九年级数学上册4.1.2成比例线段教案新版北师大版0726379【教案】
- 格式:doc
- 大小:120.01 KB
- 文档页数:4
课题 4.1.1 线段的比和成比例线段单元第四单元学科数学年级九学习目标1.知道两条线段的比的概念并且会计算两条线段的比.2.知道成比例线段的定义.3.熟记比例的性质并会应用.重点会求两条线段的比,成比例线段的定义,比例的性质.难点会求两条线段的比,注意线段长度的单位要统一.教学过程教学环节教师活动学生活动设计意图导入新课教师课件出示图片师:观察下面几幅图片,你能发现什么?学生观察图片,回答问题。
相同点:形状相同不同点:大小不相同通过用幻灯片展示生活的的图片,引入本章的学习内容——相似图形,初步感知相似图形,引发学生思考相似图形的特征,激发学生的求知欲及学习兴趣.为新课的学习做好情感铺垫.讲授新课你能在下面这些图形中找出形状相同的图形吗?这些形状相同的图形有什么不同?学生先自主观察这些图形的特点,然后在小组内交流自己的看法,交通过以上引导性问题引导学生共同总结出:对于形状相同而大小不同的两个图形状相同而大小不同的两个平面图形,较大的图形可以看成是由较小的图形“放大”得到的,较小的图形可以看成是由较大的图形“缩小”得到的。
在这个过程中,两个图形上的相应线段也被“放大”或“缩小”,因此,对于形状相同而大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.两条线段的比A B C Dm n两条线段的比就是它们长度的比,即AB:CD=m:n也可以表示为:AB m= CD n如果把mn表示成比值k,那么ABCD=k,或AB=k·CD,两条线段的比实际上就是两个数的比.ABC D EA'B'C'D'E'如图,五边形ABCDE与五边形A′B′C′D′E′形状相同,AB=5cm,A′B′=3cm,AB:A′B′=5 :3,53就是线段AB与A′B′的比,这个比值刻画流后借助多媒体展示自己的成果。
教师利用多媒体出示两条线段的比的定义,强调相关要点,明确两条线段的比实际上就是两个数的比,接着出示下面实例进一步加深学生对两条线段的比的认识.教师引导学生结合图形分析形,可以用相应线段长度的比来描述它们的大小关系,适时引出两条线段的比的概念.通过两个五边形对应边的比,具体说明线段的比的意义,进一步巩固对概念的理解.通过方格纸上两个四边形对应边了这两个五边形的大小关系.【做一做】如图,设小方格的边长为1,四边形ABCD 与四边形EFGH的顶点都在格点上,那么AB, AD, EF, EH的长度分别是多少?教师出示答案:AB=8 AD=210EF=4 EH=10分别计算AB AD AB EF,,,EF EH AD EH的值,你发现了什么?AB8==2 EF4AD210==2 EH10AB8210==AD5210EF4210==EH510总结归纳四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a c=b d,那么这四条线段a,b,c,d叫作成比例线段,简称比例线段. AB,EF,AD,EH是成比例线段,AB,AD,EF,EH也是成比例线段.【议一议】题意,明确图中两四边形的四条边的长度可以通过观察或勾股定理得出.给学生充足的时间计算.学生在教师的引导下总结归纳.的比值的计算,引导学生发现这四组对应线段的比相等,进而引出比例线段的概念.课堂练习 1.在1:1 000 000的地图上,A ,B 两地之间的距离是5 cm ,则A ,B 两地之间的实际距离是( B ) A .5 km B .50 km C .500 km D .5 000 km2.已知线段AB ,在BA 的延长线上取一点C ,使CA =3AB ,则线段CA 与线段CB 的比为( A ) A .3:4 B .2:3 C .3:5 D .1:23.下列四组线段中,是成比例线段的是( C ) A .3 cm ,4 cm ,5 cm ,6 cm B .4 cm ,8 cm ,3 cm ,5 cm C .5 cm ,15 cm ,2 cm ,6 cm D .8 cm ,4 cm ,1 cm ,3 cm4.已知a b =23(a ≠0,b ≠0),下列变形错误的是( B ) A.a 2=b 3B .2a =3b C.b 3=a 2D .3a =2b 5.如图,在□ABCD 中,DE ⊥AB 于点E ,BF ⊥AD ,交AD 的延长线于点F.(1)AB ,BC ,BF ,DE 这四条线段是否成比例?如果不是,请说明理由;如果是,请写出比例式.解:AB ,BC ,BF ,DE 这四条线段成比例. ∵在▱ABCD 中,DE ⊥AB ,BF ⊥AD , ∴S ▱ABCD =AB ·DE =AD ·BF.∵BC =AD ,∴AB ·DE =BC ·BF ,即AB BC =BFDE.学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.