人教版初中数学2019-2020学年八年级上学期期末专题复习 专题7:因式分解
- 格式:docx
- 大小:38.47 KB
- 文档页数:2
2020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)专题07 因式分解【典型例题】1.(2020·四川东坡区百坡中学初二月考)分解因式:(1)24ab a - (2)22393xy x y xy ++ (3)()()2797m m m -+-【答案】解:(1)2ab -4a =2a (b -2);(2)()22393331xy x y xy xy y x ++=++;(3)()()2797m m m -+-()()2797m m m =---()()279m m =--=(7-m )(m +3)(m -3).【专题训练】一、选择题1.(2020·山西初二月考)下列由左边到右边的变形,属于因式分解的是( )A .()224521a a a -+=-+B .()2105521x x x x -=-C .3232632m n m n =⋅D .()22() x y x y x y +-=-【答案】B2.将多项式32x xy -分解因式,结果正确的是 ( )A .22()x x y -B .2()x x y -C .2()x x y +D .()()x x y x y +-【答案】D3.(2020·山东东平县江河国际实验学校月考)如果多项式x 2﹣mx +6分解因式的结果是(x ﹣3)(x +n ),那么m ,n 的值分别是( )A .m =﹣2,n =5B .m =2,n =5C .m =5,n =﹣2D .m =﹣5,n =2【答案】C4.(2019·长春市第五十二中学期中)长、宽分别为a ,b 的长方形的周长为14,面积为10,则22a b ab +的值为( ) A .140 B .70 C .35 D .24【答案】B5.(2019·保定市第一中学分校初二期末)△ABC 的三边长a 、b 、c 满足2222223a b c a b c ++--=-,则△ABC 为( ) A .直角三角形 B .等腰直角三角形C .等腰三角形D .等边三角形【答案】D6.(2020·山西初二月考)用如图1中的三种纸片拼成如图2的矩形,据此可写出一个多项式的因式分解,下列各项正确的是( )A .()()22333a ab b a b b a ++=++B .()()22333a ab b a b a b -+=-+C .()()22343a ab b a b a b ++=++D .()()22433a ab b a b a b ++=++【答案】C二、填空题7.(2020·安徽月考)分解因式:234x y y -=_____.【答案】(2)(2)y x y x y +-8.已知a 2+a ﹣1=0,则a 3+2a 2+2019=_____.【答案】20209.(2020·山东日照·二模)已知a +b =5,ab =3,则代数式a 3b +2a 2b 2+ab 3=____________.【答案】7510.已知a =2019x +2016,b =2019x +2017,c =2019x +2018,则多项式a 2+b 2+c 2﹣ab ﹣bc ﹣ac 的值为_____.【答案】311.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.【答案】a 2+2ab +b 2=(a +b )212.(2020·扬州市梅岭中学初二月考)对于x 2﹣3在有理数范围内不能进行因式分解,但23=,故2223(x x x x -=-=-+,这就把x 2﹣3在实数范围内进行了因式分解.按照这个思路,2a 2﹣14在实数范围内因式分解的结果是______.【答案】(2a a +三、解答题13.(2020·南通市八一中学期中)因式分解:(1)22x y -; (2)244ax ax a ++.【答案】解:(1)原式=()()x y x y +-;(2)原式=2(44)a x x ++=2(2)a x +.14.(2020·湖北初二期末)已知a ,b ,c 为△ABC 的三边长,且2261245a b a b +=+-.(1)求a ,b 值;(2)若△ABC 是等腰三角形,求△ABC 的周长.【答案】解:(1)∵2261245a b a b +=+-, ∵226912360a a b b -++-+=, ∵()()22360a b -+-=,∵30a -=,60b -=,∵3a =,6b =,(2)∵ABC ∆是等腰三角形,∵底边长为3或6,由三角形三边关系可知,底边长为3,∵ABC ∆的周长为66315++=,即ABC ∆的周长为15.15.