2=-1, ∵P 点在第二象限内, ∴θ=3π4,∴ρ的极坐标为(22,3π4). 【答案】 (22,3π4)2.在极坐标系中,与(ρ,θ)关于极轴对称的点是________.【导学号:98990004】【解析】 极径为ρ,极角为θ,θ关于极轴对称的角为负角-θ,故所求的点为(ρ,-θ).【答案】 (ρ,-θ)3.将极坐标⎝ ⎛⎭⎪⎫2,3π2化为直角坐标为________.【解析】 x =ρcos θ=2cos 32π=0,y =ρsin θ=2sin 32π=-2, 故直角坐标为(0,-2). 【答案】 (0,-2)4.已知A ,B 的极坐标分别是⎝ ⎛⎭⎪⎫3,π4和⎝ ⎛⎭⎪⎫-3,π12,则A 和B 之间的距离等于________.【解析】 由余弦定理得 AB =ρ12+ρ22-2ρ1ρ2·cos (θ1-θ2) =32+(-3)2-2×3×(-3)cos (π4-π12)=9+9+93=18+9 3 =36+322. 【答案】 36+322我还有这些不足:(1)_____________________________________________________ (2)_____________________________________________________ 我的课下提升方案:(1)_____________________________________________________ (2)_____________________________________________________。
(3.5学案)第1讲 极坐标系与参数方程(大题)教学目标1.会将参数方程,极坐标方程化为普通方程2.理解极坐标方程中ρ,θ含义,参数方程中直线中的t 的含义,圆与椭圆中θ几何意义,及应用教学重点:ρ,θ应用及直线参数方程中t 应用椭圆中θ应用 教学难点:椭圆中θ的含义题型一:极坐标.参数方程与普通方程互化 1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且在两种坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y)和(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎨⎧ρ2=x 2+y 2,tan θ=yx x ≠0.2.在与曲线的直角坐标方程进行互化时,一定要注意变量的范围,要注意转化的等价性.(1).直线的参数方程过定点M(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+tcos α,y =y 0+tsin α(t为参数).(2).圆的参数方程圆心为点M(x 0,y 0),半径为r 的圆的参数方程为⎩⎨⎧x =x 0+rcos θ,y =y 0+rsin θ(θ为参数).(3).圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1(a>b>0)的参数方程为⎩⎨⎧x =acos θ,y =bsin θ(θ为参数).(2)抛物线y 2=2px(p>0)的参数方程为⎩⎨⎧x =2pt 2,y =2pt(t 为参数).(4).(1)参数方程的实质是将曲线上每一点的横、纵坐标分别用同一个参数表示出来,所以有时处理曲线上与点的坐标有关的问题时,用参数方程求解非常方便;(2)充分利用直线、圆、椭圆等参数方程中参数的几何意义,在解题时能够事半功倍.例1、(1)方程表示的曲线是( )A. 双曲线B.双曲线的上支C.双曲线的下支D.圆 分析:把参数方程化为我们熟悉的普通方程,再去判断它表示的曲线类型是这类问题的破解策略.解析:注意到t与互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含的项,即有,又注意到,可见与以上参数方程等价的普通方程为.显然它表示焦点在轴上,以原点为中心的双曲线的上支,选B.点评:这是一类将参数方程化为普通方程的检验问题,转化的关键是要注意变量范围的一致性.(2)、设P 是椭圆上的一个动点,则的最大值是 ,最小值为 .分析:注意到变量的几何意义,故研究二元函数的最值时,可转化为几何问题.若设,则方程表示一组直线,(对于取不同的值,方程表示不同的直线),显然既满足,又满足,故点是方程组的公共解,依题意得直线与椭圆总有公共点,从而转化为研究消无后的一元二次方程的判别式问题.解析:令,对于既满足,又满足,故点是方程组的公共解,依题意得,由,解得:,所以的最大值为,最小值为.点评:对于以上的问题,有时由于研究二元函数有困难,也常采用消元,但由满足的方程来表示出或时会出现无理式,这对进一步求函数最值依然不够简洁,但若通过三角函数换元,则可实现这一途径.