高考数学第二轮复习专题专题03三角复习
- 格式:ppt
- 大小:324.50 KB
- 文档页数:24
第六讲 三角恒等变换与解三角形1.(2018某某某某模拟)已知tanα=34,α∈(0,π),则cos (α+π6)的值为( ) A.4√3-310B.4√3+310C.4-3√310D.3√3-4102.(2018某某某某模拟)√3cos15°-4sin 215°cos15°=( ) A.12 B.√22C.1D.√23.(2018课标全国Ⅲ(理),9,5分)△ABC 的内角A,B,C 的对边分别为a,b,c.若△ABC 的面积为α2+α2-α24,则C=( ) A.π2B.π3C.π4D.π64.(2018某某六校联考)在△ABC 中,cos 2α2=α+α2α(a,b,c 分别为角A,B,C 的对边),则△ABC 的形状为( )A.直角三角形B.等边三角形C.等腰三角形D.等腰三角形或直角三角形5.(2018某某某某第一次统考)在△ABC 中,角A,B,C 的对边分别是a,b,c,若a,b,c 成等比数列,且a 2=c 2+ac-bc,则ααsin α=( )A.2√33B.√32 C.12 D.√36.(2018某某某某调研)在△ABC 中,a,b,c 分别是角A,B,C 的对边,且2bcosC=2a+c,则B=( ) A.π6B.π4C.π3D.2π37.(2018某某某某监测)在△ABC 中,三个内角A,B,C 的对边分别为a,b,c,若12bcosA=sinB,且a=2√3,b+c=6,则△ABC 的面积为.8.(2018某某某某调研)在钝角△ABC 中,内角A,B,C 的对边分别为a,b,c,若a=4,b=3,则c 的取值X 围是.9.(2018某某某某模拟)如图,在直角梯形ABDE 中,已知∠ABD=∠EDB=90°,C 是BD 上一点,AB=3-√3,∠ACB=15°,∠ECD=60°,∠EAC=45°,则线段DE 的长度为.10.(2018某某某某模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,btanB+btanA=2ctanB,且a=5,△ABC 的面积为2√3,则b+c的值为.11.(2018某某某某模拟)在△ABC中,D是BC边的中点,AB=3,AC=√13,AD=√7.(1)求BC边的长;(2)求△ABC的面积.). 12.(2018某某,16,13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(α-π6(1)求角B的大小;(2)设a=2,c=3,求b和sin(2A-B)的值.13.(2018某某黄冈模拟)在△ABC中,角A,B,C所对的边分别为a,b,c.(1)若23cos 2A+cos2A=0,且△ABC 为锐角三角形,a=7,c=6,求b 的值; (2)若a=√3,A=π3,求b+c 的取值X 围.14.(2018某某湘东五校联考)已知函数f(x)=√32sin2x-cos 2x-12.(1)求f(x)的最小值,并写出取得最小值时的自变量x 的集合;(2)设△ABC 的内角A,B,C 所对的边分别为a,b,c,且c=√3,f(C)=0,若sinB=2sinA,求a,b 的值.答案精解精析1.A 因为tanα=34,α∈(0,π),所以sinα=35,cosα=45,故cos (α+π6)=cosαcos π6-sinαsin π6=45×√32-35×12=4√3-310,故选A.2.D 解法一:√3cos15°-4sin 215°cos15°=√3cos15°-2sin15°·2sin15°cos15°=√3cos15°-2sin15°·sin 30°=√3cos15°-sin15°=2cos(15°+30°)=2cos45°=√2.故选D. 解法二:因为cos15°=√6+√24,sin15°=√6-√24,所以√3cos15°-4sin215°·cos15°=√3×√6+√24-4×(√6-√24)2×√6+√24=√6+√24×(√3-8-4√34)=√2.故选D.3.C 根据余弦定理得a 2+b 2-c 2=2abcosC,因为S △ABC =α2+α2-α24,所以S △ABC =2ααcos α4,又S △ABC =12absinC,所以tanC=1,因为C∈(0,π),所以C=π4.故选C.4.A 已知等式变形得cosB+1=αα+1,即cosB=αα①.由余弦定理得cosB=α2+α2-α22αα,代入①得α2+α2-α22αα=αα,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.5.A ∵a,b,c 成等比数列,∴b 2=ac,∴sin 2B=sinA×sinC,又a 2=c 2+ac-bc=c 2+b2-bc,∴cosA=α2+α2-α22αα=αα2αα=12,∴sinA=√32,∴ααsin α=sin αsin 2B =1sin α=√3=2√33,故选A.6.D 因为2bcosC=2a+c,所以由正弦定理可得2sinBcosC=2sinA+sinC=2sin(B+C)+sinC=2sinBcosC+2cosBsinC+sinC,即2cosBsinC=-sinC,又sinC≠0,所以cosB=-12,又0<B<π,所以B=2π3,故选D.7.答案 2√3 解析 由题意可知cos α2=sin αα=sin αα,又a=2√3,所以tanA=√3,所以A=π3,由余弦定理得12=b 2+c 2-bc,又b+c=6,所以bc=8,从而△ABC 的面积为12bcsinA=12×8×sin π3=2√3. 8.答案 (1,√7)∪(5,7)解析 三角形中两边之和大于第三边,两边之差小于第三边,据此可得1<c<7,① 若∠C 为钝角,则cosC=α2+α2-α22αα=25-α224<0,解得c>5,②若∠A 为钝角,则cosA=α2+α2-α22αα=α2-76α<0,解得0<c<√7,③结合①②③可得c 的取值X 围是(1,√7)∪(5,7). 9.答案 6解析 在Rt△ABC 中,因为AB=AC·sin∠ACB,所以3-√3=AC·sin15°, 又sin15°=√6-√24,所以可得AC=2√6.又易知∠AEC=30°,所以在△ACE 中,由ααsin45°=2√6sin30°,得EC=4√3.于是在Rt△CDE 中,由∠ECD=60°,可得DE=EC·sin60°=4√3×√32=6.10.答案 7解析 在△ABC 中,由btanB+btanA=2ctanB 及正弦定理,得sin 2B cos α+sin αsin αcos α=2sin αsin αcos α,由于sinB≠0,故sin αcos α=2sin α-sin αcos α,即sinAcosB=2sinCcosA-sinBcosA,整理得sinAcosB+sinBcosA=2sinCcosA,由两角和的正弦公式及诱导公式,得sin(A+B)=sinC=2sinCcosA,由于sinC≠0,故等式两端同除以sinC 可得cosA=12,所以sinA=√32,因为S △ABC =12bcsinA=√34bc=2√3,所以bc=8,由cosA=α2+α2-α22αα=(α+α)2-2bc -α22αα=12,a=5,可得b+c=7.11.解析 (1)设BD=x,则BC=2x, 在△ABD 中,有cos∠ABD=αα2+B α2-A α22αα·αα=9+α2-72×3α,在△ABC 中,有cos∠ABC=αα2+B α2-A α22αα·αα=9+4α2-132×3×2α, 且∠ABD=∠ABC,即9+α2-72×3α=9+4α2-132×3×2α,得x=2,∴BC=4.(2)由(1)可知,cosB=12,又由B∈(0,π),得sinB=√32, ∴S △ABC =12·AB·BC·sinB=12×3×4×√32=3√3.12.解析 (1)在△ABC 中,由αsin α=αsin α可得bsinA=asinB,又由bsinA=acos (α-π6),得asinB=acos (α-π6),即sinB=cos (α-π6),可得tanB=√3.又因为B∈(0,π),所以B=π3.(2)在△ABC 中,由余弦定理及a=2,c=3,B=π3,有b 2=a 2+c 2-2accosB=7,故b=√7. 由bsinA=acos (α-π6),可得sinA=√3√7.因为a<c,故cosA=√7.因此sin2A=2sinAcosA=4√37,cos2A=2cos 2A-1=17.所以,sin(2A-B)=sin2AcosB-cos2AsinB=4√37×12-17×√32=3√314.13.解析 (1)∵23cos 2A+cos2A=23cos 2A+2cos 2A-1=0, ∴cos 2A=125,又A 为锐角,∴cosA=15,由a 2=b 2+c 2-2bccosA,代入已知数据得b 2-125b-13=0, 解得b=5(负值舍去),∴b=5. (2)解法一:由正弦定理可得 b+c=2(sinB+sinC) =2[sin α+sin (2π3-B )]=2√3sin (α+π6),∵0<B<2π3,∴π6<B+π6<5π6,∴12<sin (α+π6)≤1, ∴b+c∈(√3,2√3].解法二:由余弦定理a 2=b 2+c 2-2bccosA 可得b 2+c 2-3=bc, 即(b+c)2-3=3bc≤34(b+c)2,当且仅当b=c 时取等号,∴b+c≤2√3,又由两边之和大于第三边可得b+c>√3, ∴b+c∈(√3,2√3]. 14.解析 (1)f(x)=√32sin2x-1+cos2α2-12=√32sin2x-cos2α2-1 =sin (2α-π6)-1.当2x-π6=2kπ-π2(k∈Z),即x=kπ-π6(k∈Z)时,f(x)取最小值-2, 此时自变量x 的集合为 {α|x =kπ-α6,k∈Z }.(也可写成{α|x =kπ+5α6,k∈Z }).(2)因为f(C)=0,所以sin (2α-π6)-1=0,又0<C<π, 所以2C-π6=π2,即C=π3.在△ABC 中,sinB=2sinA,由正弦定理知b=2a,又c=√3,所以由余弦定理知(√3)2=a 2+b 2-2abcos π3,即a 2+b 2-ab=3,联立,得{α2+α2-ab =3,α=2α,所以{α=1,α=2.。
专题3-2解三角形最值、范围与图形归类目录讲高考................................................................................................................................................................................1题型全归纳......................................................................................................................................................................2【题型一】最值与范围1:角与对边....................................................................................................................2【题型二】最值与范围2:角与邻边....................................................................................................................2【题型三】范围与最值3:有角无边型................................................................................................................3【题型四】最值与范围4:边非对称型................................................................................................................4【题型五】最值:均值型...........................................................................................................................................4【题型六】图形1:内切圆与外接圆....................................................................................................................4【题型七】图形2:“补角”三角形....................................................................................................................6【题型八】图形3:四边形与多边形....................................................................................................................7【题型九】三大线1:角平分线应用....................................................................................................................8【题型十】三大线2:中线应用..............................................................................................................................8【题型十一】三大线3:高的应用.........................................................................................................................9【题型十二】证明题.................................................................................................................................................10专题训练. (10)讲高考1.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC(2)若sin sin A C =,求b .2.(2022·全国·统考高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.3.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos 2A B A B =++.(1)若23C π=,求B ;(2)求222a b c +的最小值.4.(2021·全国·统考高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.5.(2021·北京·统考高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ∠;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件②:ABC 的周长为4+条件③:ABC 题型全归纳【题型一】最值与范围1:角与对边【讲题型】例题1.已知ABC 的内角,,A B C 所对的边分别为()()22,,,sin sin sin sin sin a b c B C A B C -=-(1)求A ;(2)已知a =.例题2.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,已知22222202b c a ca b c b c+-+=+-+.(1)求角A 的值;1.