(2)若AB=10,DE=2.5,BF=5,求BC的长.解:∵AB·DE=BC·BF,∴10×2.5=5BC,解得BC=5.6.【2020·金昌】生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感.若图中b为2 m,则a约为( A )A.1.24 mB.1.38 mC.1.42 mD.1.62 m课堂小结本节课你学到了什么?1.线段的比如果选用同一长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB:CD=m:n.2.成比例线段四条线段a,b,c,d,如果a与b的比等于c与d的比,即a c=b d,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.3.基本性质如果a c=b d,那么ad=bc.如果ad=bc (a, b, c, d都不等于0),那么a c=b d 课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.板书课题:4.1.1 线段的比和成比例线段一、线段的比二、成比例线段三、基本性质。
第四章图形的相似1.成比例线段(一)一、学生知识状况分析相似图形是现实生活中广泛存在的现象,在小学时学生就接触过比例的知识,在七年级下册时学生已学习了全等图形(其实全等图形就是相似图形的一个特例)。
所以学生已经具备一些知识基础、活动经验基础等,学生在学习线段的比时不会感到很困难。
二、教学任务分析(一)教学知识点1.了解线段的比和成比例线段的概念.2.理解比例线段的基本性质.(二)能力训练要求通过现实情境,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的密切联系。
(三)情感与价值观要求增强学生对数学知识来源于生活的认识.教学重点:成比例线段的概念.教学难点:比例线段的基本性质.教学方法:探索、发现法教学准备:【教师准备】课堂教学用的多媒体.【学生准备】测量长度的直尺,放大镜等.教学过程新课导入导入一:出示如图所示的两面大小不同的国旗,让学生比较这两面国旗有什么不同.[设计意图]以接近学生生活实际的国旗为背景,对学生进行爱国主义教育,同时提出国旗中蕴含着数学知识,激发学生的学习积极性,从而自然引入本节课内容.导入二:埃及法老阿美西斯想要测量金字塔的实际高度,可是没有一个埃及人能测出来.古希腊学者泰勒斯对法老阿美西斯说:“我只需找一个特殊的时刻,就能测出金字塔的高度.”泰勒斯在金字塔前竖立一根1 m长的木棒,他不断测量木棒的影长,当木棒的影子的长正好是1 m时,特殊时刻来了,如图所示,设金字塔的塔基宽为2b m,在塔外的影长为a m,落在塔内的影长恰为塔基宽的一半,这意味着金字塔的影长为a+b,因为木棒的高度与影长的比为1∶1,所以在同一时间同一地点的金字塔的高度与影长之比也应为1∶1,所以金字塔的高度为(a+b)m.新知构建[过渡语]形状相同、大小不同的两个图形之间存在着怎样的对应关系呢?一、两条线段的比(1)学生测量两面国旗对角线的长度后,教师总结:描述两面国旗大小之间的关系,我们可以借助于两条线段的比来说明.如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB∶CD=m∶n,或写成ABCD =mn.其中线段AB,CD分别叫做这个线段比的前项和后项,如果把mn 表示成比值k,那么ABCD=k,或AB=k·CD.两条线段的比实际上就是两个数的比.如图所示,五边形ABCDE与五边形A'B'C'D'E'形状相同,AB=5 cm,A'B'=3 cm,AB∶A'B'=5∶3,53就是线段AB和线段A'B'的比,这个比值刻画了这两个五边形的大小关系.(2)问题思考:AB∶A'B'=5∶3,这时线段A'B'与线段AB的比是多少呢?[知识拓展](1)求线段的比时,线段的长度单位要统一.(2)线段的比没有单位,所以线段的比与所采用的长度单位无关.(3)两条线段的比有先后顺序,前项和后项不能颠倒.二、成比例线段[过渡语]如果两个图形完全一样,只是大小不同,这两个图形上的对应线段之间存在什么关系呢?思路一如图所示,设小方格的边长为1,四边形ABCD与四边形EFGH的顶点都在格点上.(1)AB,AD,EF,EH的长度分别是多少?(2)ABEF ,ADEH,ABAD,EFEH的值相等吗?【总结】四条线段a,b,c,d中,如果a与b的比等于c与d的比,即ab =cd,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.【思考】上图中还有哪些线段是比例线段?[知识拓展]在理解比例线段时,应注意三点:(1)比例线段是特指四条线段之间的关系,两条线段不能是比例线段,三条线段中的任意一条线段都不能重复使用时,三条线段也不能是比例线段,而五条或五条以上的线段中,只能判断其中的某四条线段能否是成比例线段.