即,因此可通过转化为的一元函数.以上二个思路都叫“参数法”.(3)、极坐标方程表示的曲线是()A. 圆B. 椭圆C. 双曲线的一支D. 抛物线分析:这类问题需要将极坐标方程转化为普通方程进行判断.解析:由,化为直角坐标系方程为,化简得.显然该方程表示抛物线,故选D.点评:若直接由所给方程是很难断定它表示何种曲线,因此通常要把极坐标方程化为直角坐标方程,加以研究.(4)、极坐标方程转化成直角坐标方程为()A. B. C. D.分析:极坐标化为直解坐标只须结合转化公式进行化解.解析:,因此选C.点评:此题在转化过程中要注意不要失解,本题若成为填空题,则更要谨防漏解.通关练习一1. 已知点M的极坐标为,下列所给出的四个坐标中不能表示点M的坐标是()A. B. C. D.2.若直线的参数方程为,则直线的斜率为()A. B. C. D.3.下列在曲线上的点是()A. B. C. D.4.将参数方程化为普通方程为()A. B. C.D.5.参数方程为表示的曲线是()A.一条直线 B.两条直线 C.一条射线 D.两条射线6.直线和圆交于两点,则的中点坐标为() A. B. C. D.7.极坐标方程表示的曲线为()A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆8.直线的参数方程为,上的点对应的参数是,则点与之间的距离是()A. B. C. D.9. 圆心为C,半径为3的圆的极坐标方程为10 若A,B,则|AB|=__________,___________(其中O是极点)11. ,若A、B是C上关于坐标轴不对称的任意两点,AB 的垂直平分线交x轴于P(a,0),求a的取值范围.一、选择题:1.A 解析:能表示点M的坐标有3个,分别是B、C、D.2.D 解析:3.B 解析:转化为普通方程:,当时,4.C 解析:转化为普通方程:,但是5、D 解析:表示一条平行于轴的直线,而,所以表示两条射线6.D 解析:,得,因此中点为7.C 解析:,则或8、C 解析:距离为9、解析:如下图,设圆上任一点为P(),则10、解析:在极坐标系中画出点A、B,易得,11. 解析:,,,,题型二极坐标,参数方程综合应用例2 (2019·全国Ⅱ)在极坐标系中,O为极点,点M(ρ0,θ)(ρ>0)在曲线C:ρ=4sin θ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=π3时,求ρ0及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 解 (1)因为M(ρ0,θ0)在C 上,当θ0=π3时,ρ0=4sin π3=2 3. 由已知得|OP|=|OA|cosπ3=2. 设Q(ρ,θ)为l 上除P 的任意一点,连接OQ ,在Rt △OPQ 中,ρcos ⎝ ⎛⎭⎪⎫θ-π3=|OP|=2.经检验,点P ⎝ ⎛⎭⎪⎫2,π3在曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上.所以,l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=2.(2)设P(ρ,θ),在Rt △OAP 中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P 在线段OM 上,且AP ⊥OM ,故θ的取值范围是⎣⎢⎡⎦⎥⎤π4,π2.所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤π4,π2.跟踪演练1 在平面直角坐标系xOy 中,已知直线l :x +3y =53,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin θ.射线OP :θ=π6(ρ≥0)与圆C 的交点为O ,A ,与直线l 的交点为B ,求线段AB 的长.解 由题意知ρA =4sinπ6=2, ρB =532sin ⎝ ⎛⎭⎪⎫π6+π6=5,所以|AB|=|ρA -ρB |=3.例 3 (2019·六安质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =2+2cos α,y =2sin α(α为参数),过点P(-2,0)作斜率为k 的直线l 与圆C交于A ,B 两点.(1)若圆心C 到直线l 的距离为455,求k 的值;(2)求线段AB 中点E 的轨迹方程.解 (1)由题意知,圆C 的普通方程为(x -2)2+y 2=4, 即圆C 的圆心为C(2,0),半径r =2.