在锐角三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且2sin 2cos )A A B C -+sin 30A -=.(1)求A 的大小;(2)若2a =,求ABC ∆的周长L 的取值范围.2.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a,b,c ,且()222πcos B b a c ac sinAcosA---=(1)求角A ;(2)若a =bc 的取值范围.【题型二】最值与范围2:角与邻边【讲题型】例题1..已知ABC 为锐角三角形,角,,A B C 所对边分别为,,a b c ,ABC 满足:222sin sin sin sin sin A B C B C +-≤.(1)求角A 的取值范围;1..在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知sinsin 2A Ca b A +=.(1)求角B ;(2)若△ABC 为锐角三角形,且2c =,求△ABC 面积的取值范围.2.在ABC 中,设A ,B ,C 所对的边长分别为a ,b ,c ,且()()()sin sin sin c b C a b A B -=-+.(1)求A ;(2)若2b =,且ABC 为锐角三角形,求ABC 的面积S 的取值范围.【题型三】范围与最值3:有角无边型【讲题型】例题1.三角形ABC 中,已知222sin sin +sin sin sin A B A B C +=,其中,角A B C 、、所对的边分别为a b c 、、.(Ⅰ)求角C 的大小;(Ⅱ)求a b c +的取值范围.例题2.在锐角三角形ABC,若ac c b a c b a 3))((=+++-(I)求角B(II)求A A cos sin 3+的取值范围【练题型】1.设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)若a =5c =,求b(Ⅱ)求cos sin A C +的取值范围.2.在锐角三角形ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,且2sin sin cos sin cos C B a BB b A-=.(1)求A ;(2)求bc 的取值范围.【题型四】最值与范围4:边非对称型【讲题型】例题1.在ABC ∆中,,,a b c 分别是角,,A B C 的对边()()3a b c a b c ab +++-=.(1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求2a b -的范围.【练题型】在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin sin A C B A C +=.(Ⅰ)求角B 的大小;(Ⅱ)若ABC 为锐角三角形,b =a -的取值范围.【题型五】最值:均值型【讲题型】例题1.已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ;(2)若24a S =,求c bb c+的最大值.【练题型】1.在△ABC 中,设AD 为BC 边上的高,且AD =BC BC ,b ,c 分别表示角B ,C 所对的边长,则b cc b+的取值范围是_.【题型六】图形1:内切圆与外接圆【讲题型】例题1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知4b =,2c =,且sin sin sin()C B A B =+-.(1)求角A 和边a 的大小;(2)求△ABC 的内切圆半径.例题2.ABC 中,已知1AB =,BC =D 为AC 上一点,2AD DC =,AB BD ⊥.(1)求BD 的长度;(2)若点P 为ABD △外接圆上任意一点,求2+PB PD 的最大值.【讲技巧】外接圆:1.外接圆的圆心到三角形的三个顶点的距离相等。
高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
高考数学第二轮专题复习三角函数教案一、本章知识结构:应用一.理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。
二.掌握三角函数公式的运用〔即同角三角函数基本关系、诱导公式、和差及倍角公式〕三.能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。
四.会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法〞画出正弦函数、余弦函数及Y=Asin(ωχ+φ)的简图、理解A、ω、 的物理意义。
五.会由三角函数值求角,并会用符号arcsinx arccosx arctanx表示角。
三、热点分析1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.2.对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题〔1〕与三角函数单调性有关的问题;〔2〕与三角函数图象有关的问题;〔3〕应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;〔4〕与周期有关的问题3.基本的解题规律为:观察差异〔或角,或函数,或运算〕,寻找联系〔借助于熟知的公式、方法或技巧〕,分析综合〔由因导果或执果索因〕,实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.4.立足课本、抓好基础.从前面表达可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在复习中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度.四、复习建议本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理能力。
2023届新高考数学二轮复习:专题(三角函数的范围与最值)提分练习【总结】一、三角函数()sin()f x A x ωϕ=+中ω的大小及取值范围 1、任意两条对称轴之间的距离为半周期的整数倍,即()2Tkk ∈Z ; 2、任意两个对称中心之间的距离为半周期的整数倍,即()2Tk k ∈Z ; 3、任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即()42T Tk k +∈Z ; 4、()sin()f x A x ωϕ=+在区间(,)a b 内单调2Tb a ⇒-…且()22k a b k k πππωϕωϕπ-+++∈Z 剟?5、()sin()f x A x ωϕ=+在区间(,)a b 内不单调(,)a b ⇒内至少有一条对称轴,2a kb πωϕπωϕ+++剟()k ∈Z6、()sin()f x A x ωϕ=+在区间(,)a b 内没有零点2Tb a ⇒-…且(1)()k a b k k πωϕωϕπ+++∈Z 剟?7、()sin()f x A x ωϕ=+在区间(,)a b 内有n 个零点(1)()(1)()k a k k k n b k n πωϕππωϕπ-+<⎧⇒∈⎨+-<++⎩Z ……. 二、三角形范围与最值问题1、坐标法:把动点转为为轨迹方程2、几何法3、引入角度,将边转化为角的关系4、最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,7cos 25A =,ABC 的内切圆的面积为16π,则边BC 长度的最小值为( )A .16B .24C .25D .36例2.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||,24ππϕ≤-为()f x的零点:且()4f x f π⎛⎫≤ ⎪⎝⎭恒成立,()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,则ω的最大值是( ) A .11 B .13C .15D .17例3.(2023ꞏ高一课时练习)如图,直角ABC ∆的斜边BC 长为2,30C ∠=︒,且点,B C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA xOB yOC =+,(,x y ∈R ),记M OA OC =⋅,N x y =+,分别考查,M N 的所有运算结果,则A .M 有最小值,N 有最大值B .M 有最大值,N 有最小值C .M 有最大值,N 有最大值D .M 有最小值,N 有最小值例4.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( ) A.B.CD例5.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦例6.(2023ꞏ全国ꞏ高三专题练习)已知函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎥⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为( )A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦B .4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .4280,8,33⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦D .5220,,823⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦例7.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A .3⎡⎫+∞⎪⎢⎣⎭B .43⎤⎥⎣⎦ C .43⎫⎪⎪⎝⎭D .43⎫⎪⎪⎣⎭例8.(2023ꞏ上海ꞏ高三专题练习)在钝角ABC 中,,,a b c 分别是ABC 的内角,,A B C 所对的边,点G 是ABC 的重心,若AG BG ⊥,则cos C 的取值范围是( )A .0,3⎛⎫⎪ ⎪⎝⎭B .453⎡⎫⎪⎢⎪⎣⎭ C .3⎛⎫⎪ ⎪⎝⎭D .4,15⎡⎫⎪⎢⎣⎭例9.(2023ꞏ全国ꞏ高三专题练习)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π==,则2b 2c bc ++的取值范围为( )A .(1,9]B .(3,9]C .(5,9]D .(7,9]例10.(2023ꞏ上海ꞏ高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形,,,MN NP PQ QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为,MN PQ 的中点,50OA OD ==米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域,MQ NP 边界上(不含端点),且设计成2BAC π∠=,另一段玻璃桥F D E --满足//,,//,FD AC FD AC ED AB ED AB ==.(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:1.732≈≈)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB AC DE DF +++,宽度、连接处忽略不计).例11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭(1)设3a =,2c =,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE EA ⋅的值;(2)若ABC 为锐角三角形,2c =,求ABC 面积的取值范围.【过关测试】 一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知,a b R ∈,设函数1()cos 2f x x =,2()cos f x a b x =-,若当12()()f x f x ≤对[,]()∈<x m n m n 恒成立时,n m -的最大值为3π2,则( ) A.1a ≥ B.1a ≤ C.2≥b D.2≤b 2.(2023ꞏ全国ꞏ高三专题练习)ABC中,4AB ACB π=∠=,O 是ABC 外接圆圆心,是OC AB CA CB ⋅+⋅的最大值为( )A .0B .1C .3D .53.(2023ꞏ全国ꞏ高三专题练习)在锐角ABCcos cos ()sin sin A CA B C a c+=,且cos 2C C +=,则a b +的取值范围是( ) A.(4⎤⎦B.(2,C .(]0,4D .(]2,44.(2023ꞏ全国ꞏ高三专题练习)设ω∈R ,函数()()22,0,6314,0,22sin x x f x g x x x x x πωωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭==⎨⎪++<⎪⎩.若()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 的图象有三个交点,则ω的取值范围是( )A .12,43⎛⎤ ⎝⎦B.233⎛⎤ ⎥ ⎝⎦C.14⎡⎢⎣⎭D .4412,0,33⎡⎫⎡⎤-⎪⎢⎢⎥⎣⎭⎣⎦5.(2023秋ꞏ湖南长沙ꞏ高三长郡中学校考阶段练习)已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( ) A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭6.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π;③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,; ④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( )A .①④B .②③C .②④D .②③④7.(2023ꞏ全国ꞏ高三专题练习)函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,则下列说法正确的是( )A .在()0,π不存在1x ,2x 使得()()122f x f x -=B .函数()f x 在()0,π仅有1个最大值点C .函数()f x 在0,2π⎛⎫⎪⎝⎭上单调进增D .实数ω的取值范围是1319,66⎡⎫⎪⎢⎣⎭8.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( )A .⎝B .32⎛ ⎝C .2⎢⎣D .32⎡⎢⎣二、多选题9.(2023秋ꞏ山东济南ꞏ高三统考期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且()()tan 1tan tan A B A B +-= ) A .π6A =B .若b c -=,则ABC 为直角三角形C .若ABC 面积为1,则三条高乘积平方的最大值为D .若D 为边BC 上一点,且1,:2:AD BD DC c b ==,则2b c +的最小值为710.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)已知函数()2sin 212cos xf x x=+,则下列说法中正确的是( )A .()()f x f x π+=B .()f xC .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增D .若函数()f x 在区间[)0,a 上恰有2022个极大值点,则a 的取值范围为60646067,33ππ⎛⎤⎥⎝⎦ 11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( )A .22S a bc +的最大值为12B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形C .当2a =,sin 2sin B C =,2A C =时,ABC 的周长为2+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB 12.