(2)成比例线段是有顺序的.即若a,b,c,d是成比例线段,则a∶b=c∶d,而不能写成a∶b=d∶c.(3)为了讨论问题方便,我们再给出两个相关的定义:①比例的内项与外项:如果四条线段a,b,c,d是比例线段,那么把线段b,c叫做比例内项,把线段a,d叫做比例外项.②第四比例项:如果四条线段a,b,c,d是成比例线段,那么线段d叫做线段a,b,c的第四比例项.例下列四组线段中,是成比例线段的是()A.5 cm,6 cm,7 cm,8 cmB.3 cm,6 cm,2 cm,5 cmC.2 cm,4 cm,6 cm,8 cmD.12 cm,8 cm,15 cm,10 cm〔解析〕 ∵56≠78,∴不是成比例线段,故选项A 错误;∵36≠25,∴不是成比例线段,故选项B 错误;∵24≠68,∴不是成比例线段,故选项C 错误;∵128=1510,∴是成比例线段,故选项D 正确.故选D .思路二【活动1】 建立比例线段的概念.【多媒体】 如图所示,AB =50,BC =25,A'B'=20,B'C'=10,求证AB BC =A 'B 'B 'C '.证明:∵AB BC =5025=2,A 'B 'B 'C '=2010=2,∴AB BC =A 'B 'B 'C '.引导学生分析得出四条线段AB ,BC ,A'B',B'C'是成比例线段.(1)题目的已知中共有几条线段?分别是哪几条?(2)其中的线段AB ,BC 的比是多少?线段A'B',B'C'的比是多少?其中线段AB 与BC 的比与线段A'B'与B'C'的比有何关系?(3)我们称AB ,BC ,A'B',B'C'这四条线段是成比例线段,简称比例线段.(4)请同学们根据这个例子想一想,什么样的四条线段叫做成比例线段?(5)学生叙述,教师板书比例线段的定义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.【活动2】 熟悉比例线段的概念.(1)定义告诉我们判定四条线段是成比例线段的方法:(其中的一个比例式)a b =c d ⇒a ,b ,c ,d 四条线段成比例;(2)定义告诉我们若已知四条线段成比例,则一定有比例式:a,b,c,d四条线段成比例⇒ab =cd(唯一的一个比例式).与比例线段有关的概念:(1)项、内项、外项、第四比例项.a,b,c,d叫做组成比例的项,b,c叫做比例内项,a,d叫做比例外项,d叫做a,b,c的第四比例项.(2)比例中项.若作为比例内项的是两条相同的线段,即ab =bc或a∶b=b∶c,那么线段b叫做线段a,c的比例中项.三、探索比例线段的基本性质计算下列比例式的两个内项的积与两个外项的积.(1)45=1215;(2)√2∶√3=√6∶3.通过计算,同学们发现了什么规律?【学生活动】两个内项的积与两个外项的积相等.【教师活动】我们把上面成比例的四个数用字母表示,即ab =cd,用什么方法来说明两个内项的积与两个外项的积相等?【学生活动】学生独立思考1分钟后,分组交流探讨“如果ab =cd,那么ad=bc”.【教师活动】教师巡视指导,特别关注学生此时是否积极参与.【学生活动】各组汇报交流讨论的结果,教师板书出现的解决方案,由学生说明其理由.学生可能出现的解决方案:(1)等式ab =cd两边同时乘bd.(2)设ab =cd=k,则a=bk,c=dk,因此ad=(bk)d=b(dk)=bc.【教师活动】我们又如何把乘积的形式化成比例的形式?【学生活动】学生共同回答“等式两边同时除以bd”.【教师活动】我们把以上两个方面综合起来,就是比例线段的基本性质.比例线段的基本性质:如果ab =cd,那么ad=bc;如果ad=bc(a,b,c,d都不为0),那么ab=cd.[设计意图]从特殊情况出发,使学生对比例线段的基本性质有一个直观的认识,再让学生以一般的形式探索和推导,让全体学生充分参与,一步一步得出比例线段的基本性质,体现了“从特殊到一般”的教学思想.【教师活动】根据上面的方法你能由ab =cd推导出下列比例式吗?(1)ac =bd;(2)db=ca;(3)ba=dc;(4)cd=ab;(5)bd=ac;(6)ca=db;(7)dc=ba.(教材例1)一块矩形绸布的长AB=a m,宽AD=1 m,按照如图所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即AEAD =ADAB,那么a的值应当是多少?解:根据题意可知,AB=a m,AE=13a m,AD=1 m.由AEAD =ADAB,得13a1=1a,即13a2=1,∴a2=3.开平方,得a=√3(a=-√3舍去).【问题思考】如果换成ADAE =ABAD,那么a的值应当是多少?课堂小结当堂检测1.在四条线段a,b,c,d中,如果a与b的比等于,那么这四条线段a,b,c,d叫做成比例线段,简称.在a∶b=c∶d中,a,d叫做比例,b,c叫做比例.如果四条线段a,b,c,d是成比例线段,那么线段d叫做线段a,b,c的.2.