(2020·山东丁庄镇中心初级中学月考)(一)因式分解(1)()()323a m n m n +++(2)()222224a b a b +-(二)用简便方法计算(1)2222211111111...1123420182019⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)29991002998-⨯ . 【答案】(一)(1)原式(2)(3)a m n =++;(2)原式2222()(2)a b ab =+-, 2222(2)(2)a b ab a b ab =+-++,22()()a b a b =-+;(二)(1)原式11111111(1)(1)(1)(1)(1)(1)(1)(1)22334420192019=-⨯+⨯-⨯+⨯-⨯+⨯⋯⨯-⨯+, 1202022019=⨯, 10102019=; (2)原式2(10001)(10002)(10002)=--+⨯-,2210002000110004=-+-+,1995=-.16.(2020·陕西西安·月考)阅读材料:“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把()a b +看成一个整体,4()2()((421)()3())a b a b a b a b a b =+-+++-++=+.尝试应用:(1)把2()a b -看成一个整体,合并2223()5()7()---+-a b a b a b 的结果是_________.(2)已知221x y -=,求2362021--x y 的值.拓广探索:(3)已知22,25,9-=-=--=a b b c c d ,求()(2)(2)a c b d b c -+---的值.【答案】解:(1)25()a b -. (2)∵221x y -=,∴2362021--x y()2322021x y =--32021=-2018=-(3)∵22,25,9-=-=--=a b b c c d ,∴()(2)(2)a c b d b c -+---=a -c +2b -d -2b +c=a -d=a -2b +2b -c +c -d=(a -2b )+(2b -c )+(c -d )=2-5+9=6.17.(2020·山西初二月考)对多项式()()2242464a a a a -+-++进行因式分解时,小亮先设24a a b -=,代入原式后得: 原式()()264b b =+++2816b b =++()24b =+ ()2244a a =-+.(1)小亮在因式分解时巧妙运用了以下哪种数学思想: ;A ∵整体换元思想B ∵数形结合思想C ∵分类讨论思想(2)请指出上述因式分解存在的问题并直接写出正确结果;(3)请参考以上方法对多项式()()22444421a a a a ++++进行因式分解.【答案】解:(1)把24a a -用b 表示,是整体换元;故选:A()2存在的问题:分解不彻底;理由:()()()222424422a a a a ⎡⎤-+=-=-⎣⎦ 故答案为:()42a -()3设244a a b +=,原式()21b b =++221b b =++()21b =+()22441a a =++ ()421a =+18.(2020·河北石家庄·初三月考)如果一个正整数能表示成两个连续偶数的平方差,那么称这个正整数为“巧数”,如:22420=-,221242=-,222064=-,因此4,12,20这三个数都是“巧数”.(1)400和2020这两个数是“巧数”吗?为什么?(2)设两个连续偶数为2n 和22n -(其中n 取正整数),由这两个连续偶数构造的“巧数”是4的倍数吗?为什么? (3)求介于50到101之间所有“巧数”之和.【答案】解:(1)400不是“巧数”,2020是“巧数”.原因如下:因为2240010199=-,故400不是“巧数”,因为2020=5062-5042,故2020是“巧数”;(2)22(2)(22)(222)(222)2(42)4(21)n n n n n n n n --=+--+=-=-∵n 为正整数,∴2n -1一定为正整数,∴4(2n -1)一定能被4整除,即由这两个连续偶数构造的“巧数”是4的倍数;(3)介于50到100之间的所有“巧数”之和,S =(142-122)+(162-142)+(182-162)+…+(262-242)=262-122=532.