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,且2cos c b b A -=,则下列结论正确的有( )A .2AB = B .B 的取值范围为0,4π⎛⎫⎪⎝⎭C .ab的取值范围为)2D .112sin tan tan A B A -+的取值范围为⎫⎪⎪⎝⎭三、填空题13.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin ,06f x x πωω⎛⎫=+> ⎪⎝⎭,若5412f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭且()f x 在区间5,412ππ⎛⎫⎪⎝⎭上有最小值无最大值,则ω=_______. 14.(2023ꞏ全国ꞏ高三专题练习)函数()()π3sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,已知π33f ⎛⎫= ⎪⎝⎭且对于任意的x R ∈都有ππ066f x f x ⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,若()f x 在5π2π,369⎛⎫ ⎪⎝⎭上单调,则ω的最大值为______.15.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||2πϕ…,4π-为()f x 的零点,且()4f x f π⎛⎫⎪⎝⎭…恒成立,()f x 在区间,1224ππ⎡⎫-⎪⎢⎣⎭上有最小值无最大值,则ω的最大值是_______16.(2023ꞏ全国ꞏ高三对口高考)在ABC 中,)(),cos ,cos ,sin AB x x AC x x ==,则ABC 面积的最大值是____________17.(2023ꞏ高一课时练习)用I M 表示函数sin y x =在闭区间I 上的最大值.若正数a 满足[0,][,2]2a a a M M ≥,则a 的最大值为________.18.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知2a =,cos cos 4b C c B -=,43C ππ≤≤,则tan A 的最大值为_______.19.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,若120BAC ∠=︒,点D 为边BC 的中点,1AD =,则AB AC ⋅uu u r uuu r的最小值为______.20.(2023ꞏ全国ꞏ高三专题练习)△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .21.(2023ꞏ全国ꞏ高三专题练习)已知0θ>,对任意*n ∈N ,总存在实数ϕ,使得cos()n θϕ+<θ的最小值是___ 22.(2023ꞏ上海ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,0πϕ<< ,π()()4f x f ≤恒成立,且()y f x =在区间3π0,8⎛⎫ ⎪⎝⎭上恰有3个零点,则ω的取值范围是______________.23.(2023ꞏ全国ꞏ高三专题练习)已知锐角三角形ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且A B >,若7sin 2cos sin 25C A B =+,则tan B 的取值范围为_______. 24.(2023ꞏ全国ꞏ高三专题练习)若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.25.(2023秋ꞏ湖南衡阳ꞏ高一衡阳市八中校考期末)设函数()()2sin 1(0)f x x ωϕω=+->,若对于任意实数ϕ,()f x 在区间π3π,44⎡⎤⎢⎥⎣⎦上至少有2个零点,至多有3个零点,则ω的取值范围是________.26.(2023ꞏ全国ꞏ高三专题练习)已知函数()()211(sin )sin 20,22f x x x R ωωωω=+->∈,若()f x 在区间(),2ππ内没有极值点,则ω的取值范围是___________.27.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)某小区有一个半径为r 米,圆心角是直角的扇形区域,现计划照图将其改造出一块矩形休闲运动场地,然后在区域I (区域ACD ),区域II (区域CBE )内分别种上甲和乙两种花卉(如图),已知甲种花卉每平方米造价是a 元,乙种花卉每平方米造价是3a 元,设∠BOC =θ,中植花卉总造价记为()f θ,现某同学已正确求得:()()2f arg θθ=,则()g θ=___________;种植花卉总造价最小值为___________.28.(2023ꞏ全国ꞏ高三专题练习)已知函数()()2sin cos 0,06f x x a x a πωωω⎛⎫=++>> ⎪⎝⎭对任意12,x x R ∈都有()()12f x f x +≤若()f x 在[]0,π上的取值范围是3,⎡⎣,则实数ω的取值范围是__________.29.(2023ꞏ全国ꞏ高三专题练习)已知a ,b ,c 分别为锐角ABC 的三个内角A ,B ,C 的对边,若2a =,且2sin sin (sin sin )B A A C =+,则ABC 的周长的取值范围为__________. 30.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC ∆中,2BC =,sin sin 2sin B C A +=,则中线AD长的取值范围是_______; 四、解答题31.(2023ꞏ全国ꞏ高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值;32.(2023ꞏ全国ꞏ模拟预测)在ABC 中,内角,,A B C 的对边分别为,,,sin cos 6a b c b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)设点D 是AC 的中点,若BD =,求a c +的取值范围.参考答案【总结】一、三角函数()sin()f x A x ωϕ=+中ω的大小及取值范围 1、任意两条对称轴之间的距离为半周期的整数倍,即()2Tkk ∈Z ; 2、任意两个对称中心之间的距离为半周期的整数倍,即()2Tk k ∈Z ; 3、任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即()42T Tk k +∈Z ; 4、()sin()f x A x ωϕ=+在区间(,)a b 内单调2Tb a ⇒-…且()22k a b k k πππωϕωϕπ-+++∈Z 剟?5、()sin()f x A x ωϕ=+在区间(,)a b 内不单调(,)a b ⇒内至少有一条对称轴,2a kb πωϕπωϕ+++剟()k ∈Z6、()sin()f x A x ωϕ=+在区间(,)a b 内没有零点2Tb a ⇒-…且(1)()k a b k k πωϕωϕπ+++∈Z 剟?7、()sin()f x A x ωϕ=+在区间(,)a b 内有n 个零点(1)()(1)()k a k k k n b k n πωϕππωϕπ-+<⎧⇒∈⎨+-<++⎩Z …….二、三角形范围与最值问题1、坐标法:把动点转为为轨迹方程2、几何法3、引入角度,将边转化为角的关系4、最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,7cos 25A =,ABC 的内切圆的面积为16π,则边BC 长度的最小值为( )A .16B .24C .25D .36【答案】A【答案解析】因为ABC 的内切圆的面积为16π,所以ABC 的内切圆半径为4.设ABC 内角A ,B ,C 所对的边分别为a ,b ,c .因为7cos 25A =,所以24sin 25A =,所以24tan 7A =.因为1sin 2ABC S bc A ==△1()42a b c ++⨯,所以25()6bc a b c =++.设内切圆与边AC 切于点D ,由24tan 7A =可求得3tan 24A ==4AD ,则163AD =.又因为2b c a AD +-=,所以323b c a +=+.所以2532251626333bc a a ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.又因为b c +≥323a +≥即23210016333a a ⎛⎫⎛⎫+≥+ ⎪ ⎪⎝⎭⎝⎭,整理得21264a a --0≥.因为0a >,所以16a ≥,当且仅当403b c ==时,a 取得最小值. 故选:A .例2.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||,24ππϕ≤-为()f x 的零点:且()4f x f π⎛⎫≤ ⎪⎝⎭恒成立,()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .17【答案】C【答案解析】由题意,4x π=是()f x 的一条对称轴,所以14f π⎛⎫=± ⎪⎝⎭,即11,42k k Z ππωϕπ+=+∈①又04f π⎛⎫-= ⎪⎝⎭,所以22,4k k Z πωϕπ-+=∈②由①②,得()1221k k ω=-+,12,k k Z ∈又()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,所以24128T πππ⎛⎫≥--= ⎪⎝⎭ 即28ππω≥,解得16ω≤,要求ω最大,结合选项,先检验15ω=当15ω=时,由①得1115,42k k Z ππϕπ⨯+=+∈,即1113,4k k Z πϕπ=-∈,又||2πϕ≤ 所以4πϕ=-,此时()sin 154f x x π⎛⎫=- ⎪⎝⎭,当,1224x ππ⎛⎫∈- ⎪⎝⎭时,3315,428x πππ⎛⎫-∈- ⎪⎝⎭,当1542x ππ-=-即60x π=-时,()f x 取最小值,无最大值,满足题意.故选:C例3.(2023ꞏ高一课时练习)如图,直角ABC ∆的斜边BC 长为2,30C ∠=︒,且点,B C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA xOB yOC =+,(,x y ∈R ),记M OA OC =⋅,N x y =+,分别考查,M N 的所有运算结果,则A .M 有最小值,N 有最大值B .M 有最大值,N 有最小值C .M 有最大值,N 有最大值D .M 有最小值,N 有最小值【答案】B【答案解析】依题意30,2,90BCA BC A ∠==∠= ,所以1AC AB ==.设OCB α∠=,则30,090ABx αα∠=+<< ,所以()())30,sin 30Aαα++ ,()()2sin ,0,0,2cos B C αα,所以()()12cos sin 30sin 2302M OA OC ααα==+=++⋅ ,当23090,30αα+== 时,M 取得最大值为13122+=.OA xOB yOC =+ ,所以()()30sin 30,2sin 2cos x y αααα++==,所以()()30sin 302sin 2cos N x y αααα++=+=+12sin 2α=+,当290,45αα== 时,N 有最小值为1故选B. 例4.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( )A .B .C D 【答案】D【答案解析】由221a b +=,令sin ,cos a b θθ==, 由()sin cos f x a x b x cx =++,得()cos sin sin cos cos sin f x a x b x c x x c θθ'=-+=-+()sin x c θ=-+,所以()11c f x c '-≤≤+由题意可知,存在12,x x ,使得12()()1f x f x ''=-,只需要21111c c c -+=-≥,即211c -≤-,所以20c ≤,0c =,πsin cos 4a b c a b θθθ⎛⎫++=+=+=+≤ ⎪⎝⎭所以a b c ++故选: D.例5.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫ ⎪⎪⎢⎝⎭⎣⎭D .5π3π0,2,124⎛⎫⎡⎤⎪⎢⎥⎝⎭⎣⎦【答案】A【答案解析】设()(2)ln(1)g x x x =-+,()cos 34h x x π⎛⎫+ ⎝=⎪⎭,求导()23ln(1)ln(1)111x g x x x x x -'=++=++-++ 由反比例函数及对数函数性质知()g x '在(]1,,0m m ->上单调递增,且102g ⎛⎫'< ⎪⎝⎭,()10g '>,故()g x '在1,12⎛⎫⎪⎝⎭内必有唯一零点0x ,当()01,x x ∈-时,()0g x '<,()g x 单调递减; 当(]0,x x m ∈时,()0g x '>,()g x 单调递增;令()0g x =,解得0x =或2,可作出函数()g x 的图像, 令()0h x =,即3,42x k k Z πππ+=+∈,在(]0,π之间解得12x π=或512π或34π,作出图像如下图数形结合可得:π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ ,故选:A例6.(2023ꞏ全国ꞏ高三专题练习)已知函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为( )A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦B .4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .4280,8,33⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦D .5220,,823⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【答案】B【答案解析】由已知,函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎥⎣⎦上单调递增,所以()111π2ππ2πZ 3k x k k ω-≤-≤∈,解得:()1112π2π2ππZ 33k k x k ωωωω-≤≤+∈,由于()111Z π,π,642π2π2ππ33k k k ωωωω⎡⎤⎡⎤⊆⎢⎢⎥⎣⎦⎣⎦-+∈,所以112ππ2π632πππ43k k ωωωω⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得:()11141248Z 3k k k ω-≤≤+∈① 又因为函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,43x ⎡⎤∈⎢⎥⎣⎦上()0f x ≥恒成立,所以()222πππ2π2π+Z 232k x k k ω-≤-≤∈,解得:()2222π2ππ5πZ 66k k x k ωωωω-≤≤+∈, 由于()2222π2ππ5π,Z 6π,46π3k k k ωωωω-+⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣∈⎦,所以222πππ462ππ5π36k k ωωωω⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得:()2222586Z 32k k k ω-≤≤+∈② 又因为0ω>,当120k k ==时,由①②可知:04432532ωωω⎧⎪>⎪⎪-≤≤⎨⎪⎪-≤≤⎪⎩,解得403ω⎛⎤∈ ⎥⎝⎦,;当121k k ==时,由①②可知:02883221732ωωω⎧⎪>⎪⎪≤≤⎨⎪⎪≤≤⎪⎩,解得1782ω⎡⎤∈⎢⎥⎣⎦,.所以ω的取值范围为4170,8,32⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦.故选:B.例7.