依题意可得过点P(-2,0)的直线l 的方程为y =k(x +2),即kx -y +2k =0, 设圆心C(2,0)到直线l 的距离为d , 则d =|2k +2k|1+k 2=|4k|1+k2=455, 解得k =±12.(2)设直线l 的参数方程为⎩⎨⎧x =-2+tcos θ,y =tsin θ(t 为参数),θ∈⎝ ⎛⎭⎪⎫-π6,π6,代入圆C :(x -2)2+y 2=4,得t 2-8tcos θ+12=0. 设A ,B ,E 对应的参数分别为t A ,t B ,t E , 则t E =t A +t B2, 所以t A +t B =8cos θ,t E =4cos θ. 又点E 的坐标满足⎩⎨⎧x =-2+t E cos θ,y =t E sin θ,所以点E 的轨迹的参数方程为⎩⎨⎧x =-2+4cos 2θ,y =4sin θcos θ,即⎩⎨⎧x =2cos 2θ,y =2sin 2θ,θ∈⎝ ⎛⎭⎪⎫-π6,π6,化为普通方程为x 2+y 2=4(1<x ≤2).例4在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ-2ρsin θ+1=0,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 上的点到直线l 的距离的最大值;(2)直线l 与曲线C 交于A ,B 两点,已知点M(1,1),求|MA|·|MB|的值. 解 (1)设曲线C 上任意一点N(2cos α,3sin α), 直线l :x -2y +1=0,则点N 到直线l 的距离d =|2cos α-23sin α+1|5=⎪⎪⎪⎪⎪⎪4cos ⎝⎛⎭⎪⎫α+π3+15≤5,∴曲线C 上的点到直线l 的距离的最大值为 5. (2)设直线l 的倾斜角为θ, 则由(1)知tan θ=12,∴cos θ=255,sin θ=55. ∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1+255t ,y =1+55t (t 为参数),曲线C :x 24+y 23=1,联立方程组,消元得165t 2+45t -5=0, 设方程两根为t 1,t 2,则t 1t 2=-2516, 由t 的几何意义,得|MA|·|MB|=-t 1t 2=2516. 通关练习二1.(2019·东莞调研)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =34+3t ,y =a +3t(t 为参数),圆C 的标准方程为(x -3)2+(y -3)2=4.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程; (2)若射线θ=π3与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.解(1)∵直线l 的参数方程为⎩⎨⎧x =34+3t ,y =a +3t(t 为参数),∴在直线l 的参数方程中消去t 可得直线l 的普通方程为x -y -34+a =0,将x =ρcos θ,y =ρsin θ代入直线l 的普通方程中, 得到直线l 的极坐标方程为ρcos θ-ρsin θ-34+a =0.∵圆C 的标准方程为(x -3)2+(y -3)2=4,∴圆C 的极坐标方程为ρ2-6ρcos θ-6ρsin θ+14=0.(2)在极坐标系中,由已知可设M ⎝ ⎛⎭⎪⎫ρ1,π3,A ⎝ ⎛⎭⎪⎫ρ2,π3,B ⎝⎛⎭⎪⎫ρ3,π3,联立⎩⎨⎧θ=π3,ρ2-6ρcos θ-6ρsin θ+14=0,得ρ2-(3+33)ρ+14=0, ∴ρ2+ρ3=3+3 3. ∵点M 恰好为AB 的中点, ∴ρ1=3+332,即M ⎝⎛⎭⎪⎫3+332,π3. 把M ⎝ ⎛⎭⎪⎫3+332,π3代入ρcos θ-ρsin θ-34+a =0,得3()1+32×1-32-34+a =0,解得a =94.2.在平面直角坐标系xOy 中,曲线C 1过点P(m,2),其参数方程为⎩⎨⎧x =m +t ,y =2-t(t 为参数,m ∈R ),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+8cos θ-ρ=0. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若已知曲线C 1和曲线C 2交于A ,B 两点,且|PA|=2|PB|,求实数m 的值. 解 (1)C 1的参数方程⎩⎨⎧x =m +t ,y =2-t(t 为参数,m ∈R ),消参得普通方程为x +y -m -2=0.C 2的极坐标方程化为ρ(2cos 2θ-1)+8cos θ-ρ=0,两边同乘ρ得2ρ2cos 2θ+8ρcos θ-2ρ2=0,即y 2=4x. 