故答案是:532.19.(2019·福建省惠安科山中学期中)阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解:∵22228160m mn n n -+-+=,∴222(2)(816)0m mn n n n -++-+=∴22()(4)0m n n +--=,∴22()0,(4)0m n n -=-=∴4,4m n ==. 根据你的观察,探究下面的问题:(1)已知2222440x xy y y ++++=,求xy 的值;(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足22108410a b a b +--+=,求△ABC 边c 的最大值.【答案】解:(1)∵2222440x xy y y ++++=,∴2222440x xy y y y +++++=,∴()()2220x y y +++=,∴0x y +=,20y +=,∴2x =,2y =-,∴()224xy =⨯-=-,(2)∵22108410a b a b +--+=,∴2210258160a a b b -+++=-,∴()()22450a b -+=-, ∴5a=,4b =, ∵,,a b c 是ABC ∆的三边,∴a b c a b -<<+,∴19c <<又∵c 为正整数,∴c 的最大值为8.20.(2020·河北初三其他)探究活动:(1)如图1,可以求出阴影部分的面积是____________.(写成两数平方差的形式)(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,面积是__________.(写成多项式乘法的形式) (3)比较图1、图2阴影部分的面积,可以得到等式:______________.知识应用:(1)计算:()()22a b c a b c +-++.(2)若224915x y -=,4610x y +=,求23x y -的值. 【答案】解:探究活动:(1)22a b -(2)()()a b a b +-(3)()()22a b a b a b +-=-(等号左右顺序可互换)知识应用:(1)()()22a b c a b c +-++()()222a b c =+-22224a ab b c =++-(2)∵4610x y +=∴235x y +=∵224915x y -=∴()()232315x y x y +-=即:()52315x y -=∴233-=x y。
因式分解因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。
1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;第一部分:方法介绍一、提公因式法:ma+mb+mc=m(a+b+c)二、运用公式法:(1) (a+b)(a-b) = a2-b2 ——— a2-b2=(a+b)(a-b);(2) (a±b)2 = a2±2ab+b2 ———a2±2ab+b2=(a±b)2;(3) (a+b)(a2-ab+b2) =a3+b3 ——— a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a2+ab+b2) = a3-b3 ——— a3-b3=(a-b)(a2+ab+b2).(5) a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;例.已知是的三边,且,则的形状是()A.直角三角形 B等腰三角形 C 等边三角形 D等腰直角三角形解:三、分组分解法:(一)分组后能直接提公因式例、分解因式:分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式==每组之间还有公因式!=(二)分组后能直接运用公式例、分解因式:解:原式===例、分解因式:解:原式===四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——进行分解。
特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