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A.3⎡⎫+∞⎪⎢⎣⎭B.433⎡⎤⎢⎥⎣⎦ C.4,33⎛⎫⎪ ⎪⎝⎭D.4,33⎡⎫⎪⎢⎪⎣⎭【答案】C【答案解析】在ABC 中,1sin()sin ,sin 2A CB S ac B +==, 故题干条件可化为22b a ac -=,由余弦定理得2222cos b a c ac B =+-, 故2cos c a B a =+,又由正弦定理化简得:sin 2sin cos sin sin cos cos sin C A B A A B A B =+=+,整理得sin()sin B A A -=,故B A A -=或B A A -=π-(舍去),得2B A =ABC 为锐角三角形,故02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,解得64A ππ<<tan 1A <<114tan tan (,3tan()3tan 33A AB A A +=+∈- 故选:C例8.(2023ꞏ上海ꞏ高三专题练习)在钝角ABC 中,,,a b c 分别是ABC 的内角,,A B C 所对的边,点G 是ABC 的重心,若AG BG ⊥,则cos C 的取值范围是( )A.⎛ ⎝⎭ B.45⎡⎢⎣⎭ C.⎫⎪⎪⎝⎭D .4,15⎡⎫⎪⎢⎣⎭【答案】C【答案解析】延长CG 交AB 于D ,如下图所示:G 为ABC 的重心,D ∴为AB 中点且3CD DG =,AG BG ⊥ ,12DG AB ∴=,3322CD AB c ∴==;在ADC △中,2222222225522cos 3232c bAD CD AC c b ADC AD CD c c -+--∠===⋅; 在BDC 中,2222222225522cos 3232c a BD CD BC c a BDC BD CD c c -+--∠===⋅; BDC ADC π∠+∠= ,cos cos BDC ADC ∴∠=-∠,即222222525233c a c b c c--=-,整理可得:22225a b c c +=>,C ∴为锐角; 设A 为钝角,则222b c a +<,222a c b +>,a b >,2222222255a ba b a b b a ⎧+>+⎪⎪∴⎨+⎪<+⎪⎩,22221115511155b b a a b b a a ⎧⎛⎫⎛⎫++<⎪ ⎪ ⎪⎪⎝⎭⎝⎭∴⎨⎛⎫⎛⎫⎪<++ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得:223b a ⎛⎫< ⎪⎝⎭, 0a b >>,03b a ∴<<,由余弦定理得:22222222cos 255533a b c a b a b C ab ab b a ⎛⎫+-+⎛⎫==⋅=+>⨯+= ⎪ ⎝⎭⎝, 又C为锐角,cos 1C <<,即cos C的取值范围为3⎛⎫ ⎪ ⎪⎝⎭. 故选:C.例9.(2023ꞏ全国ꞏ高三专题练习)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c,若,3A a π==,则2b 2c bc ++的取值范围为( )A .(1,9]B .(3,9]C .(5,9]D .(7,9]【答案】D【答案解析】因为,3A a π==,由正弦定理可得22sin sin sin 3ab cAB B π====⎛⎫-⎪⎝⎭, 则有22sin ,2sin 3b B c B π⎛⎫==- ⎪⎝⎭,由ABC 的内角,,A B C 为锐角,可得0,220,32B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,512sin 2124sin 2462666266B B B B πππππππ⎛⎫⎛⎫∴<<⇒<-<⇒<-≤⇒<-≤ ⎪ ⎪⎝⎭⎝⎭, 由余弦定理可得222222cos 3,a b c bc A b c bc =+-⇒=+- 因此有2223b c bc bc ++=+28sin sin 33B B π⎛⎫=-+ ⎪⎝⎭2cos 4sin 3B B B =++22cos 25B B =-+(]54sin 27,96B π⎛⎫=+-∈ ⎪⎝⎭故选:D.例10.(2023ꞏ上海ꞏ高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形,,,MN NP PQ QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为,MN PQ 的中点,50OA OD ==米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域,MQ NP 边界上(不含端点),且设计成2BAC π∠=,另一段玻璃桥F D E --满足//,,//,FD AC FD AC ED AB ED AB ==.(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:1.732≈≈)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB AC DE DF +++,宽度、连接处忽略不计).【答案解析】(1)由题意,50,100OA OM ==,则100,2MQ AM BAC π==∠=,设,2MAB NAC πθαθ∠=∠==-.若C ,P重合,1tan tan tan 2αθα=====75MB =,∴75tan tan MB MB AM θθθ<<<<=⋅=,tan NC AN α=⋅=而100100MF CP NC ==-=∴1tan 1001)tan BF MB MF θθ⎫=-=+-≥⎪⎭,当tan 1θ=(符合题意)时取等号,又1)70->, ∴可以修建70米长廊. (2)cos cos AM AN AB AC θα====cos )cos sin sin cos AB AC θθθθθθ++=+=.设sin cos 4t πθθθ⎛⎫=+=+ ⎪⎝⎭,则212sin cos t θθ=+,即21sin cos 2t θθ-=.AB AC t t+==-1)知tan 2θ<<,而132<<<<θ∃使42ππθ+=且3444πππθ<+<,即112t t t <≤<-≤,∴AB AC t t+=≥-4t πθ==时取等号. 由题意,AB AC DE DF +=+,则玻璃桥总长的最小值为米,∴铺设好亲水玻璃桥,最少需0.3=例11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭(1)设3a =,2c =,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE EA ⋅的值;(2)若ABC 为锐角三角形,2c =,求ABC 面积的取值范围.【答案解析】(1)πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭,由正弦定理得:π1sin sin sin sin sin sin sin cos 322B A A B A B A B ⎛⎫=+=+ ⎪⎝⎭,所以1sin sin cos 02A B A B =,因为()0,πA ∈,所以sin 0A ≠,所以1sin 02B B =,即tan B =因为()0,πB ∈,所以π3B =, 因为3a =,2c =,由余弦定理得:2222cos 9467b a c ac B =+-=+-=, 因为0b >,所以b =,其中11sin 3222ABC S ac B ==⨯⨯=△,所以2ABC S BD AC === 因为点E 为线段BD的中点,所以BE = 由题意得:EA ED DA BE DA =+=+,所以()227028BE EA BE BE DA BE ⋅=⋅+=+= . (2)由(1)知:π3B =,又2c =, 由正弦定理得:2πsin sin sin 3a cA CA ==⎛⎫+ ⎪⎝⎭,所以2sin πsin 3A a A ===⎛⎫+ ⎪⎝⎭,因为ABC 为锐角三角形,所以π0,22ππ0,32A C A ⎧⎛⎫∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-∈ ⎪⎪⎝⎭⎩,解得:ππ,62A ⎛⎫∈ ⎪⎝⎭,则tan A ⎫∈+∞⎪⎪⎝⎭()0,3,()11,4tan A +∈,故()1,4a =,ABC面积为1sin ,222S ac B a ⎛==∈ ⎝ 故ABC面积的取值范围是2⎛ ⎝.【过关测试】 一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知,a b R ∈,设函数1()cos 2f x x =,2()cos f x a b x =-,若当12()()f x f x ≤对[,]()∈<x m n m n 恒成立时,n m -的最大值为3π2,则( ) A.1a ≥ B .1a C .2≥b D .2≤b 【答案】A【答案解析】设[]cos ,x t x m n ∈=,,因为n m -的最大值为3ππ22T>=,所以[,]x m n ∈时,cos t x =必取到最值,当3π2n m -=时,根据余弦函数对称性得cos 12π22m n m Z nk k ++=⇒=∈,,此时3π3πcos cos(cos(2π)cos 22442m n n mm k +-=-=-==-3π3πcos cos(cos(2π)cos 22442m n n m n k +-=+=+==-或者cos1π+2π22m n m n Z k k ++=-⇒=∈,,此时3π3πcos cos(cos(2π+π)cos 22442m n n m m k +-=-=-=-=3π3πcos cos(cos(2π+π)cos 22442m n n m n k +-=+=+=-=由()2212()()2cos 1cos 2cos cos 10f x f x x a b x x b x a ≤⇒-≤-⇒+-+≤,设[]cos ,x t x m n ∈=,时 ()2210t bt a +-+≤对应解为12t t t ≤≤,由上分析可知当1t =,21t ≥或11t ≤-,2t =n m -的最大值为3π2,所以122t t ≤-,即122a +-≤,所以1a ≥.12122b t t -=+≥-或12122b t t -=+≤-+,即2b ≤或2≥-b 故选:A.2.(2023ꞏ全国ꞏ高三专题练习)ABC 中,4AB ACB π=∠=,O 是ABC 外接圆圆心,是OC AB CA CB ⋅+⋅的最大值为( )A .0B .1C .3D .5【答案】C【答案解析】过点O 作,OD AC OE BC ⊥⊥,垂足分别为D ,E ,如图,因O 是ABC 外接圆圆心,则D ,E 分别为AC ,BC 的中点,在ABC 中,AB CB CA =-,则222||||||2AB CA CB CA CB =+-⋅ ,即22||||22CA CB CA CB +-⋅=,21|cos |2CO CA CO CA OCA CD CA CA ⋅=∠=⋅=,同理21||2CO CB CB ⋅= ,因此,()OC AB CA CB OC CB CA CA CB CO CA CO CB CA CB ⋅+⋅=⋅-+⋅=⋅-⋅+⋅ 2222211||||2||||||1222CA CB CA CB CA +-=-+=-,由正弦定理得:||sin ||2sin 2sin sin 4AB B BCA B ACB π===≤∠ ,当且仅当2B π=时取“=”, 所以OC AB CA CB ⋅+⋅的最大值为3. 故选:C3.(2023ꞏ全国ꞏ高三专题练习)在锐角ABCcos cos ()sin sin A CA B C a c+=,且cos 2C C +=,则a b +的取值范围是( ) A.(4⎤⎦B.(2,C .(]0,4D .(]2,4【答案】Acos 2sin()26C C C π+=+=,得262C k πππ+=+,Z k ∈,(0,)2C π∈ ,3C π∴=.由题cos cos A C a c +=cos cos 2b A Cb a ca +==,故cos cos sin sin 2sin A C bA C A+=,即sin cos sin sin cos 2b C A C A C ⋅+⋅==故()sin sin A C B +==即sin b B =由正弦定理有sin sin sin a b c A B C ===,故a A =,b B =,又锐角ABC ,且3C π=,(0,)2A π∴∈,2(0,)32B A ππ=-∈,解得(6A π∈,2π,2sin )sin()]3a b A B A A π∴+=++-1sin )4sin(26A A A A π+=+, (6A π∈ ,2π,(63A ππ∴+∈,2)3π,sin()6A π+∈1], a b ∴+的取值范围为(4⎤⎦.故选:A .4.(2023ꞏ全国ꞏ高三专题练习)设ω∈R ,函数()()22,0,6314,0,22sin x x f x g x x x x x πωωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭==⎨⎪++<⎪⎩.若()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 的图象有三个交点,则ω的取值范围是( )A .12,43⎛⎤ ⎝⎦B.23⎤⎥⎝⎦C.143⎡⎫⎪⎢⎣⎭D .4412,0,33⎡⎫⎡⎤-⎪⎢⎢⎥⎣⎭⎣⎦【答案】B【答案解析】当0,2x π⎡⎫∈⎪⎢⎣⎭时,,6626x πππωπω⎡⎫+∈+⎪⎢⎣⎭, 因为()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,所以262413312sin 62πωππωπ⎧+≤⎪⎪⎪-≤-⎨⎪⎪≥⎪⎩,解得1243ω≤≤, 又因函数()f x 与()g x 的图象有三个交点,所以在(),0x ∈-∞上函数()f x 与()g x 的图象有两个交点,即方程231422x x x ωω++=在(),0x ∈-∞上有两个不同的实数根,即方程23610x x ω++=在(),0x ∈-∞上有两个不同的实数根,所以22Δ3612003060102ωωω⎧⎪=->⎪-<⎨⎪⎪⨯+⨯+>⎩,解得3ω>,当233ω⎛⎤∈ ⎥ ⎝⎦时,当0x ≥时,令()()2sin 6f x g x x x πωω⎛⎫-=+- ⎪⎝⎭,由()()10f x g x -=>, 当562x ππω+=时,73x πω=, 此时,()()7203f xg x π-=-<, 结合图象,所以0x ≥时,函数()f x 与()g x 的图象只有一个交点,综上所述,233ω⎛⎤∈ ⎥ ⎝⎦. 故选:B.5.(2023秋ꞏ湖南长沙ꞏ高三长郡中学校考阶段练习)已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( ) A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【答案】C【答案解析】π,π3x ⎡⎤∈⎢⎥⎣⎦,ππππ,π3333x ωωω⎡⎤+∈++⎢⎥⎣⎦,其中2ππ4ππ3ωω≤-<,解得:36ω≤<,则ππ4π333ω+≥,要想保证函数在π,π3⎡⎤⎢⎥⎣⎦恰有三个零点,满足①1111πππ+2π2π+2π33π4π+2π<π5π+2π3k k k k ωω⎧≤+<⎪⎪⎨⎪+≤⎪⎩,1k Z ∈,令10k =,解得:1114,33ω⎡⎫∈⎪⎢⎣⎭;或要满足②2222ππ2ππ+2π33π2π+3π<π2π+4π3k k k k ωω⎧≤+<⎪⎪⎨⎪+≤⎪⎩,2k Z ∈,令21k =,解得:175,3ω⎛⎫∈ ⎪⎝⎭;经检验,满足题意,其他情况均不满足36ω≤<条件,综上:ω的取值范围是111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭.故选:C6.