如果选用量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比AB∶CD=m∶n,其中,线段AB,CD分别叫做这个线段比的和.3.如果ab =cd,那么;如果ad=bc(a,b,c,d都不为0),那么.板书设计第1课时1.两条线段的比2.成比例线段3.比例线段的基本性质作业一、教材作业【必做题】教材第79页习题4.1的1,2题.【选做题】教材第79页习题4.1的3题.教学反思成功之处本课时的知识要点是强调线段对应成比例,这一点在教学的过程中得到了有效的贯彻.在理解比例线段的基础上,由特殊上升到一般,接着探讨了比例线段的基本性质.理解比的意义和比例线段,是灵活运用比例线段的基本性质的前提.在知识的讲解和例题、习题的讲练过程中,都渗透着对这个问题的处理.不足之处比例线段的比不是固定不变的.比例线段强调的是比例的大小,随着比的顺序的变化,比值也会随之变化,这一点在教学中没有特别地强调.这一点不强调,不利于学生今后理解图形的相似比.。
1第四章 图形的相似4.1 成比例线段第1课时 线段的比和成比例线段教学目的:1、知道线段的比的概念。
理解成比例线段的概念2、会计算两条线段的比。
3、掌握成比例线段的判定方法。
重点:线段的比与成比例线段的概念。
教学过程: 一、自主预习(一)阅读课本 ,思考并回答下列问题:1、一般地,如果选用 量得两条线段AB ,CD 的长度分别为m,n ,那么这两条线段的比就是他们长度的比,即AB ∶CD= m:n,或写成,n m CD AB =其中,线段AB ,CD 分别叫做这个线段比的前项和后项.如果把n m 表示成比值k,那么CD k AB k CDAB ∙==或,。
(1)在比ba 或a ∶b 中,a 是 ,b 是 。
⑵两条线段的 要统一 。
⑶在同一单位下线段长度的比与选用的 无关。
⑷线段的比是一个没有 的数。
(二)比例尺1、在地图上或工程图纸上,图上长度与实际长度的比通常称为比例尺。
2、比例尺为1:50000,意思为: 。
(三)成比例线段的概念1、一般地,在四条线段中,如果 等于 的比,那么这四条线段叫做成比例线段。
(举例说明)如:2、四条线段a,b ,c,d 成比例,有顺序关系。
即a,b,c,d 成比例线段,则比例式为:a:b=c:d ;a,b, d,c 成比例线段,则比例式为:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例吗?a=12,b=8,c=15,d=10呢?三、例题解析:例1、A 、B 两地的实际距离AB= 250m ,画在一张地图上的距离A'B'=5cm,求该地图的比例尺。
例2:已知,在Rt △ABC 中,∠C =90°,∠A =30°,斜边AB =2。
2 求⑴BC AB ,⑵ABAC四、巩固练习1、已知某一时刻物体高度与其影长的比值为2:7,某天同一时刻测得一栋楼的影长为30米,则这栋楼的高度为多少?2、某地图上的比例尺为1:1000,甲,乙两地的实际距离为300米,则在地图上甲、乙两地的距离为多少?3、已知线段a,d,b,c 是成比例线段,其中a=4,b=5,c=10,求线段d 的长。
《成比例线段》教学设计阳山县青莲中学叶兰香一、学情分析相似图形是现实生活中广泛存在的现象,学生在小学时就接触过比例的知识,在七年级下册时学生已学习了全等图形(其实全等图形就是相似图形的一个特例),相似是全等的拓广与发展。
学生已经具备一些知识基础、活动经验基础等,学习线段的比应该不会有困难,但由于学生原有知识水平比较差,故学生在探究线段的比的性质时可能会遇到障碍。
二、教材分析(一)教学内容分析《成比例线段》是新北师大版九年级数学上册第四章《相似图形》第一节的内容。
本节课既是第四章的章节起始课,又是概念课,在教法、学法以及培养学生自主学习能力方面,都有着重要意义,本节课的成功直接关系到整章书的教学效果。
(二)教学目标1.了解线段的比的概念,会求两条线段的比;2. 掌握成比例线段的概念,会判断线段是否成比例;3. 理解和掌握比例的基本性质,并会简单应用。
(三)教学重点和难点教学重点:理解线段的比与成比例线段的概念及其求解。
教学难点:求线段的比,注意线段长度单位要统一。
三、教学方法:自主、合作、探究法四、教学模式及教学流程播放视频,导入新课——目标展示,明确任务——探究新知,交流建构——拓展提升,发展能力——课堂小结,反思收获——课堂后测,拓展反馈——布置作业,课后延伸。
五、教学过程:(一)播放视频,导入新课视频内容:第一部分从学生生活中形状相同,大小不相同的图片入手,引出相似图形;第二部分提出问题:如何比较两个相似图形的大小?如何把一个图形放大或者缩小?如何判定两个三角形是否相似?第三部分明确研究相似图形的基础是比例线段,并阐述了比例线段的作用。
(设计意图:利用学生身边的图片引入,吸引学生注意力,提高学生学习兴趣;作为章节起始课,让学生了解在这一章当中我们将要学习的内容,并解决为什么要学的问题。