第一学期八年级数学期末复习专题整式乘除与因式分解姓名:_______________班级:_______________得分:_______________一选择题:1.若8×2x=5y+6,那么当y=﹣6时,x应等于()A.﹣4B.﹣3C.0D.42.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3D.﹣8a5b33.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b24.计算(x-1)(-x-1)的结果是()A.﹣x2+1B.x2﹣1C.﹣x2﹣1D.x2+15.若a+b=5,ab=-24,则a2 +b2 的值等于( )A.73B.49C.43D.236.多项式的公因式是()A. B. C. D.7.下列多项式能用平方差公式因式分解的是( )A. B. C. D.8.若m-n=-1,则(m-n)2-2m+2n的值是( )A.3B.2C.1D.-19.若9a2+24ab+k是一个完全平方式,则k=()A.2b2B.4b2C.8b2D.16b210.一个正方形的边长增加,面积相应增加,则这个正方形的边长为()A.6B.5C.8D.711.计算1982等于()A.39998;B.39996;C.39204;D.39206;12.若,,则的值是()(A)9 (B)10 (C)2(D)113.把多项式分解因式结果正确的是()A. B. C. D.14.下列各式从左到右的变形属于分解因式的是()A. B.C. D.15.已知x-y=3,x-z=,则(y-z) 2+5(y-z)+的值等于()A.;B.;C.;D.0;16.观察下列各式:①abx-adx;②2x2y+6xy2;③8m3-4m2+2m+1;④a3+a2b+ab2-b3;⑤(p+q)x2y-5x2(p+q)+6(p+q)2;⑥a2(x+y)(x-y)-4b(y+x).其中可以用提公因式法因式分解的是( )A.①②⑤B.②④⑤C.②④⑥D.①②⑤⑥17.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1B.2C.3D.418.若x2﹣x+1=0,则等于()A. B. C. D.19.如果a,b,c满足a2+2b2+2c2-2ab-2bc-6c+9=0,则abc等于( )A.9B.27C.54D.8120.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是()A.1﹣x n+1B.1+x n+1C.1﹣x nD.1+x n二填空题:21.已知2x+3y﹣4=0,则9x•27y的值为.22.[(-x)2] n·[-(x3)n]=______.23.若b为常数,且是完全平方式,那么b= .24.若x2+2(m﹣3)x+16是完全平方式,则m= .25.已知a+b=7,ab=13,那么a2-ab+b2=_______.26.若三项式4a2-2a+1加上一个单项式后是一个多项式的完全平方,请写出一个这样的单项式 .27.多项式kx2-9xy-10y2可分解因式得(mx+2y)(3x-5y),则k=________,m=________.28.观察下列各式:(1)42-12=3×5;(2)52-22=3×7;(3)62-32=3×9;………则第n(n是正整数)个等式为_____________________________.三简答题:29.已知3m=2,3n=5.(1)求3m+n的值;(2)32m﹣n的值.30.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.31.你能化简(a-1)(a99+a98+a97+……+a2+a+1)吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(a-1)(a+1)= ;(a-1)(a2+a+1)= ;(a-1)(a3+a2+a+1)= ;……由此猜想(a-1) (a99+a98+a97+……+a2+a+1)= .(2)利用这个结论,你能解决下面两个问题吗?①求2199+2198+2197+……+22+2+1的值;②若a5+a4+a3+a2+a+1=0,则a6等于多少?32.数学课上老师出了一道题,计算:.小明看后说:“太繁琐了,我是做不出来”;小亮思考后说:“若设=x,先运用整体思想将原式代换,再进行整式的运算,就简单了”.小明采用小亮的思路,很快就计算出了结果,请你根据小亮思路完成计算.33.在形如的式子中,我们已经研究过已知a和b,求N,这种运算就是乘方运算.现在我们研究另一种情况:已知a和N,求b,我们把这种运算叫做对数运算.定义:如果(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作. 