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π;③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,; ④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④【答案】B【答案解析】由函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω,令,42x k k Z ππωπ+=+∈,则()14,4k x k Zπω+=∈函数()f x 在区间[0,]π上有且仅有4条对称轴,即()1404k ππω+≤≤有4个整数k 符合,由()1404k ππω+≤≤,得140101444k k ωω+≤≤⇒≤+≤,则0,1,2,3k =, 即1434144ω+⨯≤<+⨯,131744ω∴≤<,故③正确; 对于①,(0,)x π∈ ,,444x ωωππππ⎡⎫∴+∈+⎪⎢⎣⎭,79,422ππωππ⎛⎫∴+∈ ⎪⎝⎭当,442x ωππ7π⎡⎫+∈⎪⎢⎣⎭时,()f x 在区间(0,)π上有且仅有3个不同的零点;当,442x ωππ9π⎡⎫+∈⎪⎢⎣⎭时,()f x 在区间(0,)π上有且仅有4个不同的零点;故①错误;对于②,周期2T πω=,由131744ω≤<,则4141713ω<≤,881713T ππ∴<≤, 又88,21713πππ⎛⎤∈ ⎥⎝⎦,所以()f x 的最小正周期可能是2π,故②正确; 对于④,015x π⎛⎫∈ ⎪⎝⎭Q ,,44154x ωωππππ⎛⎫∴+∈+ ⎪⎝⎭,,又131744ω⎡⎫∈⎪⎢⎣⎭,,78,1541515ωππππ⎛⎫∴+∈ ⎪⎝⎭ 又8152ππ>,所以()f x 在区间0,15π⎛⎫⎪⎝⎭上不一定单调递增,故④错误.故正确结论的序号是:②③ 故选:B7.(2023ꞏ全国ꞏ高三专题练习)函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,则下列说法正确的是( )A .在()0,π不存在1x ,2x 使得()()122f x f x -=B .函数()f x 在()0,π仅有1个最大值点C .函数()f x 在0,2π⎛⎫⎪⎝⎭上单调进增D .实数ω的取值范围是1319,66⎡⎫⎪⎢⎣⎭【答案】D【答案解析】对于A,()f x 在[]0,π上有且仅有3个零点,则函数的最小正周期T π< , 所以在[]0,π上存在12,x x ,且12()1,()1f x f x ==- ,使得()()122f x f x -=,故A 错误; 由图象可知,函数在()0,π可能有两个最大值,故B 错误; 对于选项D,令,6x k k Z πωπ-=∈ ,则函数的零点为1(6x k k Z ππω=+∈ ,所以函数在y 轴右侧的四个零点分别是:71319,,,6666ππππωωωω, 函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,所以136196ππωππω⎧≤⎪⎪⎨⎪>⎪⎩ ,解得1319[,66ω∈ ,故D 正确; 由对选项D 的分析可知,ω的最小值为136, 当02x π<< 时,11(,)6612x πππω-∈-, 但11(,)612ππ-不是0,2π⎛⎫⎪⎝⎭的子集, 所以函数()f x 在0,2π⎛⎫⎪⎝⎭上不是单调进增的,故C 错,故选:D.8.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C A A C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( ) A.2⎝ B.32⎛ ⎝C.2⎢⎣D.32⎡⎢⎣【答案】A【答案解析】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π= ∴cos cos sin sin sin B C AB b cC ⎛⎫+= ⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴cos cos c B b C ⋅+⋅==∴sin sin cos cos sin 3A C B C B +=∴sin()sin B C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin 326a c A C A A A A A ππ+=+=+-==+203A π<<∴5666A πππ<+<∴)26A π<+≤a c <+≤故选:A . 二、多选题9.(2023秋ꞏ山东济南ꞏ高三统考期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且()()tan 1tan tan A B A B +-= ) A .π6A =B .若b c -=,则ABC 为直角三角形C .若ABC 面积为1,则三条高乘积平方的最大值为D .若D 为边BC 上一点,且1,:2:AD BD DC c b ==,则2b c +的最小值为7【答案】BCD【答案解析】对于A ,因为()()tan 1tan tan A B A B +-=tan tan A B +=,()sin cos tan tan C A B A B =+()sin sin cos cos sin sin sin cos sin sin cos cos cos cos A B A B A B CA B A A A B A A++=⋅=⋅=⋅,cos sin sin C A A C =,因为0πC <<,所以sin 0C >,故tan A = 又0πA <<,所以π3A =,故A 错误;对于B ,由余弦定理得222222cos a b c bc A b c bc =+-=+-,因为3b c a -=,即3b a c =+,代入上式得222a c c c c ⎫=+⎫⎪⎪⎝+-+⎪⎭⎭⎪⎝,整理得22320c a +-=,解得a =或2a c =-(舍去),则2b c =,所以222b a c =+,故B 正确;对于C ,设,,AB AC BC 边上的高分别是,,CE BF AD ,则由三角形面积公式易得222,,AD BF CE a b c ===,则()228AD BF CE abc ⎛⎫⨯⨯= ⎪⎝⎭,因为111a b c ++≥111a b c ==,即a b c ==时,等号成立,此时21sin 12S bc A ===,得2b =所以()228AD BF CE abc ⎛⎫⨯⨯=≤ ⎪⎝⎭C 正确; 对于D ,因为:2:BD DC c b =,所以22c AD AB AB BC b c BD =+=++()22222c b c AB AC AB AB AC b c b c b c=+-=++++ ,可得22222224212cos 60(2)(2)(2)b c bc c b cb b c b c b c ︒=+++++,整理得()22227b c b c +=,故12c b +=所以()1222225b c b c b c c b c b ⎫⎫+=++=++⎪⎪⎭⎭57⎛⎫≥=⎪⎪⎭,当且仅当22b c c b =且12c b +=,即7b c ==时,等号成立,所以2b c +≥2b c +D 正确. 故选:BCD.10.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)已知函数()2sin 212cos xf x x=+,则下列说法中正确的是( ) A .()()f x f x π+=B .()f xC .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增D .若函数()f x 在区间[)0,a 上恰有2022个极大值点,则a 的取值范围为60646067,33ππ⎛⎤⎥⎝⎦ 【答案】ABD【答案解析】()2sin 2sin 2sin 21cos 212cos 2cos 2122xx xf x x xx ===+++⎛⎫+ ⎪⎝⎭, A 选项:()()()()sin 22sin 22cos 222cos 2x xf x f x x xπππ++===+++,A 选项正确;B 选项:设()sin 22cos 2xf x t x==+,则()sin 2cos 222x t x t x ϕ-==+≤解得213t ≤,t ≤≤,即max t =,即()f xB 选项正确;C 选项:因为022f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,所以()f x 在,22ππ⎛⎫- ⎪⎝⎭上不单调,C 选项错误;D 选项:()()()()()222cos 22cos 2sin 22sin 24cos 222cos 22cos 2x x x x x f x x x +--+'==++,令()0f x '=,解得1cos 22x =-,即3x k ππ=+或23x k ππ=+,Z k ∈, 当2,33x k k ππππ⎛⎫∈++ ⎪⎝⎭,Z k ∈时,()0f x '<,函数单调递减, 当当24,33x k k ππππ⎛⎫∈++⎪⎝⎭,Z k ∈时,()0f x ¢>,函数单调递增, 所以函数()f x 的极大值点为3π,43π,L ,()13n ππ+-, 又函数()f x 在区间[)0,a 上恰有2022个极大值点,则2021,202233a ππππ⎛⎤∈++ ⎥⎝⎦,即60646067,33a ππ⎛⎤∈ ⎥⎝⎦,D 选项正确; 故选:ABD.11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( ) A .22S a bc +B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形 C .当2a =,sin 2sin B C =,2A C =时,ABC的周长为2+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB的面积为13【答案】ACD【答案解析】对于选项A :。
专题三 第一讲A 组1.(2017·某某模拟)已知sin φ=35,且φ∈(π2,π),函数f (x )=sin(ωx +φ)(ω>0)的图象的相邻两条对称轴之间的距离等于π2,则f (π4)的值为导学号 52134381( B )A .-35B .-45C .35D .45[解析] 由函数f (x )=sin(ωx +φ)的图象的相邻两条对称轴之间的距离等于π2,得到其最小正周期为π,所以ω=2,f (π4)=sin(2×π4+φ)=cos φ=-1-sin 2φ=-45.2.(2015·全国卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为导学号 52134382( D )A .⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈ZB .⎝ ⎛⎭⎪⎫2k π-14,2k π+34,k ∈ZC .⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD .⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z[解析] 由五点作图知,⎩⎪⎨⎪⎧14ω+φ=2k π+π2,54ω+φ=2k π+3π2,k ∈Z ,可得ω=π,φ=π4,所以f (x )=cos ⎝ ⎛⎭⎪⎫πx +π4.令2k π<πx +π4<2k π+π,k ∈Z ,解得2k -14<x <2k +34,k ∈Z ,故单调减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z .故选D .3.若f (x )=2sin(ωx +φ)+m ,对任意实数t 都有f (π8+t )=f (π8-t ),且f (π8)=-3,则实数m 的值等于导学号 52134383( C )A .-1B .±5C .-5或-1D .5或1[解析] 依题意得,函数f (x )的图象关于直线x =π8对称,于是x =π8时,函数f (x )取得最值,因此有±2+m =-3,∴m =-5或m =-1,选C .4.函数y =cos(x +π2)+sin(π3-x )具有性质导学号 52134384( B )A .最大值为1,图象关于点(π6,0)对称B .最大值为3,图象关于点(π6,0)对称C .最大值为1,图象关于直线x =π6对称D .最大值为3,图象关于直线x =π6对称[解析] y =-sin x +32cos x -12sin x =-3(32sin x -12cos x )=-3sin(x -π6), ∴最大值为3,图象关于点(π6,0)对称.5.(2017·某某测试)设x 0为函数f (x )=sin πx 的零点,且满足|x 0|+f (x 0+12)<33,则这样的零点有导学号 52134385( C )A .61个B .63个C .65个D .67个[解析] 依题意,由f (x 0)=sin πx 0=0,得πx 0=k π,k ∈Z ,x 0=k ,k ∈Z .当k 是奇数时,f (x 0+12)=sin[π(k +12)]=sin(k π+π2)=-1,|x 0|+f (x 0+12)=|k |-1<33,|k |<34,满足这样条件的奇数k 共有34个;当k 是偶数时,f (x 0+12)=sin[π(k +12)]=sin(k π+π2)=1,|x 0|+f (x 0+12)=|k |+1<33,|k |<32,满足这样条件的偶数k 共有31个.综上所述,满足题意的零点共有34+31=65个.故选C .6.(2017·某某市高三一模)已知函数f (x )=2sin(π+x )sin(x +π3+φ)的图象关于原点对称,其中φ∈(0,π),则φ=__π6__.导学号 52134386[解析] 本题主要考查三角函数的奇偶性,诱导公式. 因为f (x )=2sin(π+x )sin(x +π3+φ)的图象关于原点对称,所以函数f (x )=2sin(π+x )sin(x +π3+φ)为奇函数,则y =sin(x +π3+φ)为偶函数,又φ∈(0,π),所以φ=π6.7.如果两个函数的图象平移后能够重合,那么称这两个函数为“互为生成”函数.给出下列四个函数:①f (x )=sin x +cos x; ②f (x )=2(sin x +cos x ); ③f (x )=sin x; ④f (x )=2sin x +2.其中为“互为生成”函数的是__①④__.(填序号).导学号 52134387 [解析] 首先化简题中的四个解析式可得:①f (x )=2sin(x +π4),②f (x )=2sin(x +π4),③f (x )=sin x ,④f (x )=2sin x +2,可知③f (x )=sin x 的图象要与其他的函数图象重合,单纯经过平移不能完成,必须经过伸缩变换才能实现,所以③f (x )=sin x 不能与其他函数成为“互为生成”函数,同理①f (x )=2sin(x +π4)的图象与②f (x )=2sin(x +π4)的图象也必须经过伸缩变换才能重合,而④f (x )=2sin x +2的图象向左平移π4个单位,再向下平移2个单位即可得到①f (x )=2sin(x +π4)的图象,所以①④为“互为生成”函数.8.已知函数f (x )=(2cos 2x -1)sin2x +12cos 4x .导学号 52134388(1)求f (x )的最小正周期及最大值; (2)若α∈⎝⎛⎭⎪⎫π2,π,且f (α)=22,求a 的值.[解析] (1)因为f (x )=(2cos 2x -1)sin2x +12cos4x=cos2x sin2x +12cos4x=12(sin4x +cos4x ) =22sin(4x +π4) 所以f (x )的最小正周期为π2,最大值为22.(2)因为f (α)=22,所以sin(4α+π4)=1. 因为α∈(π2,π),所以4α+π4∈(9π4,17π4),所以4α+π4=5π2,故α=9π16.9.某同学用“五点法”画函数f (x )=A sin(ωx +φ)(ω>0,|φ|<π2)在某一个周期内的图象时,列表并填入了部分数据,如下表:导学号 52134389(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为(5π12,0),求θ的最小值.[解析] (1)根据表中已知数据,解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin(2x -π6).(2)由(1)知f (x )=5sin(2x -π6),则g (x )=5sin(2x +2θ-π6).因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z . 由于函数y =g (x )的图象关于点(5π12,0)成中心对称,所以令k π2+π12-θ=5π12, 解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.B 组1.(2016·某某卷)为了得到函数y =sin(2x -π3)的图象,只需把函数y =sin2x 的图象上所有的点导学号 52134390( D )A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度[解析] 因为y =sin(2x -π3)=sin[2(x -π6)],所以只需把函数y =sin2x 的图象上所有的点向右平行移动π6个单位长度即可,故选D .2.