)(二)目标展示,明确目的1. 了解线段的比的概念,会求两条线段的比;2. 掌握成比例线段的概念,会判断线段是否成比例;3 . 理解和掌握比例的基本性质,并会简单应用。
第四章 图形的相似1 成比例线段第2课时 等比性质教学目标:1.理解并掌握等比性质.2.经历等比性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.3.通过用等比性质解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展所起的作用.教学重难点重点:理解并掌握等比性质.难点:等比性质的灵活应用.教学方法:讲授法、练习法教学课时:1教学过程:导入新课1.什么叫成比例线段?你能举例说明吗?解:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a b = c d ,那么这四条线段a ,b ,c ,d ,叫做成比例线段,简称比例线段.如:2,4,6,12.2.比例的基本性质是什么?解:如果a b =c d ,那么ad=bc.如果ad=bc (a ,b ,c ,d 都不等于0),那么a b =c d .3.已知x ∶115 =614∶2,求x 的值.解:因为x ∶115=614∶2,所以2x= 65×254.所以2x =152.所以x=154.讲授新课知识点1 等比性质已知x 2 = y 3 = z 4 =2,求x+y+z 2+3+4的值. [点拨] 根据x 2=2可以求出x 的值,同样方法求出y ,z 的值,代入求解.解:由题意,得x 2=2.所以x=4.同理可得y=6,z=8.所以x+y+z 2+3+4=4+6+82+3+4=2.[归纳]等比性质:如果a b =c d =…=m n (b+d+…+n ≠0),那么a+c+⋯+m b+d+⋯+n =a b . 注意:必须保证b+d+…+n ≠0,否则结果无意义. 知识点2 比例性质的灵活应用已知a 2 = b 3 = c 4,a+b+c=54,求a 的值.解:法一 设a 2 = b 3 = c 4 =k ,则a=2k ,b=3k ,c=4k ,因为a+b+c=54,所以2k+3k+4k=54.所以k=6.所以a=12.法二 因为a 2 = b 3 = c 4,a+b+c=54,所以a+b+c 2+3+4 = a 2 = 549 =6. 所以a=12.范例应用例1 已知在△ABC 和△DEF 中,有AB DE = BC EF =CA FD = 23,且△DEF 和△ABC 的周长之差为 15 cm,求△ABC 和△DEF 的周长.解:设△ABC 和△DEF 的周长分别是x cm 和y cm.因为AB DE = BC EF = CA FD = 23.所以AB+BC+CA DE+EF+FD =x y =23.① 由题意可得yx=15.②由①式,得x=23y.③将③式代入②式,得y 23y=15.所以y=45.将y=45代入③式,得x=30.所以△ABC 和△DEF 的周长分别是30 cm 和45 cm.例2 已知x 2=y 3=z 4≠0,求x -4y+3z x+4y -3z 的值. 解:设x 2=y 3=z 4 =k ,所以x=2k ,y=3k ,z=4k ,所以x -4y+3z x+4y -3z = 2k -12k+12k 2k+12k -12k =1.[方法归纳]解多个比例式连在一起求值型试题的方法:①引入参数,使其他的量都统一用含有一个字母的式子表示,再求分式的值;②运用等比性质,转化后求分式的值.课堂训练1.已知a ∶b ∶c=2∶4∶5,则3a -2b -c b 的值为(B) A.74 B.74 C.47 D.472.如果x y =32,那么x+y y 的值是(A) A.52 B.12 C.53 D.253.已知x=a b+c =b a+c =c a+b (a+b+c ≠0),则x 的值为(D)A.1B.1或1C.1或12D.124.已知x 3 = y 5 = z 6,求3x+y+z y 的值. 解:设x 3 = y 5 = z 6 = k ,则x=3k ,y=5k ,z=6k.所以3x+y+z y = 9k+5k+6k 5k=4. 5.设a,b,c 是△ABC 的三条边,且a -b b = b -c c = c -a a ,判断△ABC 为何种三角形?并说明理由.解:△ABC 为等边三角形,理由如下:因为a ,b ,c 是△ABC 的三条边,所以a+b+c ≠0.因为a -b b = b -c c = c -a a , 所以a -b b = b -c c = c -a a = a -b+b -c+c -a a+b+c=0. 所以ab=0,bc=0,ca=0.所以a=b=c.所以△ABC 为等边三角形.课堂小结等比性质的内容及应用注意事项.板书设计第2课时 等比性质1.等比性质:如果a b =c d …=m n (b+d+…+n ≠0),那么a+c+⋯+m b+d+⋯+n = a b. 2.比例性质的应用.教学反思经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.。