例如:因为23=8,所以;因为,所以.(1)根据定义计算:①=______;②=_____;③=______;④如果,那么x=_______.(2)设则(a>0,a≠1,M、N均为正数),因为,所以所以,即.这是对数运算的重要性质之一,进一步,我们还可以得出:= _.(其中M1、M2、M3、……、M n均为正数,a>0,a≠1)(a>0,a≠1,M、N均为正数).(3)结合上面的知识你能求出的值吗?四计算题:34.(x﹣2y+4)(x﹣2y﹣4)35.(﹣3a)3﹣(﹣a)•(﹣3a)2.36.4ab[2a2﹣3b(ab﹣ab2)]37.(x﹣1)(x+2)﹣3x(x+3)38.(a﹣2b)2﹣(2a+b)(b﹣2a)﹣4a(a﹣b)39.参考答案1、B2、B3、C4、A5、A6、D7、D8、A9、D 10、B 11、C 12、B 13、D 14、B15、D;16、D.17、C 18、C 19、B 20、A 21、81 .22、;23、,24、﹣1或7 .25、10 26、答案不唯一,如-3a2或-2a或6a或;27、9 3 28、(n+3)2=3(2n+3) 29、【解答】解:(1)∵3m=2,3n=5,∴3m+n=3m•3n=2×5=10;(2)∵3m=2,3n=5,∴32m﹣n=(3m)2÷3n=22÷5=.30【解答】解:(1)x2+2y2﹣2xy+4y+4=x2﹣2xy+y2+y2+4y+4=(x﹣y)2+(y+2)2=0,∴x﹣y=0,y+2=0,解得x=﹣2,y=﹣2,∴x y=(﹣2)﹣2=;(2)∵a2+b2=10a+8b﹣41,∴a2﹣10a+25+b2﹣8b+16=0,即(a﹣5)2+(b﹣4)2=0,a﹣5=0,b﹣4=0,解得a=5,b=4,∵c是△ABC中最长的边,∴5≤c<9.31、(1),………。
因式分解知识点一、因式分解的概念把一个多项式化为若干个整式的积的形式,这种变形叫做因式分解因式分解:多项式 = 整式1 × 整式2 × 整式3 × ……例1、下列变形属于因式分解的有______________________①ab+ac=a(b+c) ②x 2+2x+1=(x+1)2 ③a 2-b 2=(a+b)(a-b) ④(a+b)(a-b)=a 2-b 2⑤x 2+6x-9=(x-3)(x+3)+6x ⑥6ab=2a.3b ⑦)1(12x x x x +=+ ⑧))(24())(42(m n a b n m b a --=--1、下列变形属于因式分解的有______________________①x 2-2=(x+1)(x-1)-1 ②4x 2-9y 2=(2x+3y)(2x-3y) ③2a(b+c)=2ab+2ac ④16x 2y 3=2xy.8xy 2 ⑤x 2+4x+4=(x+2)2 ⑥x 2-6x+9=(x+3)22、下列变形属于因式分解的有______________________①xy 2+xz=x(y 2+z) ②6xy+2y 2=2y(3x+y) ③)1(12a a a a -=- ④x 2-8x+16=(x-4)2 ⑤a 2-4a+4=a(a-4)+4 ⑥(a+1)(a-1)=(1+a)(-1+a)知识点二、提公因式法提公因式法其实就是运用乘法分配律a(b+c)=ab+ac来变形例1、分解因式:ab+ac 例2、分解因式:4a2+10ab 例3、分解因式:2ab2-6a2b2+4a3b21、分解因式①xy-x2②mx-my ③2m+2 ④a2x+ax2+a⑤12m2n+18mn ⑥8a3b2-12ab3c ⑦3a2b2-15a3b3-12a2b2c ⑧3xy2-6x2y+9xy例4、分解因式:6p(p+q)-4q(p+q) 例5、分解因式:2(a-3)2-a+3 例6、分解因式:2(a-b)2+3(b-a)①2b(x-3)+3a(x-3) ②m 2(x-2)+m(x-2) ③x(x-y)-y(x-y)④2x(x-2)-2+x⑤6(x-5)+2y(5-x) ⑥-6(x-y)2-3y(y-x)2知识点三、公式法1、完全平方公式a 2+2ab+b 2=(a+b)2a 2-2ab+b 2=(a-b)22、平方差公式a 2-b 2=(a+b)(a-b)例1、分解因式422b ab a ++例2、分解因式229124y xy x ++ 例3、分解因式-x 2+9y 2①x 2+2xy+y 2 ②a 2-4a+4 ③-x 2+2xy-y 2④1+4a+4a 2⑤412++x x ⑥2292416y xy x +-例3、(a+b)2+2(a+b)y+y 