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象关于直线x =π3对称,它的最小正周期为π,则函数f (x )图象的一个对称中心是导学号 52134391( B )A .(π3,1)B .(π12,0)C .(5π12,0)D .(-π12,0)[解析] 由题意知T =π,∴ω=2,由函数图象关于直线x =π3对称,得2×π3+φ=π2+k π(k ∈Z ),即φ=-π6+k π(k∈Z ).又|φ|<π2,∴φ=-π6,∴f (x )=A sin(2x -π6),令2x -π6=k π(k ∈Z ),则x =π12+k2π(k ∈Z ).∴一个对称中心为(π12,0),故选B .3.已知函数f (x )=1+cos2x -2sin 2(x -π6),其中x ∈R ,则下列结论中正确的是导学号 52134392( D )A .f (x )是最小正周期为π的偶函数B .f (x )的一条对称轴是x =π3C .f (x )的最大值为2D .将函数y =3sin2x 的图象向左平移π6得到函数f (x )的图象[解析] f (x )=cos2x +cos(2x -π3)=cos2x +12cos2x +32sin2x=3sin(2x +π3),故选D .4.(2017·某某一模)定义运算:⎪⎪⎪⎪⎪⎪a 1a 2a 3a 4=a 1a 4-a 2a 3.将函数f (x )=⎪⎪⎪⎪⎪⎪3 sin ωx 1 cos ωx (ω>0)的图象向左平移5π6个单位,所得图象对应的函数为偶函数,则ω的最小值是导学号 52134393( B )A .15B .1C .115D .2[解析] 本题主要考查三角函数的图象和性质.由题意可得f (x )=3cos ωx -sin ωx =2cos(ωx +π6),将函数f (x )的图象向左平移5π6个单位后得到g (x )=2cos[ω(x +5π6)+π6]=2cos[ωx +5ω+1π6]的图象,g (x )为偶函数,所以5ω+1π6=k π,k ∈Z ,所以ω的最小值是1,故选B .5.给出下列四个命题:①f (x )=sin(2x -π4)的对称轴为x =k π2+3π8,k ∈Z ;②函数f (x )=sin x +3cos x 最大值为2; ③函数f (x )=sin x cos x -1的周期为2π;④函数f (x )=sin(x +π4)在[-π2,π2]上是增函数.其中正确命题的个数是导学号 52134394( B ) A .1 B .2 C .3D .4[解析] ①由2x -π4=k π+π2,k ∈Z ,得x =k π2+3π8(k ∈Z ),即f (x )=sin(2x -π4)的对称轴为x =k π2+3π8,k ∈Z ,故①正确;②由f (x )=sin x +3cos x =2sin(x +π3)知,函数的最大值为2,故②正确;③f (x )=sin x cos x -1=12sin2x -1,函数的周期为π,故③错误;④函数f (x )=sin(x +π4)的图象是由f (x )=sin x 的图象向左平移π4个单位得到的,故④错误.6.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示,则函数f (x )的解析式为__f (x )=2sin(π4x +π4)__.导学号 52134395[分析] 观察图象,由最高点与最低点确定A ,由周期确定ω,由特殊点的坐标确定φ.[解析] 由图象知A =2,T =8=2πω,所以ω=π4,得f (x )=2sin(π4x +φ).由对应点得当x =1时,π4×1+φ=π2⇒φ=π4.所以f (x )=2sin(π4x +π4).7.已知函数f (x )=sin ωx +cos ωx (ω>0)在(π2,π)上单调递减,则ω的取值X围是__[12,54]__.导学号 52134396[解析] f (x )=sin ωx +cos ωx =2sin(ωx +π4),令2k π+π2≤ωx +π4≤2k π+3π2(k ∈Z ),解得2k πω+π4ω≤x ≤2k πω+5π4ω(k ∈Z ).由题意,函数f (x )在(π2,π)上单调递减,故(π2,π)为函数单调递减区间的一个子区间,故有⎩⎪⎨⎪⎧2k πω+π4ω≤π2,2k πω+5π4ω≥π,解得4k +12≤ω≤2k +54(k ∈Z ).由4k +12<2k +54,解得k <38.由ω>0,可知k ≥0,因为k ∈Z ,所以k =0,故ω的取值X 围为[12,54].8.已知函数f (x )=sin(2x +π3)+sin(2x -π3)+2cos 2x ,x ∈R .导学号 52134397(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间[-π4,π4]上的最大值和最小值.[解析] (1)∵f (x )=sin2x ·cosπ3+cos2x ·sin π3+sin2x ·cos π3-cos2x sin π3+cos2x +1=sin2x +cos2x +1=2sin(2x +π4)+1,∴f (x )的最小正周期T =2π2=π.(2)由(1)知,f (x )=2sin(2x +π4)+1.∵x ∈[-π4,π4],∴令2x +π4=π2得x =π8,∴f (x )在区间[-π4,π8]上是增函数;在区间[π8,π4]上是减函数,又∵f (-π4)=0,f (π8)=2+1,f (π4)=2,∴函数f (x )在区间[-π4,π4]上的最大值为2+1,最小值为0.9.(2017·某某质检)已知函数f (x )=sin x cos x +12cos 2x .导学号 52134398(1)若tan θ=2,求f (θ)的值;(2)若函数y =g (x )的图象是由函数y =f (x )的图象上所有的点向右平移π4个单位长度而得到,且g (x )在区间(0,m )内是单调函数,某某数m 的最大值.[解析] (1)因为tan θ=2, 所以f (θ)=sin θcos θ+12cos 2θ=sin θcos θ+12(2cos 2θ-1)=sin θcos θ+cos 2θ-12=sin θcos θ+cos 2θsin 2θ+cos 2θ-12 =tan θ+1tan 2θ+1-12=110. (2)由已知得f (x )=12sin 2x +12cos 2x=22sin(2x +π4). 依题意, 得g (x )=22sin[2(x -π4)+π4], 即g (x )=22sin(2x -π4). 因为x ∈(0,m ),所以2x -π4∈[-π4,2m -π4],又因为g (x )在区间(0,m )内是单调函数,所以2m -π4≤π2,即m ≤3π8,故实数m 的最大值为3π8.。
2021年高考数学二轮复习专题3 三角函数第2讲解三角形理正、余弦定理在平面几何中的应用1.(xx广西南宁二模)已知△ABC的内角A,B,C的对边分别为a,b,c,且=,则B等于( C )(A) (B) (C) (D)解析:由=及正弦定理得=.所以整理得a2+c2-b2=ac,所以cos B==,所以B=.故选C.2.(xx遵义市高三联考)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+c2+bc-a2=0,则的值为( A )(A) (B)- (C) (D)-解析:因为b2+c2+bc-a2=0,所以b2+c2-a2=-bc.所以cos A==-.所以A=.由正弦定理可知,==sin A=.故选A.3.(xx河南六市联考)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若sin A=,a=2,S △ABC=,则b的值为( A )(A) (B) (C)2 (D)2解析:因为S△ABC=bcsin A=×bc×=,所以bc=3. ①因为sin A=且A为锐角,所以cos A=.所以由余弦定理得,a2=b2+c2-2bccos A,即4=b2+c2-2×3×,所以b2+c2=6. ②由①②可解得b=c=.故选A.4.(xx赤峰市高三统考)已知a,b,c分别是△ABC三个内角A,B,C所对的边,且满足(2c+b)cos A+acos B=0,若a=4,则△ABC面积的最大值是.解析:由(2c+b)cos A+acos B=0及正弦定理得,(2sin C+sin B)cos A+sin Acos B=0.所以2sin Ccos A+sin C=0.又因为sin C≠0,所以cos A=-.又A∈(0,π),所以A=.由余弦定理得a2=b2+c2-2bccos A,即16=b2+c2-2bc·cos =b2+c2+bc≥3bc.所以bc≤,当且仅当b=c=时,等号成立,所以S△ABC=bcsin A=bc≤×=.答案:三角恒等变换与解三角形的综合5.在△ABC中,A,B,C的对边分别为a,b,c,若acos C,bcos B,ccos A成等差数列,则B 等于( C )(A) (B) (C) (D)解析:因为acos C,bcos B,ccos A成等差数列,所以acos C+ccos A=2bcos B,根据正弦定理可得sin Acos C+sin Ccos A=2sin Bcos B,即sin (A+C)=2sin Bcos B,又A+B+C=π,所以sin B=2sin Bcos B,又sin B≠0,所以cos B=,又B∈(0,π),所以B=,故选C.6.在△ABC中,角A,B,C所对的边分别为a,b,c,S表示△ABC的面积,若acos B+bcos A=csin C,S=(b2+c2-a2),则B等于( B )(A)30°(B)45°(C)60°(D)90°解析:根据正弦定理得sin Acos B+sin Bcos A=sin2C,即sin (A+B)=sin C=sin2C,因为sin C≠0,所以sin C=1,即C=90°.由S=(b2+c2-a2),得bcsin A=(b2+c2-a2),即sin A==cos A,即tan A=1,又A∈(0°,180°),所以A=45°,所以B=45°.故选B.7.(xx江西九江二模)在△ABC中,A,B,C所对的边分别为a,b,c,已知A=60°.(1)若sin C+cos C=cos B,求B和C的大小;(2)若a=,求△ABC周长的取值范围.解:(1)由A=60°,得C=120°-B,代入sin C+cos C=cos B得, sin(120°-B)+cos(120°-B)=cos B.即sin B=cos B,所以tan B=1.又0°<B<120°,所以B=45°,C=75°.(2)法一由正弦定理得===2,设△ABC的周长为y,则y=2sin B+2sin C+=2sin B+2sin(120°-B)+=2sin(B+30°)+.又因为0°<B<120°,即30°<B+30°<150°,所以<sin(B+30°)≤1.从而2<2sin(B+30°)+≤3,所以△ABC周长的取值范围是(2,3].法二由余弦定理得()2=b2+c2-2bccos,即(b+c)2-3=3bc,所以(b+c)2-3≤3()2,即b+c≤2,当且仅当b=c=时,等号成立.又b+c>a,所以b+c>.所以△ABC周长的取值范围是(2,3].正、余弦定理的实际应用8.(xx吉林模拟)一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西45°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( D )(A)5海里 (B)5(-1)海里(C)10海里(D)10(-1)海里解析:如图所示,依题意有∠BAC=45°,∠BAD=75°,所以∠CAD=30°,∠CDA=15°,在△ACD中,由正弦定理得==20,则AC=20sin 15°=5(-),在直角三角形ABC中,得AB=ACsin 45°=5(-1),于是这艘船的速度是=10(-1)(海里/小时).故选D.9.已知甲船正在大海上航行,当它位于A处时获知,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,乙船当即也决定匀速前往救援,并且与甲船同时到达.(1)试问乙船航行速度的大小;(2)试问乙船航行的方向(试用方位角表示,结果精确到1°).解:(1)设C与B的距离为x海里,所用时间为=2(小时),则x2=AC2+AB2-2AB·ACcos 120°=102+202+2×20×10×=700,所以x=10.v乙==5(海里/小时),所以乙船航行速度为5海里/小时.(2)设∠ACB=θ,则=,=,则sin θ=,得θ≈41°,所以乙船应朝北偏东71°的方向沿直线前往B处救援.一、选择题1.在锐角△ABC中,角A,B所对的边长分别为a,b.若2asin B=b,则角A等于( D )(A) (B) (C) (D)解析:根据正弦定理,2sin Asin B=sin B,所以sin A=,又△ABC为锐角三角形,所以A=.故选D.2.(xx广东卷)设△ABC的内角A,B,C的对边分别为a,b,c,若a=2,c=2,cos A=且b<c,则b等于( C )(A)3 (B)2 (C)2 (D)解析:由余弦定理a2=b2+c2-2bccos A,即4=b2+12-6b⇒b2-6b+8=0⇒(b-2)(b-4)=0,由b<c,得b=2.3.在△ABC中,角A,B,C的对边分别为a,b,c,若(a2+c2-b2)tan B=ac,则角B的值是( B )(A) (B)或(C)或(D)解析:由(a2+c2-b2)tan B=ac得a2+c2-b2=,根据余弦定理得cos B=,所以cos B==,即tan Bcos B=,即sin B=,又B∈(0,π),所以B=或B=.故选B.4.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知8b=5c,C=2B,则cos C等于( A )(A) (B)- (C)±(D)解析:因为C=2B,所以sin C=sin 2B=2sin Bcos B,根据正弦定理有=,所以==,所以cos B==×=.所以cos C=cos 2B=2cos2B-1=2×-1=.故选A.5.△ABC的内角A,B,C的对边分别为a,b,c,且a,b,c成等比数列.若sin B=,cos B=,则a+c等于( C )(A) (B) (C)3 (D)2解析:因为a,b,c成等比数列,所以b2=ac.又sin B=,cos B=,所以cos B==.所以ac=13.由余弦定理知,a2+c2-b2=2accos B=2×13×=24.所以a2+c2=24+b2=24+ac=24+13=37.所以(a+c)2=a2+c2+2ac=37+2×13=63.所以a+c==3.选C.6.(xx丹东一模)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC等于( B )(A)30(+1) m (B)120(-1) m(C)180(-1) m (D)240(-1) m解析:如图,∠DAB=15°,因为tan 15°=tan (45°-30°)==2-.在Rt△ADB中,又AD=60,所以DB=AD·tan 15°=60×(2-)=120-60.在Rt△ADC中,∠DAC=60°,AD=60,所以DC=AD·tan 60°=60.所以BC=DC-DB=60-(120-60)=120(-1)(m).所以河流的宽度BC等于120(-1)m.故选B.7.(xx江西七校联考)在△ABC中,若sin(A-B)=1+2cos(B+C)sin(A+C),则△ABC的形状一定是( D )(A)等边三角形(B)不含60°的等腰三角形(C)钝角三角形(D)直角三角形解析:sin(A-B)=1+2cos(B+C)sin(A+C)=1-2cos Asin B,所以sin Acos B-cos Asin B=1-2cos Asin B,所以sin Acos B+cos Asin B=1,即sin(A+B)=1,则有A+B=.故选D.8.△ABC的三内角A,B,C所对边的长分别为a,b,c,设向量p=(sin B,a+c),q=(sin C-sin A,b-a).若∃λ∈R,使p=λq,则角C的大小为( C )(A) (B) (C) (D)解析:因为∃λ∈R,使p=λq,所以p∥q,所以有(b-a)sin B-(a+c)(sin C-sin A)=0,由正弦定理得b2-ab-c2+a2=0,cos C==.