即C 2的直角坐标方程为y 2=4x.(2)将曲线C 1的参数方程标准化为⎩⎪⎨⎪⎧x =m -22t ,y =2+22t (t 为参数,m ∈R ),代入曲线C 2:y 2=4x , 得12t 2+42t +4-4m =0, 由Δ=(42)2-4×12×(4-4m)>0,得m>-3,设A ,B 对应的参数为t 1,t 2,由题意得|t 1|=2|t 2|,即t 1=2t 2或t 1=-2t 2,当t 1=2t 2时,⎩⎨⎧t 1=2t 2,t 1+t 2=-82,t 1·t 2=24-4m,解得m =-239,满足m>-3; 当t 1=-2t 2时,⎩⎨⎧t 1=-2t 2,t 1+t 2=-82,t 1·t 2=24-4m解得m =33,满足m>-3. 综上,m =-239或33. 3.(2019·衡水中学调研)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+2cos φ,y =2sin φ(φ为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin θ. (1)求C 1的普通方程和C 2的直角坐标方程;(2)已知直线C 3的极坐标方程为θ=α(0<α<π,ρ∈R ),A 是C 3与C 1的交点,B 是C 3与C 2的交点,且A ,B 均异于原点O ,|AB|=42,求α的值. 解 (1)由⎩⎨⎧x =2+2cos φ,y =2sin φ消去参数φ,得C 1的普通方程为(x -2)2+y 2=4.由ρ=4sin θ,得ρ2=4ρsin θ,又y =ρsin θ,x 2+y 2=ρ2, 所以C 2的直角坐标方程为x 2+(y -2)2=4. (2)由(1)知曲线C 1的普通方程为(x -2)2+y 2=4, 所以其极坐标方程为ρ=4cos θ.设点A ,B 的极坐标分别为(ρA ,α),(ρB ,α), 则ρA =4cos α,ρB =4sin α,所以|AB|=|ρA -ρB |=4|cos α-sin α| =42⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π4=42,所以sin ⎝ ⎛⎭⎪⎫α-π4=±1,即α-π4=k π+π2(k ∈Z ),解得α=k π+3π4(k ∈Z ),又0<α<π,所以α=3π4. 4.(2019·保山模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.⊙O 的极坐标方程为ρ=2,直线l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α(t 为参数),直线l 与⊙O 交于A ,B 两个不同的点.(1)求倾斜角α的取值范围;(2)求线段AB 中点P 的轨迹的参数方程. 解 (1)直线l 的倾斜角为α,当α=π2时,直线l(即y 轴)与⊙O 交于A ,B 两个不同的点,符合题目要求;当α≠π2时,记k =tan α,直线l 的参数方程⎩⎨⎧x =tcos α,y =-2+tsin α 化为普通方程为kx -y -2=0,圆心O 到直线l 的距离d =21+k 2.因为直线l 与⊙O 交于不同的两点, 所以21+k2<2, 解得k>1或k<-1.当k<-1时,直线l 的倾斜角α的取值范围是⎝ ⎛⎭⎪⎫π2,3π4;当k>1时,α的取值范围是⎝ ⎛⎭⎪⎫π4,π2,综上,直线l 的倾斜角α的取值范围是⎝ ⎛⎭⎪⎫π4,3π4.(2)⊙O 的极坐标方程为ρ=2,其直角坐标方程为x 2+y 2=2, 因直线l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α(t 为参数),代入x 2+y 2=2中得,t 2-4tsin α+2=0, 故可设A(t 1cos α,-2+t 1sin α),B(t 2cos α,-2+t 2sin α),注意到t 1 ,t 2为方程的根,故t 1+t 2=4sin α, 点P 的坐标为⎝⎛⎭⎪⎫t 1+t 22cos α,-2+t 1+t 22sin α, 即(sin 2α,-1-cos 2α), 所以点P 的轨迹的参数方程为 ⎩⎨⎧x =sin 2α,y =-1-cos 2α(α为参数).。