4.1成比例线段第1课时线段的比和成比例线段1.知道线段的比的概念,会计算两条线段的比;(重点)2.理解成比例线段的概念;(重点)3.掌握成比例线段的判定方法.(难点)一、情景导入请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?这些例子都是形状相同、大小不同的图形.它们之所以大小不同,是因为它们图上对应的线段的长度不同.二、合作探究探究点一:线段的比【类型一】求线段的比已知线段AB=2.5m,线段CD=400cm,求线段AB与CD的比.解析:要求AB和CD的比,只需要根据线段的比的定义计算即可,但注意要将AB和CD的单位统一.解:∵AB=2.5m=250cm,∴ABCD=250400=58.方法总结:求线段的比时,首先要检查单位是否一致,不一致的应先统一单位,再求比.【类型二】比例尺在比例尺为1:50 000的地图上,量得甲、乙两地的距离是3cm,则甲、乙两地的实际距离是m.解析:根据“比例尺=图上距离实际距离”可求解.设甲、乙两地的实际距离为x cm,则有1:50 000=3:x,解得x=150 000. 150 000cm =1500m.故答案为1500.方法总结:理解比例尺的意义,注意实际尺寸的单位要进行恰当的转化.探究点二:成比例线段【类型一】判断线段成比例下列四组线段中,是成比例线段的是()A.3cm,4cm,5cm,6cmB.4cm,8cm,3cm,5cmC.5cm,15cm,2cm,6cmD.8cm,4cm,1cm,3cm解析:将每组数据按从小到大的顺序排列,前两条线段的比和后两条线段的比相等的四条线段成比例.四个选项中,只有C 项排列后有25=615.故选C.方法总结:判断四条线段是否成比例的方法:(1)把四条线段按从小到大顺序排好,计算前两条线段的比和后两条线段的比,看是否相等做出判断;(2)把四条线段按从小到大顺序排好,计算前后两个数的积与中间两个数的积,看是否相等作出判断.【类型二】由线段成比例求线段的长已知:四条线段a、b、c、d,其中a=3cm,b=8cm,c=6cm.(1)若a、b、c、d是成比例线段,求线段d的长度;(2)若b、a、c、d是成比例线段,求线段d的长度.解析:紧扣成比例线段的概念,利用比例式构造方程并求解.解:(1)由a、b、c、d是成比例线段,得a b =c d ,即38=6d,解得d =16. 故线段d 的长度为16cm ;(2)由b 、a 、c 、d 是成比例线段,得 b a =c d ,即83=6d ,解得d =94. 故线段d 的长度为94cm.方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长. 已知三条线段长分别为1cm ,2cm ,2cm ,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x :1=2:2,则x =22;若1:x =2:2,则x =2;若1:2=x :2,则x =2;若1:2=2:x ,则x =2 2.所以所添加的线段的长有三种可能,可以是22cm ,2cm ,或22cm. 方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.三、板书设计成比例线段错误!从丰富的实例入手,引导学生进行观察、发现和概括.在自主探究和合作交流过程中,适时引入新知识,并通过引导学生建立新的数学模型,开拓思维,提升学生认知能力.。
第四章图形的相似1.成比例线段(二)一、学生知识状况分析学生的知识技能基础:这节课是“成比例线段”的第二课时,学生已经通过第一节课的学习,观察了大量的图片,列举了许多现实生活中的情境,认识了线段的比的知识,知道了选用同一单位长度量线段的长度,从而求出两条线段的比。
也学会了运用比例线段的基本性质解决实际问题,并通过图片创设的问题情境,重现了现实生活中的比例模型,初步掌握了解决有关比的问题的方法。
在这个基础上,进一步来学习成比例线段的有关性质,学生不会感到陌生,反而容易接受本节课的继续学习。
学生活动经验基础:上一节课,学生已经收集了一些相似图形的图片,如大小不同的两张中国地图、国旗,同底相片等。
已经感受了数学知识源于生活,用于生活。
各小组展示并讨论过线段比的事例,具有了一定的合作交流的基础和能力。
难点处理:比例的基本性质的推理是本节课的难点,教学中要尽量让学生发扬小组合作的精神,在小组中展开讨论,教师参与指点。
二、教学任务分析教科书在学生认识线段的比的基础上,进一步提出了本节课的具体要求:理解并掌握比例的基本性质及其简单应用。
学好了本节课,既承接了全等三角形的内容,又为本章的后续学习相似三角形和相似多边形奠定了基础。