2例4、(a 2b-c)2-4(a 2b-c)+42、分解因式①x 2+2x(4a-b)+(4a-b)2②-9a 2+6a(a-b)-(a-b)2 ③16-8(x-y)+(x-y)2例5、分解因式:a2-4 例6、分解因式:9x2-16y2例7、分解因式:-x2+9y3、分解因式①a2-25 ②x2-y2③9-x2④49x2-y2z2⑤16m4n2-25p2⑥x2-6 ⑦3-4y2⑧-x2+1 ⑨-x2+4y2⑩2241ba+ -例7、分解因式:(3a+2b)2-(a-b)24、分解因式①(x-1)2-9 ②4(x-2)2-1 ③(x+2y)2-(2x-y)2。
2019-2020学年人教版上册八年级期末(代数部分)常考解答题专题复习因式分解、整式化简求值、乘法公式几何背景、分式方程、分式化简求值一、解答题1.把下列多项式分解因式:(1)a 2x 2-a 2y 2 (2)4x 2-8xy+4y 22.分解因式:(1)mx²-6mx +9m (2)a²(x -y)+b²(y -x) (3)(x -1)(x -3)+13.把下面各式分解因式:(1)ax 3-9ax ; (2)x 2+2x(x -3y)+(x -3y)2.4.因式分解:(1)am −an +ap (2)2a(b +c)−3(b +c)(3)4x 4−4x 3+x 2 (4)x 4−165.分解因式:(1)2a(x −y)+6(y −x) ; (2)a 3−4ab 2 .6.因式分解:(1)(a 2+1)2 - 4a 2 (2)2x 2(x-y)+50y 2(y-x)7.先化简,再求值:(m +2﹣ 5m−2 )÷ m−33m 2−6m ,其中m 满足m 2+3m ﹣1=0.8.先化简: (3x+1−x +1)+x 2−4x+4x+1 ,然后从 −1≤x ≤2 中选一个合适的整数作为x 的值代入求值。
9.先化简( 3a+1 -a +1)÷a 2−4a+4a+1 ,并从0,-1,2中选一个合适的数作为a 的值代入求值. 10.先化简再求值:化简m −2m 2−1÷(m 2−m m 2−2m+1−2m−1) ,并0,-1,1,2四个数中,取一个合适的数作为m 的值代入求值. 11.先化简,再求值: (1−1a+1)÷a 2−a a+1 ,其中 a =12 . 12.解分式方程: 1−x x−2=12−x −213.解方程: 1x−2=1−x 2−x −3 .14.解方程: 1x−2+3=1−x 2−x .15.解方程:(1)1x−3=1+x x−3(2)3x+2+4x−2=16x 2−4 .16.解方程:(1)5x−2+1=0 (2)2x 2−1+1=x x−117.解方程(1)3x =4x−2(2)23+x3x−1=19x−318.解方程:31−x =xx−1−5.19.已知(x2+px+8)(x2-3x+q)的展开式中不含x2,x3项,求p、q的值.20.已知m−n=−3,mn=4.(1)求(3−m)(3+n)的值;(2)求m4+n4的值.21.已知:多项式A=b3﹣2ab(1)请将A进行因式分解:(2)若A=0且a≠0,b≠0,求(a−1)2+b2−12b2的值.22.已知x﹣y=3,求[(x﹣y)2+(x+y)(x﹣y)]÷2x的值.23.先化简,再求值.2(x﹣3)(x+2)﹣(3+a)(﹣a+3),其中,a=﹣2,x=1.24.已知M是含字母x的单项式,要使多项式4x2+M+1是某一个多项式的平方,求M的表达式.25.先化简再求值:4(m+1)2﹣(2m+5)(2m﹣5),其中m=﹣3.26.先化简再求值:4a(a+1)﹣(a+1)(2a﹣1),其中a=2.27.先化简,再求值:(2a+b)(﹣b+2a)﹣(2a﹣3b)2﹣5b(3a﹣2b),其中a=﹣12,b= 13.28.先化简,再求值:x(x﹣1)+2x(x+1)﹣(3x﹣1)(2x﹣5),其中x=2.29.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:30.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4-b4的值.参考答案及解析一、解答题1.【答案】(1)解:原式=a2(x2-y2)=a2(x+y)(x-y)(2)解:原式=4(x2-2xy+y2)=4(x-y)2【解析】【分析】(1)对式子先利用提公因式法,再利用公式法进行因式分解得到答案即可;(2)将式子提出公因式4,再将括号内的式子利用完全平方公式进行因式分解即可。