又C∈(0,π),所以C=.故选C.9.(xx洛阳模拟)在△ABC中,D是BC边上的点,AB=2,AD=,AC=4,∠C=30°,∠BAC>∠B,则BD等于( B )(A)2或4 (B)1或3(C)3或2 (D)4或1解析:在△ABC中,由正弦定理,得sin B==,所以∠B=45°或∠B=135°,又∠BAC>∠B,所以∠B=45°.因为AD=,则在△ABD中,由余弦定理得AD2=AB2+BD2-2AB·BD·cos 45°,即5=8+BD2-2×2×BD×cos 45°,解得BD=1或BD=3.故选B.10.设△ABC的内角A,B,C所对的边分别为a,b,c,且a2+b2=mc2(m为常数),若tan C(tan A+tan B)=2tan A·tan B,则m的值为( A )(A)2 (B)4 (C)7 (D)8解析:因为tan C(tan A+tan B)=2tan Atan B,所以=tan C.即=.所以sin Asin Bcos C=sin C·sin (A+B)=sin2 C.由正弦定理,上式可化为abcos C=c2, ①由余弦定理知,cos C=. ②由①②得,a2+b2=2c2.因为a2+b2=mc2,所以m=2.选A.二、填空题11.(xx北京卷)在△ABC中,a=4,b=5,c=6,则= .解析:在△ABC中,cos A===,由正弦定理可知====1.答案:112.(xx宁夏石嘴山高三联考)已知△ABC的内角A,B,C的对边分别为a,b,c,若cos C=,且sin C=sin B,则△ABC的内角A= .解析:因为cos C==,所以整理得a2+c2=b2.所以B=.所以sin B=1.又由sin C=sin B可得sin C=,所以C=.所以A=.答案:13.(xx广东卷)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcos C+ccos B=2b,则= .解析:根据正弦定理得a=2Rsin A,b=2Rsin B,c=2Rsin C,代入已知式子中,可得sin Bcos C+sin Ccos B=2sin B,即sin A=2sin B,由此可知a=2b,即=2.答案:214.(xx湖北卷)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m.解析:在△ABC中,∠BAC=30°,∠BCA=75°-30°=45°,所以由正弦定理得,BC=·AB=×600=×600=300.在△BCD中,CD=BCtan 30°=300×=100.故此山的高度为100 m.答案:100正、余弦定理的简单应用训练提示:利用正、余弦定理解三角形的关键是正确判断边角关系,合理选择正、余弦定理,实现边角互化,注意题目中的隐含条件,如A+B+C=π,大边对大角等.同时注意方程思想的应用.1.(xx安徽卷)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.解:设△ABC的内角∠BAC,B,C所对边的长分别是a,b,c,由余弦定理得a2=b2+c2-2bccos ∠BAC=(3)2+62-2×3×6×cos=18+36-(-36)=90,所以a=3.又由正弦定理得sin B===,由题设知0<B<,所以cos B===.在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B,故由正弦定理得AD====.2.(xx新课标全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知a=bcos C+csin B.(1)求B;(2)若b=2,求△ABC面积的最大值.解:(1)由已知及正弦定理得sin A=sin Bcos C+sin Csin B. ①又A=π-(B+C),故sin A=sin(B+C)=sin Bcos C+cos Bsin C.②由①②和C∈(0,π)得sin B=cos B.又B∈(0,π),所以B=.(2)△ABC的面积S=acsin B=ac.由已知及余弦定理得4=a2+c2-2accos .又a2+c2≥2ac,故ac≤,当且仅当a=c时,等号成立.因此△ABC面积的最大值为+1.三角恒等变换与解三角形的综合训练提示:解三角形与三角函数、恒等变换、向量等的综合问题,一般是以向量、边角关系式为载体.其解题思路是由向量、边角关系建立三角函数关系式或三角恒等式.结合正、余弦定理进行边角互化求解,注意角的范围在求值中的限制作用.3.(xx黑龙江高三模拟)△ABC中内角A,B,C的对边分别为a,b,c向量m=(2sin B,-),n=(cos 2B,2cos2-1)且m∥n.(1)求锐角B的大小;(2)如果b=2,求△ABC的面积S△ABC的最大值.解:(1)因为m∥n,所以2sin B(2cos2-1)=-cos 2B.所以sin 2B=-cos 2B,即tan 2B=-.又因为B为锐角,所以2B∈(0,π).所以2B=,所以B=.(2)因为B=,b=2,所以由余弦定理得cos B=,即a2+c2-ac-4=0,又因为a2+c2≥2ac,代入上式得ac≤4(当且仅当a=c=2时等号成立),S△ABC=acsin B=ac≤(当且仅当a=c=2时等号成立).即△ABC面积的最大值为.4.(xx湖南卷)设△ABC的内角A,B,C的对边分别为a,b,c,a=btan A,且B为钝角.(1)证明:B-A=;(2)求sin A+sin C的取值范围.(1)证明:由a=btan A及正弦定理,得==,所以sin B=cos A,即sin B=sin(+A).又B为钝角,则A为锐角,因此+A∈(,π),故B=+A,即B-A=.(2)解:由(1)知,C=π-(A+B)=π-(2A+)=-2A>0,所以A∈(0,).于是sin A+sin C=sin A+sin(-2A)=sin A+cos 2A=-2sin2A+sin A+1=-2(sin A-)2+.因为0<A<,所以0<sin A<,因此<-2(sin A-)2+≤.由此可知sin A+sin C的取值范围是(,].正、余弦定理的实际应用训练提示:利用正、余弦定理解决实际问题的关键是将实际问题转化为数学模型,即转化为三角形中解决.注意基线的选取,基线所在的三角形往往是解决问题的突破口.5.(xx厦门模拟)某度假区依山修建了高山滑雪场.为了适应不同人群的需要,从山上A 处到山脚滑雪服务区P处修建了滑雪赛道A-C-P和滑雪练习道A-E-P(如图).已知cos∠ACP=-,cos∠APC=,cos∠APE=,公路AP长为10(单位:百米),滑道EP长为6(单位:百米).(1)求滑道CP的长度;(2)由于C,E处是事故的高发区,为及时处理事故,度假区计划在公路AP上找一处D,修建连接道DC,DE.问DP多长时,才能使连接道DC+DE最短,最短为多少百米?解:(1)因为cos∠ACP=-,cos∠APC=,所以sin∠ACP=,sin∠APC=.sin∠PAC=sin(∠APC+∠ACP)=sin∠APC·cos∠ACP+sin∠ACP·cos∠APC =,由=,得CP=5.所以滑道CP的长度是5百米.(2)设DP=x,x∈[0,10].因为EP=6,CP=5,cos∠APC=,cos∠APE=,所以DE==.DC==,所以DE+DC=+令f(x)=DE+DC=+=+,当且仅当x=4时,f(x)min=f(4)=3+2.所以当DP为4百米时,DE+DC最短,为(3+2)百米.实用文档。
专题三综合测试题(时间:120分钟满分:150分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆O的方程是x2+y2-8x-2y+10=0,过点M(3,0)的最短弦所在的直线方程是( )A.x+y-3=0 B.x-y-3=0C.2x-y-6=0 D.2x+y-6=0解析:x2+y2-8x-2y+10=0,即(x-4)2+(y-1)2=7,圆心O(4,1),设过点M(3,0)的直线为l,则k OM=1,故k l=-1,∴y=-1×(x-3),即x+y-3=0.答案:A2.过点(-1,3)且平行于直线x-2y+3=0的直线方程为( )A.x-2y+7=0 B.2x+y-1=0C.x-2y-5=0 D.2x+y-5=0解析:因为直线x-2y+3=0的斜率是12,故所求直线的方程为y-3=12(x+1),即x-2y+7=0.答案:A3.曲线y=2x-x3在横坐标为-1的点处的切线为l,则点P(3,2)到直线l的距离为( )A.722B.922C.1122D.91010解析:曲线y=2x-x3在横坐标为-1的点处的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k=y′|x=-1=2-3×(-1)2=-1,故切线l的方程为y-(-1)=-1×[x -(-1)],整理得x+y+2=0,由点到直线的距离公式得点P(3,2)到直线l的距离为|3+2+2|12+12=722.答案:A4.若曲线x2+y2+2x-6y+1=0上相异两点P、Q关于直线kx+2y-4=0对称,则k 的值为( )A .1B .-1 C.12D .2解析:曲线方程可化为(x +1)2+(y -3)2=9,由题设知直线过圆心,即k ×(-1)+2×3-4=0,∴k =2.故选D.答案:D5.直线ax -y +2a =0(a ≥0)与圆x 2+y 2=9的位置关系是( ) A .相离 B .相交 C .相切D .不确定解析:圆x 2+y 2=9的圆心为(0,0),半径为3.由点到直线的距离公式d =|Ax 0+By 0+C |A 2+B 2得该圆圆心(0,0)到直线ax -y +2a =0的距离d =2aa 2+-12=2aa 2+12,由基本不等式可以知道2a ≤a 2+12,从而d =2aa 2+12≤1<r =3,故直线ax -y +2a =0与圆x 2+y 2=9的位置关系是相交.答案:B6.设A 为圆(x +1)2+y 2=4上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .(x +1)2+y 2=25B .(x +1)2+y 2=5C .x 2+(y +1)2=25D .(x -1)2+y 2=5解析:设圆心为O ,则O (-1,0),在Rt △AOP 中,|OP |=|OA |2+|AP |2=4+1= 5. 答案:B7.(2011·济宁一中高三模拟)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( )A .-14B .-4C .4D.14解析:双曲线标准方程为:y 2-x 2-1m=1,由题意得-1m=4, ∴m =-14.答案:A8.点P 是双曲线x 24-y 2=1的右支上一点,M 、N 分别是(x +5)2+y 2=1和(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值是( )A .2B .4C .6D .8解析:如图,当点P 、M 、N 在如图所示的位置时,|PM |-|PN |可取得最大值,注意到两圆圆心分别为双曲线两焦点,故|PM |-|PN |=(|PF 1|+|F 1M |)-(|PF 2|-|F 2N |)=|PF 1|-|PF 2|+|F 1M |+|F 2N |=2a +2R =6.答案:C9.已知F 1、F 2是两个定点,点P 是以F 1和F 2为公共焦点的椭圆和双曲线的一个交点,并且PF 1⊥PF 2,e 1和e 2分别是上述椭圆和双曲线的离心率,则( )A.1e 21+1e 22=4B .e 21+e 22=4C.1e 21+1e 22=2D .e 21+e 22=2解析:设椭圆的长半轴长为a ,双曲线的实半轴长为m ,则⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a ①||PF 1|-|PF 2||=2m ②.①2+②2得2(|PF 1|2+|PF 2|2)=4a 2+4m 2,又|PF 1|2+|PF 2|2=4c 2,代入上式得4c 2=2a 2+2m 2, 两边同除以2c 2,得2=1e 21+1e 22,故选C.答案:C10.已知双曲线x 2a 2-y 2b2=1的两条渐近线互相垂直,则双曲线的离心率为( )A. 3B. 2C.52D.22解析:两条渐近线y =±b a x 互相垂直,则-b 2a2=-1,则b 2=a 2,双曲线的离心率为e =c a =2a 2a=2,选B. 答案:B11.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点到渐近线的距离等于实轴长,则双曲线的离心率为( )A. 2B. 3C. 5D .2解析:焦点到渐近线的距离等于实轴长,可得b =2a ,e 2=c 2a 2=1+b 2a2=5,所以e = 5.答案:C12.(2011·济南市质量调研)已知点F 1、F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )A .(1,3)B .(3,22)C .(1+2,+∞)D .(1,1+2)解析:依题意得,0<∠AF 2F 1<π4,故0<tan ∠AF 2F 1<1,则b 2a 2c =c 2-a 22ac <1,即e -1e<2,e2-2e -1<0,(e -1)2<2,所以1<e <1+2,选D. 答案:D二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上. 13.(2011·安徽“江南十校”联考)设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.解析:由椭圆定义|PM |+|PF 1|=|PM |+2×5-|PF 2|,而|PM |-|PF 2|≤|MF 2|=5,所以|PM |+|PF 1|≤2×5+5=15.答案:1514.(2011·潍坊市高考适应性训练)已知双曲线的中心在坐标原点,焦点在x 轴上,且一条渐近线为直线3x +y =0,则该双曲线的离心率等于________.解析:设双曲线方程为x 2a 2-y 2b 2=1,则b a =3,b 2a 2=3,c 2-a 2a 2=3,∴e =ca=2.答案:215.(2011·潍坊2月模拟)双曲线x 23-y 26=1的右焦点到渐近线的距离是________.解析:双曲线右焦点为(3,0),渐近线方程为:y =±2x ,则由点到直线的距离公式可得距离为 6.答案: 616.(2011·郑州市质量预测(二))设抛物线x 2=4y 的焦点为F ,经过点P (1,4)的直线l 与抛物线相交于A 、B 两点,且点P 恰为AB 的中点,则|AF →|+|BF →|=________.解析:∵x 2=4y ,∴p =2.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=8.∵|AF →|=y 1+p2,|BF →|=y 2+p2,∴|AF →|+|BF →|=y 1+y 2+p =8+2=10.答案:10三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)(2011·陕西)如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程; (2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.解:(1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P =x ,y P =54y ,∵P 在圆上,∴x 2+⎝⎛⎭⎫54y 2=25,即点M 的轨迹C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2), 将直线方程y =45(x -3)代入C 的方程,得x 225+x -3225=1,即x 2-3x -8=0. ∴x 1=3-412,x 2=3+412. ∴线段AB 的长度为 |AB |=x 1-x 22+y 1-y 22=⎝⎛⎭⎫1+1625x 1-x 22=4125×41=415. 18.(本小题满分12分)(2011·广东)设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,另一个外切.(1)求圆C 的圆心轨迹L 的方程;(2)已知点M ⎝ ⎛⎭⎪⎫355,455,F (5,0)且P 为L 上动点,求||MP |-|FP ||的最大值及此时点P 的坐标.解:(1)设动圆C 的圆心C (x ,y ),半径为r .