2.4曲线的极坐标方程和直角坐标方程的互化一、学习目标1.会进行曲线的极坐标方程与直角坐标方程的互化.2.通过学习掌握两种方程互化的一般方法.二、教学重、难点掌握两种方程的互化.三、教学过程【复习导入】1.点的直角坐标与极坐标互化关系如下:(1)点M 的极坐标),(θρ化为直角坐标)(y x ,的公式:⎩⎨⎧==.________y _______;x(2)点M 的直角坐标)(y x ,化为极坐标),(θρ的公式:⎩⎨⎧≠=≥=).0________(tan .0_________x θρρ)((通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ≤π2)2.(1)经过点A (2,0),垂直于极轴的直线的极坐标方程为 ;(2)如图,将上述问题转化成在平面直角坐标系中,则直角坐标方程为 ;(3)上述问题中极坐标方程与直角坐标方程有什么关系?【自主预习】(预习教材P 14~ P 15,找出疑惑之处)1. 极坐标方程化为直角坐标方程的公式(1)→θρcos (2)→θρsin (3)→2ρ2.直角坐标方程化为极坐标方程的公式(1)x −−→ (2)y −−→ (3)22x y +−−→ 【合作探究】题型一:极坐标方程化为直角坐标方程例1、将下列曲线的极坐标方程化成直角坐标方程:θρsin 51=)(; ()02-sin cos 2=-θθρ)(;0sin 32=+θρρ)( 5cos242=θρ)(。
题型二:直角坐标方程化为极坐标方程例2.将下列曲线的直角坐标方程化成极坐标方程。
(1)5=x (2)a xy = (3)0222=++y y x(4)192522=+y x (5)x y 82= (6)222a y x =-【方法总结】1.将曲线的极坐标方程化成直角坐标方程的基本步骤:(1)将方程转化成含 、 、 的式子;(2)将θρθρρcos ,sin ,2分别换成 、 、 ;(3)整理、化简。
2.将曲线的直角坐标方程化成极坐标方程的基本步骤:(1)将y x y ,,x 22+分别换成 、 、 ;(2)整理、化简。
二、极坐标系【基础知识导学】1. 极坐标系和点的极坐标极点、极轴、长度单位、角度单位和它的方向构成极坐标系的四要素,缺一不可。
规定:当点M 在极点时,它的极坐标θρ,0=可以取任意值。
2. 平面直角坐标与极坐标的区别在平面直角坐标系内,点与有序实数对(x ,y )是一一对应的,可是在极坐标系中,虽然一个有序实数对),(θρ只能与一个点P 对应,但一个点P 却可以与无数多个有序实数对对应),(θρ,极坐标系中的点与有序实数对极坐标),(θρ不是一一对应的。
3. 极坐标系中,点M ),(θρ的极坐标统一表达式Z k k ∈+),2,(θπρ。
4. 如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示,同时,极坐标),(θρ表示的点也是唯一确定的。
5. 极坐标与直角坐标的互化(1) 互化的前提:①极点与直角坐标的原点重合;②极轴与X 轴的正方向重合;③两种坐标系中取相同的长度单位。
(2) 互化公式⎩⎨⎧==θρθρsin cos y x ,⎪⎩⎪⎨⎧≠=+=0,tan 222x x yy x θρ。
【知识迷航指南】 【例1】在极坐标系中,描出点)3,2(πM ,并写出点M 的统一极坐标。
【点评】点)3,2(πM 的统一极坐标表示式为)32,2(ππ+k ,如果允许0<ρ,还可以表示为)3)12(,2(ππ++-k 。
OMX【例2】已知两点的极坐标)6,3(),2,3(ππB A ,则|AB|=______,AB 与极轴正方向所成的角为________.解:根据极坐标的定义可得|AO|=|BO|=3,∠AOB=600,即∆AOB 为等边三角形,所以|AB|=|AO|=|BO|=3, ∠ACX=65π 【点评】在极坐标系中我们没有定义两点间的距离,我们只要画出图形便可以得到结果. 【例3】化下列方程为直角坐标方程,并说明表示的曲线. (1)43πθ=,()R ∈ρ (2)θθρcos 2sin +=【解】(1)根据极坐标的定义,因为x y xy-==即,43tanπ,所以方程表示直线. (2)因为方程给定的ρ不恒为0,用ρ同乘方程的两边得:θρθρρcos 2sin 2+=化为直角坐标方程为,222x y y x +=+即45)21()1(22=-+-y x ,这是以(1,21)为圆心,半径为25的圆. 【点评】①若没有R ∈ρ这一条件,则方程表示一条射线.②极坐标方程化为直角坐标方程,方程两边同乘ρ,使之出现ρ2是常用的方法.【解题能力测试】1.已知点的极坐标分别为)4,3(π-A ,)32,2(πB ,),23(πC ,)2,4(π-D ,求它们的直角坐标。
一、概念导数
1.如图,在平面内取一个,叫做;自极点O引一条射线Ox,叫做;
再选定一个,一个(通常取)及其(通常取方向),这样就建立了一个。
2、设M是平面内一点,极点O与M的距离|
|OM叫做点M的,记为;以极轴Ox为始边,射线OM 为终边的角xOM叫做点M的,记为。
有序数对叫做点M的,记作。
3、思考:直角坐标系与极坐标系有何异同?