在知识技能方面,要求学生了解线段的比和成比例线段;理解并掌握比例的基本性质及其简单应用;发展学生从数学的角度提出问题、分析问题和解决问题的能力。
学生经历运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识。
通过本节课的教学,培养学生的数学应用意识,体会数学与现实生活的密切联系。
教学目标:(一)知识目标:了解线比例线段的基本性质;理解并掌握比例的基本性质及其简单应用;发展学生从数学的角度提出问题、分析问题和解决问题的能力。
(二)能力目标:经历运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识。
(三)情感与价值观目标:通过本节课的教学,培养学生的数学应用意识,体会数学与现实生活的密切联系。
课题:4.1 成比例线段(2)教学目标:1.了解线比例线段的基本性质;理解并掌握比例的基本性质及其简单应用;发展学生从数学的角度提出问题、分析问题和解决问题的能力.2.经历运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识. 3.通过本节课的教学,培养学生的数学应用意识,体会数学与现实生活的密切联系. 教学重点与难点重点:让学生理解并掌握比例的基本性质及其简单应用. 难点:运用比例的基本性质解决有关问题. 重难点处理:比例的基本性质的推理是本节课的难点,教学中要尽量让学生发扬小组合作的精神,在小组中展开讨论,教师参与指点.一、温故知新,复习引入 活动内容:复习:(1)成比例线段定义. (2)比例的基本性质. (3)若 3m = 2n ,你可以得到m n 的值吗?nm呢? 设计意图:学生思考回顾上节课的内容,为本节课学习更好的铺垫,顺利进入本节课的学习.二、合作探究,激发兴趣 活动内容: (1)如图,已知AE CE AD BD =,你能求出BD AD CE AE AD AE ++=的值吗?如果CEACBD AB =,那么AB BD AC CEBD CE--=有怎么样的关系?在求解过程中,你有什么发现? 已知,a ,b ,c ,d ,e ,f 六个数.E CDBA处理方式:(1)kCE AE k AECEkBD AD k AD BD ====则则,;, ,分别代入BD AD CE AE AD AE ++=左右两边,或者在)再通分相加(减左右两边加11AE CEAD BD =.(2) 如图,,,,AB BC CD AD HE EF FG HG 的值相等吗?AB BC CD AD HE EF FG HG ++++++的值又是多少?在求解过程中,你有什么发现?处理方式:(2)先根据方格中的数据求出线段的长度再求出这几个比值.设计意图:每一个知识点的学习,都需要在一定的知识背景中去认识和练习才能得到巩固应用,从引例的结论中,引出“合比性质”及“等比性质”的学习.处理方式:1.合比性质有两种形式:如果a c b d =,那么a b b +=c d d +;如果a cb d=,那么a b c db d--=,要灵活应用.不要用太多时间. 2.要强调等比性质推导中,设比值k 分母b+d+……+n ≠0. 三、巩固练习,学以致用 活动内容:例题;与求已知bb a b b a b a -+=,32).1( A B DEF C HG设计意图:学到的知识要会应用升华,在这个环节中,让学生灵活应用比例的合比性质及等比性质,解决实际问题.师生互动,主要还是学生的动,要体现教师的主导作用,学生的主体作用.让学生会主动学习,遇到问题,要善于分析思考.注意事项:利用得出的解题方案,解答上面的两个问题.可让学生自己先做,学习小组讨论后,在黑板上演示,教师与学生共同评讲.四、随堂练习,巩固提高活动内容:设计意图:为了巩固刚学到的知识,选择相应的习题来让学生练习.注意事项:选用的练习题不能太多,必须是具有典型意义的,这里选的两个题都是比较典型的,做题所花的时间不会太多,但是又得到了巩固.五、课堂检测,达标评价活动内容:设计意图:这个环节主要是让学生进一步加深所学知识,提高学习能力. 六、总结串联,纳入系统活动内容:学生谈收获:通过本节课的学习,我们了解了成比例线段的合比性质及等比性质,并在合比性质及等比性质的推导过程中,培养了推理能力,也学会了运用比例线段的基本性质解决问题,比例线段的知识将对我们今后的学习有重要的帮助.设计意图:复习比例的基本性质,合比性质,等比性质,巩固本节课所学的内容. 处理方式:先让学生总结一遍,教师再补充.这个环节在本节课已接近尾声,由学生来总结本节课所学的知识,体现了学生是学习的主人.七、巩固目标,布置作业课本81页,习题4.2第1、2、3题.§4.1 成比例线段(2)引例定理a c mb d n ===如果,(0)b d n ++≠, a c m ab d n b+++=+++那么。
课题:4.1 成比例线段(2)
教学目标:
1.了解线比例线段的基本性质;理解并掌握比例的基本性质及其简单应用;发展学生从数学的角度提出问题、分析问题和解决问题的能力.