8.4 因式分解1.了解因式分解的意义及其与整式乘法的区别与联系,养成逆向思维的能力. 2.理解因式分解的常用方法,能灵活地应用因式分解的常用方法进行因式分解. 3.能用因式分解的知识解决相关的数学及实际问题.1.因式分解(1)因式分解的定义:把一个多项式化为几个整式的积的形式,叫做因式分解,也叫做把这个多项式分解因式.(2)因式分解的注意事项①因式分解的实质是多项式的恒等变形,与整式乘法的过程恰好相反,整式乘法是“积化和差”,而因式分解是“和差化积”,利用这种关系可以检验因式分解结果是否正确.②分解因式的对象必须是多项式,如把5a 2bc 分解成5a ·abc 就不是分解因式,因为5a 2bc 不是多项式;再如把1x2-1分解为⎝ ⎛⎭⎪⎫1x +1⎝ ⎛⎭⎪⎫1x-1也不是分解因式,因为1x2-1不是整式.③分解因式的结果必须是积的形式,如x 2+x -1=x (x +1)-1就不是分解因式,因为结果x (x +1)-1不是积的形式.④分解因式结果中每个因式都必须是整式,如x 2-x =x 2⎝ ⎛⎭⎪⎫1-1x 就不是分解因式,因为x 2⎝ ⎛⎭⎪⎫1-1x 不是整式的乘积形式.⑤分解因式的结果中各因式中的各项系数的最大公约数是1.如4x 2-6x =x (4x -6).结果中的因式4x -6中4和6的公约数不为1,正确的分解结果应是4x 2-6x =2x (2x -3).【例1-1】在下列四个式子中,从等号左边到右边的变形是因式分解的是( ).A .x 2y +x =x 2⎝ ⎛⎭⎪⎫y +1xB .x 2-4-3x =(x +2)(x -2)-3xC .ab 2-2ab =ab (b -2)D .(x -3)(x +3)=x 2-9分解因式与整式乘法是两种相反方向的变形过程,即它们互为逆过程,互为逆关系,例如:n (a +b +c )na +nb +nc ,因式分解是把多项式化为积的形式,注意一要是整式,二要是多项式.【例1-2】下列从左到右的变形中,哪些是分解因式?哪些不是分解因式?为什么?(1)12a 2b =3a ·4ab ;(2)(x +3)(x -3)=x 2-9;(3)4x 2-8x -1=4x (x -2)-1; (4)2ax -2ay =2a (x -y );(5)a 2-4ab +b 2=(a -2b )2.判断一个式子由左到右的变形是不是分解因式,关键看它是不是把多项式变形为几个整式积的形式,也就是说,变形后第一必须是整式;第二必须是乘积的形式. 2.因式分解的基本方法——提公因式法 (1)公因式的意义多项式中的每一项都含有一个相同因式,这个相同因式叫做这个多项式各项的公因式.如多项式ab +ac +ad 中,各项都含有因式a ,故a 是这个多项式的公因式.(2)公因式的确定 准确地确定公因式,是运用提公因式法因式分解的关键.确定一个多项式各项的公因式,其方法如下:①确定公因式系数,即数字因数.当各项系数都是整数时,取各项的最大公约数作为公因式的系数;当各项系数中有分数时,则公因式的系数为分数,分母取各项系数分母的最小公倍数,分子取各项系数分子的最大公约数.②确定公因式的字母及字母指数.公因式的字母应是多项式各项都含有的字母,其指数取最低的.如:多项式4x 4+6x 2+12x 3y 中,系数的最大公约数是2,相同字母为x ,它的最低指数是2,所以这个多项式的公因式应为2x 2.③注意:公因式可能是单项式,也可能是多项式.当公因式是多项式时,要把这个多项式看作一个整体,这时要注意符号的变化,经常用的变形有:(b +a )n =(a +b )n(n 为正整数),(b -a )n =(a -b )n(n 为偶数),(b -a )n =-(a -b )n(n 为奇数).【例2-1】指出下列各多项式中各项的公因式:(1)4x 2y 3z +12x 3y 4; (2)47(x +1)2y 3-12(x +1)3y 4; (3)12x n y 2n +16x n -1y n +1(n 为大于1的整数).(3)提公因式法①如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而把多项式化成两个整式乘积的形式,这种分解因式的方法叫提公因式法.我们在学习乘法分配律时知道,m (a +b +c )=ma +mb +mc ,现在把它反过来就有ma +mb +mc =m (a +b +c ),这正是提公因式法,可见提公因式法在实质上是逆用乘法分配律.②提公因式法的步骤运用提公因式法分解因式一般分为三步: 第一步,确定公因式;第二步,把多项式的各项写成含公因式的乘积形式; 第三步,把公因式提到括号前面,余下的项写在括号内.