两个定圆半径均为2,圆心分别为F 1(-5,0),F 2(5,0),且|F 1F 2|=2 5.若⊙C 与⊙F 1外切与⊙F 2内切,则 |CF 1|-|CF 2|=(r +2)-(r -2)=4 若⊙C 与⊙F 1内切与⊙F 2外切,则|CF 2|-|CF 1|=(r +2)-(r -2)=4. ∴||CF 1|-|CF 2||=4且4<2 5.∴动点C 的轨迹是以F 1,F 2为焦点,实轴长为4的双曲线.这时a =2,c =5,b =c 2-a 2=1,焦点在x 轴上. ∴点C 轨迹方程为x 24-y 2=1.(2)若P 在x 24-y 2=1的左支上,则||PM |-|PF ||<|MF |. 若P 在x 24-y 2=1的右支上,由图知,P 为射线MF 与双曲线右支的交点,||FM |-|PF ||max =|MF |= ⎝ ⎛⎭⎪⎫5-3552+⎝ ⎛⎭⎪⎫4552=2. 直线MF :y =-2(x -5).由⎩⎪⎨⎪⎧y =-2x -5x 24-y 2=1得15x 2-325x +84=0,解之得:⎩⎪⎨⎪⎧x 1=655y 1=-255,或⎩⎪⎨⎪⎧x 2=14515<5y 2=-58515舍,所以P 点坐标为⎝ ⎛⎭⎪⎫655,-255. 19.(本小题满分12分)(2011·安徽)设λ>0,点A 的坐标为(1,1),点B 在抛物线y =x 2上运动,点Q 满足BQ →=λQA →,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM →=λMP →,求点P 的轨迹方程.解:由QM →=λMP →知Q ,M ,P 三点在同一条垂直于x 轴的直线上,故可设P (x ,y ),Q (x ,y 0),M (x ,x 2),则x 2-y 0=λ(y -x 2),即y 0=(1+λ)x 2-λy . ①再设B (x 1,y 1),由BQ →=λQA →,即(x -x 1,y 0-y 1)=λ(1-x,1-y 0),解得⎩⎪⎨⎪⎧x 1=1+λx -λ,y 1=1+λy 0-λ.②将①式代入②式,消去y 0,得⎩⎪⎨⎪⎧x 1=1+λx -λ,y 1=1+λ2x 2-λ1+λy -λ.③又点B 在抛物线y =x 2上,所以y 1=x 21,再将③式代入y 1=x 21,得(1+λ)2x 2-λ(1+λ)y -λ=[(1+λ)x -λ]2.(1+λ)2x 2-λ(1+λ)y -λ=(1+λ)2x 2-2λ(1+λ)x +λ2. 2λ(1+λ)x -λ(1+λ)y -λ(1+λ)=0. 因λ>0,两边同除以λ(1+λ),得2x -y -1=0. 故所求点P 的轨迹方程为y =2x -1. 20.(本小题满分12分)(2011·天津)在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1、F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e .(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.解:(1)设F 1(-c,0),F 2(c,0)(c >0),由题意,可得|PF 2|=|F 1F 2|,即a -c 2+b 2=2c ,整理得2⎝⎛⎭⎫c a 2+c a -1=0,得c a =-1(舍)或c a =12,所以e =12. (2)由(1)知a =2c ,h =3c ,可得椭圆方程为3x 2+4y 2=12c 2. 直线PF 2方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3x -c .消去y 并整理,得5x 2-8cx =0,解得x 1=0,x 2=85c ,得方程组的解⎩⎨⎧x 1=0,y 1=-3c ,⎩⎪⎨⎪⎧x 2=85c ,y 2=335c .不妨设A ⎝ ⎛⎭⎪⎫85,335c ,B (0,-3c ).设点M 的坐标为(x ,y ),则AM →=⎝ ⎛⎭⎪⎫x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),得c =x -33y ,于是AM →=⎝ ⎛⎭⎪⎫8315y -35x ,85y -335x ,BM →=(x ,3x ),由AM →·BM →=-2,即⎝ ⎛⎭⎪⎫8315y -35x ·x +⎝ ⎛⎭⎪⎫85y -335x ·3x =-2,化简得18x 2-163xy -15=0.将y =18x 2-15163x 代入c =x -33y ,得c =10x 2+516x >0,所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0). 21.(本小题满分12分)(2011·山东)已知动直线l 与椭圆C :x 23+y 22=1交于P (x 1,y 1),Q (x 2,y 2)两不同点,且△OPQ 的面积S △OPQ =62,其中O 为坐标原点.(1)证明x 21+x 22和y 21+y 22均为定值;(2)设线段PQ 的中点为M ,求|OM |·|PQ |的最大值; (3)椭圆C 上是否存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG =62?若存在,判断△DEG的形状;若不存在,请说明理由.解:(1)证明:①当直线l 的斜率不存在时,P ,Q 两点关于x 轴对称. 所以x 2=x 1,y 2=-y 1, 因为P (x 1,y 1)在椭圆上,因此x 213+y 212=1. ①又因为S △OPQ =62.所以|x 1|·|y 1|=62. ② 由①②得|x 1|=62,|y 1|=1, 此时x 21+x 22=3,y 21+y 22=2.②当直线l 的斜率存在时,设直线l 的方程为y =kx +m . 由题意知m ≠0,将其代入x 23+y 22=1得(2+3k 2)x 2+6kmx +3(m 2-2)=0. 其中Δ=36k 2m 2-12(2+3k 2)(m 2-2)>0.即3k 2+2>m 2. (*) 又x 1+x 2=-6km 2+3k 2,x 1x 2=3m 2-22+3k 2.所以|PQ |=1+k 2·x 1+x 22-4x 1x 2=1+k 2·263k 2+2-m 22+3k 2.因为点O 到直线l 的距离为d =|m |1+k2所以S △OPQ =12|PQ |·d=121+k 2·263k 2+2-m 22+3k 2·|m |1+k 2=6|m |3k 2+2-m 22+3k 2又S △OPQ =62. 整理得3k 2+2=2m 2,且符合(*)式.此时,x 21+x 22=(x 1+x 2)2-2x 1x 2=⎝⎛⎭⎫-6km 2+3k 22-2×3m 2-22+3k 2=3.y 21+y 22=23(3-x 21)+23(3-x 22)=4-23x 21+x 22)=2.综上所述,x 21+x 22=3;y 21+y 22=2,结论成立.(2)解法一:①当直线l 的斜率不存在时. 由(1)知|OM |=|x 1|=62.|PQ |=2|y 1|=2. 因此|OM |·|PQ |=62×2= 6. ②当直线l 的斜率存在时,由(1)知:x 1+x 22=-3k 2m .y 1+y 22=k⎝⎛⎭⎫x 1+x 22+m =-3k 22m m =-3k 2+2m 22m =1m.|OM |2=⎝⎛⎭⎫x 1+x 222+⎝⎛⎭⎫y 1+y 222=9k 24m 2+1m 26m 2-24m 2=12⎝⎛⎭⎫3-1m 2.|PQ |2=(1+k 2)243k 2+2-m 22+3k 22=22m 2+1m2=2⎝⎛⎭⎫2+1m 2.所以|OM |2·|PQ |2=12×⎝⎛⎭⎫3-1m 2×2×⎝⎛⎭⎫2+1m 2=⎝⎛⎭3-1m 2⎝⎛⎭⎫2+1m 2≤⎝ ⎛⎭⎪⎪⎫3-1m 2+2+1m 222=254. 所以|OM |·|PQ |≤52,当且仅当3-1m 2=2+1m 2,即m =±2时,等号成立.综合(1)(2)得|OM |·|PQ |的最大值为52.解法二:因为4|OM |2+|PQ |2=(x 1+x 2)2+(y 1+y 2)2+(x 2-x 1)2+(y 2-y 1)2=2[(x 21+x 22)-(y 21+y 22)]=10.所以2|OM |·|PQ |≤4|OM |2+|PQ |22=102=5.即|OM |·|PQ |≤52,当且仅当2|OM |=|PQ |=5时等号成立.因此|OM |·|PQ |的最大值为52. (3)椭圆C 上不存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG =62. 证明:假设存在D (u ,v ),E (x 1,y 1),O (x 2,y 2)满足S △ODE =S △ODG =S △OEG =62, 由(1)得u 2+x 21=3,u 2+x 22=3,x 21+x 22=3,v 2+y 21=2,v 2+y 22=2,y 21+y 22=2,解得:u 2=x 21=x 22=32,v 2=y 21=y 22=1.因此,u ,x 1,x 2只能从±62中选取,v ,y 1,y 2只能从±1中选取,因此D 、E 、G 只能在⎝ ⎛⎭⎪⎫±62,±1这四点中选取三个不同点,而这三点的两两连线中必有一条过原点. 与S △ODE =S △ODG =S △OEG =62矛盾. 所以椭圆C 上不存在满足条件的三点D ,E ,G . 22.(本小题满分14分)(2011·江苏)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆x 24+y 22=1的顶点,过坐标原点的直线交椭圆于P ,A 两点,其中点P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k .(1)若直线PA 平分线段MN ,求k 的值; (2)当k =2时,求点P 到直线AB 的距离d ;(3)对任意的k >0,求证:PA ⊥PB .解:(1)由题设知,a =2,b =2,故M (-2,0),N (0,-2),所以线段MN 中点的坐标为⎝ ⎛⎭⎪⎫-1,-22.由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过坐标原点,所以k =-22-1=22.(2)直线PA 的方程为y =2x ,代入椭圆方程得x 24+4x 22=1,解得x =±23, 因此P ⎝⎛⎭⎫23,43,A ⎝⎛⎭⎫-23,-43.于是C ⎝⎛⎭⎫23,0,直线AC 的斜率为0+4323+23=1,故直线AB 的方程为x -y -23=0.因此,d =⎪⎪⎪⎪23-43-2312+12=223.(3)证法一:将直线PA 的方程y =kx 代入x 24+y 22=1,解得x =±21+2k 2记μ=21+2k 2,则P (μ,μk ),A (-μ,-μk ).于是C (μ,0).故直线AB 的斜率为0+μk μ+μ=k2其方程为y =k2(x -μ),代入椭圆方程得(2+k 2)x 2-2μk 2x -μ2(3k 2+2)=0, 解得x =μ3k 2+22+k 2或x =-μ.因此B ⎝⎛⎭⎫μ3k 2+22+k 2,μk 32+k 2. 于是直线PB 的斜率k 1=μk 32+k2-μk μ3k 2+22+k2-μ=k3-k2+k23k2+2-2+k2=-1k.因此k1k=-1,所以PA⊥PB.证法二:设P(x1,y1),B(x2,y2),则x1>0,x2>0,x1≠x2,A(-x1,-y1),C(x1,0).设直线PB,AB的斜率分别为k1,k2.因为C在直线AB上,所以k2=0--y1x1--x1=y12x1=k2.从而k1k+1=2k1k2+1=2·y2-y1x2-x1·y2--y1x2--x1+1=2y22-2y21x22-x21+1=x22+2y22-x21+2y21x22-x21=4-4x22-x21=0.因此k1k=-1,所以PA⊥PB.。
[解析] 由题意S △ABC =12ab sin C =a2+b2-c24.即sin C =a2+b2-c22ab .由余弦定理可知sin C =cos C .即tan C =1.又C ∈(0.π).所以C =π4.3.(20xx·全国Ⅰ卷.11)已知角α的顶点为坐标原点.始边与x 轴的非负半轴重合.终边上有两点A ()1,a .B ()2,b .且cos2α=23.则||a -b =( B )A .15B .55C .255D .1[解析] 由cos2α=2cos 2α-1=23可得cos 2α=56=cos2αsin2α+cos2α=1tan2α+1.化简可得tan α=±55;当tan α=55时.可得a 1=55.b 2=55.即a =55.b =255.此时|a -b |=55;当tan α=-55时.仍有此结果.故|a -b |=55. 4.(20xx·天津卷.6)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度.所得图象对应的函数( A )A .在区间⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增 B .在区间⎣⎢⎡⎦⎥⎤3π4,π上单调递减 C .在区间⎣⎢⎡⎦⎥⎤5π4,3π2上单调递增 D .在区间⎣⎢⎡⎦⎥⎤3π2,2π上单调递减 [解析] 选A .因为将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度.得到函数y =sin2x 的图象. 用五点法作出草图.如图:从图中可以看出选项A 正确.其他都不正确.⎝ ⎛4-α=5.sin22+=4.+c=.则△7.(20xx·淮北二模)在△ABC 中.角A .B .C 的对边分别为a .b .c .若a 2=3b 2+3c 2-23bc sin A .则C 等于π6.[解析] 由余弦定理得a 2=b 2+c 2-2bc cos A . 所以b 2+c 2-2bc cos A =3b 2+3c 2-23bc sin A .3sin A -cos A =b2+c2bc .2sin(A -π6)=b2+c2bc ≥2.因此b =c .A -π6=π2⇒A =2π3.所以C =π-2π32=π6. 8.(20xx·长沙三模)在锐角△ABC 中.D 为BC 的中点.满足∠BAD +∠C =90°.则角B .C 的大小关系为B =C .(填“B <C ”“B =C ”或“B >C ”)[解析] 设∠BAD =α.∠CAD =β.因为∠BAD +∠C =90°.所以α=90°-C .β=90°-B . 因为D 为BC 的中点. 所以S △ABD =S △ACD . 所以12c ·AD sin α=12b ·AD sin β.所以c sin α=b sin β.所以c cos C =b cos B . 由正弦定理得.sin C cos C =sin B cos B .即sin2C =sin2B .所以2B =2C 或2B +2C =π. 因为△ABC 为锐角三角形.所以B =C .9.为了竖起一块广告牌.要制造三角形支架.如图.要求∠ACB =60°.BC 的长度大于1米.且AC 比AB 长0.5米.为了稳定广告牌.要求AC 越短越好.则AC 最短为2+3.[解析] 由题意设BC =x (x >1)米. AC =t (t >0)米.依题设AB =AC -0.5 =(t -0.5)米.在△ABC 中.由余弦定理得: AB 2=AC 2+BC 2-2AC ·BC cos60°.所以sin2A =2sin A cos A =1213. cos2A =1-2sin 2A =-513. 所以sin(2A +π4)=sin2A cos π4+cos2A sin π4=7226.B 组1.(20xx·福州三模)已知a .b .c 分别是△ABC 的内角A .B .C 所对的边.点M 为△ABC 的重心.若a MA →+b MB →+33c MC →=0.则C =( D )A .π4B .π2 C .5π6D .2π3[解析] ∵M 为△ABC 的重心.则MA →+MB →+MC →=0. ∴MA →=-MB →-MC →. ∵a MA →+b MB →+33c ·MC →=0.∴a ·(-MB →-MC →)+b MB →+33c ·MC →=0.即(b -a )·MB →+(33c -a )·MC →=0.∵MB →与MC →不共线. ∴b -a =0.32c -a =0.得a b33c =111.令a =1.b =1.c =3.则cos C =a2+b2-c22ab =1+1-32×1×1=-12.∴C =2π3.故选D .2.(20xx·××市一模)若sin(π6-α)=13.则cos(2π3+2α)=( A )。