1.写出图中A,B,C,D,E,F,G各点的极坐标)
2
0,0
(π
θ
ρ<
≤
>.
2.思考下列问题,给出解答。
①平面上一点的极坐标是否唯一?
②若不唯一,那有多少种表示方法?
③坐标不唯一是由谁引起的?
④不同的极坐标是否可以写出统一表达式?
⑤本题点G的极坐标统一表达式。
3.在下面的极坐标系里描出下列各点
A(3,0) B(6,2π) C(3,
2
π
)D(5,
3
4π
)E(3,
6
5π
)F(4,π)G(6,)
3
5π
小结:在平面直角坐标系中,一个点对应个坐标表示,一个直角坐标对应个点。
极坐标系里的点的极坐标有种表示,但每个极坐标只能对应个点。
1.已知5,3
M
π
⎛⎫
⎪
⎝⎭
,下列所给出的能表示该点的坐标的是
A.⎪
⎭
⎫
⎝
⎛
-
3
,5
π
B.⎪
⎭
⎫
⎝
⎛
3
4
,5
π
C.⎪
⎭
⎫
⎝
⎛
-
3
2
,5
π
D.
5
5,
3
π
⎛⎫
-
⎪
⎝⎭
2、在极坐标系中,与(ρ,θ)关于极轴对称的点是( )
A 、),(θρ
B 、),(θρ-
C 、),(πθρ+
D 、),(θπρ-
3、已知Q (ρ,θ),分别按下列条件求出点P 的极坐标。
(1)P 是点Q 关于极点O 的对称点;
(2)P 是点Q 关于直线2π
θ=的对称点;
(3)P 是点Q 关于极轴的对称点。
1.若以直角坐标系的原点O 为极点,
x 轴的正半轴为极轴,且在两坐标系中取相同的长度单位。
平面内任意一点P 的指教坐标与极坐标分别为),(y x 和),(θρ,则由三角函数的定义可以得到如下两组公式:
{θρθρsin cos ==y x { x y y x =+=θρt an 222
说明
(1)、上述公式即为极坐标与直角坐标的互化公式
(2)、通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ≤π2。
(3)、互化公式的三个前提条件
①. 极点与直角坐标系的原点重合;
②. 极轴与直角坐标系的x 轴的正半轴重合;
③. 两种坐标系的单位长度相同.
2.把下列点的极坐标化成直角坐标:(1)A(2,
43π) (2)B(4, 2π) (3)M(5, 6π) (4)N(3, π). (5)E (6,0)
3.在极坐标系中,已知),65,2(),6,2(ππB A C ),3
5,4(π求它的直角坐标,
(二)将下列直角坐标化为极坐标
1.A (1,3 ) B (-1,0) C (-2,-2) D (-1,3) E (0,2) F (3,--3)
(三)将下列极坐标方程化为x,y 坐标方程的形式。
1. a =θρsin
2.a =θρcos
3.
θρsin 2a =
4.θρcos 2a =
5.
1=ρ 6.1cos sin =+θρθρ
(四)将下列x,y 坐标方程化为极坐标方程
θρ,的形式。
1.①x=a ②y=2 ③422=+y x ④0222=-+ax y x ⑤x+y-a=0
五、极坐标系下的直线的研究
1. 过极坐标系下点A (a ,0), 作直线L ⊥极轴0x,求L 及坐标方程。
2.过极坐标系下点A (0,2
π)作直线L//极轴0x,求L 及坐标方程。
3.直线L 过极点O ,倾角
4πθ=,求L 的极坐标方程及L 的直角方程
4. L 的极坐标方程6π
θ=对应的直角方程。