2.经历运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识. 3.通过本节课的教学,培养学生的数学应用意识,体会数学与现实生活的密切联系. 教学重点与难点
重点:让学生理解并掌握比例的基本性质及其简单应用. 难点:运用比例的基本性质解决有关问题. 重难点处理:
比例的基本性质的推理是本节课的难点,教学中要尽量让学生发扬小组合作的精神,在小组中展开讨论,教师参与指点.
一、温故知新,复习引入 活动内容:
复习:(1)成比例线段定义. (2)比例的基本性质. (3)若 3m = 2n ,你可以得到
m n 的值吗?n
m
呢? 设计意图:学生思考回顾上节课的内容,为本节课学习更好的铺垫,顺利进入本节课的学习.
二、合作探究,激发兴趣 活动内容: (1)如图,已知AE CE AD BD =,你能求出BD AD CE AE AD AE ++= 的值吗?如果CE
AC
BD AB =
,那么
AB BD AC CE
BD CE
--=
有怎么样的关系?在求解过程中,你有什么发现? 已知,a ,b ,c ,d ,e ,f 六个数.
E C
D
B
A
处理方式:(1)
kCE AE k AE
CE
kBD AD k AD BD ====则则,;, ,分别代入
BD AD CE AE AD AE ++=左右两边,或者在)再通分相加(减左右两边加11AE CE
AD BD =.
(2) 如图,,,,
AB BC CD AD HE EF FG HG 的值相等吗?AB BC CD AD HE EF FG HG ++++++的值又是多少?在求解过程中,你有什么发现?
处理方式:(2)先根据方格中的数据求出线段的长度再求出这几个比值
.
设计意图:每一个知识点的学习,都需要在一定的知识背景中去认识和练习才能得到巩固应用,从引例的结论中,引出“合比性质”及“等比性质”的学习.
处理方式:1.合比性质有两种形式:如果a c b d =,那么
a b b +=c d d +;如果a c
b d
=,那么
a b c d
b d
--=
,要灵活应用.不要用太多时间. 2.要强调等比性质推导中,设比值k 的方法,这种方法以后很常用.另外分母b+d+……
+n ≠0.
三、巩固练习,学以致用 活动内容:例题
;
与求已知b
b a b b a b a -+=,32).1(
A B D
E
F C H
G
设计意图:学到的知识要会应用升华,在这个环节中,让学生灵活应用比例的合比性质及等比性质,解决实际问题.师生互动,主要还是学生的动,要体现教师的主导作用,学生的主体作用.让学生会主动学习,遇到问题,要善于分析思考.
注意事项:利用得出的解题方案,解答上面的两个问题.可让学生自己先做,学习小组讨论后,在黑板上演示,教师与学生共同评讲.
四、随堂练习,巩固提高
活动内容:
设计意图:为了巩固刚学到的知识,选择相应的习题来让学生练习.
注意事项:选用的练习题不能太多,必须是具有典型意义的,这里选的两个题都是比较典型的,做题所花的时间不会太多,但是又得到了巩固.
五、课堂检测,达标评价
活动内容:
设计意图:这个环节主要是让学生进一步加深所学知识,提高学习能力.
六、总结串联,纳入系统
活动内容:学生谈收获:通过本节课的学习,我们了解了成比例线段的合比性质及等比性质,并在合比性质及等比性质的推导过程中,培养了推理能力,也学会了运用比例线段的基本性质解决问题,比例线段的知识将对我们今后的学习有重要的帮助.设计意图:复习比例的基本性质,合比性质,等比性质,巩固本节课所学的内容.处理方式:先让学生总结一遍,教师再补充.这个环节在本节课已接近尾声,由学生来总结本节课所学的知识,体现了学生是学习的主人.
七、巩固目标,布置作业
课本81页,习题4.2第1、2、3题.
=,
n
≠,
0)
d n
+++
活动。