(1)若首项系数为负数时,一般先要提出“-”,但要注意,此时多项式的各项都要变号,如-x2-2x=-x(x+2);(2)所提的公因式必须是“最大公因式”,即提取公因式后,另一个因式中不能含有公因式;(3)提出公因式后,另一个因式必须化简整理,不能带有中括号,如2x(y-z)2-4y(y -z)3=2(y-z)2[x-2y(y-z)]=2(y-z)2(x-2y2+2yz);(4)多项式中各项的公因式要一次提尽;(5)公因式提取后,要用整式乘法来检验是否正确.【例2-2】把下列各式分解因式:(1)2(m-n)2-m(n-m);(2)5a(x-y)2+10a(y-x)3.3.因式分解的基本方法——公式法(1)公式法的意义:利用完全平方公式和平方差公式进行因式分解的方法叫做公式法.(2)公式的结构特征运用公式法的关键是熟悉公式的结构特征.①平方差公式的特征:左边是二项式,两项都能写成平方的形式,且符号相反,右边分解的结果是两个整式的和与两个整式的差的乘积.凡符合平方差公式特点的二项式,都可运用平方差公式分解因式.分解时,先写成平方差的形式,确定公式中的a和b,再运用平方差公式分解因式.注意公式中字母的广泛含义,既可以表示单项式,也可以表示多项式,如:(x-y)2-(x+y)2=[(x-y)+(x+y)][(x-y)-(x+y)]=2x(-2y)=-4xy(其中x-y相当于公式中的a,x+y相当于公式中的b).【例3-1】把下列多项式分解因式:(1)4x2-9;(2)16m2-9n2;(3)a3b-ab;(4)(x+p)2-(x+q)2.②完全平方公式的特征:左边是三项式,其中首末两项是两个数(或式子)的平方,且符号相同,中间的一项是首末两个数(或式子)的积的2(或-2)倍,右边的结果是两个数(或式子)的和(或差)的平方.运用完全平方公式分解因式,一定要检验中间的一项是否是首末两项乘积的2(或-2)倍.凡是满足完全平方公式的多项式都可以直接用完全平方公式因式分解.注意公式中字母的广泛含义,既可以表示单项式,也可以表示多项式,如:(x-y)2-4(x-y)+4=[(x-y)-2]2=(x-y-2)2(其中x-y相当于公式中的a,2相当于公式中的b).【例3-2】把下列各式分解因式:(1)-x2-2xy-y2;(2)4(x+y)2+25+20(x+y);(3)(a+b)2-4(a+b-1).4.因式分解的步骤(1)分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解,这种分解因式的方法叫分组分解法.(2)因式分解的一般步骤是:“一提”、“二套”、“三分组”、“四检查”.“一提”即先看是否有公因式,若有,先提取公因式;“二套”是看能否运用公式法因式分解,若两项看是否符合平方差公式,若三项看是否符合完全平方公式;“三分组”是指如果要分解的多项式多于三项时,要考虑分组,分组的原则是:分组后能提公因式或者运用公式法;“四检查”是检查因式分解是不是彻底,要分解到每一个因式不能再分解为止.一般地,把一个多项式因式分解都是在有理数范围内进行的,要求因式中的每个系数(包括常数)都是有理数,且最后的结果要分解到每一个因式都不能再分解为止,相同的因式应该写成幂的形式.【例4-1】分解因式:(1)3a2-6a+3;(2)3x n+3-27x n+1.分析:(1)多项式中都含有公因式3,提取公因式后变为3(a2-2a+1),再仔细观察发现括号中的三项式符合完全平方公式,因此继续分解为3(a-1)2;(2)多项式中各项系数的最大公约数是3,都含有字母x,x的最低次幂是x n+1,所以公因式是3x n+1,提取公因式后括号内的多项式为(x2-9),能利用平方差公式分解因式.解:对于多项式的分解因式,应优先考虑提公因式,如果首项为负,可提取-1,然后对公因式已提取的或无公因式的三项式进行如下考虑:(1)按某一字母降幂排列,(2)对于二次三项式可考虑完全平方公式,(3)对于二项式可考虑平方差公式.【例4-2】把下列多项式因式分解:(1)(x2+y2)2-4x2y2;(2)1-a2+2ab-b2.5.利用因式分解计算、求值、证明因式分解在许多的有理数计算、代数式的化简、求值、证明中起着重要作用.(1)对于一些复杂的计算题,直接计算比较麻烦,学习了因式分解后,可以灵活运用因式分解,使问题的求解难度降到最低限度.(2)在求某些代数式的值时,比较简便而常用的方法是先对所给的代数式进行因式分解,使之出现条件中的式子,再整体代入求值.(3)因式分解是整式乘法的逆向变形,是代数恒等变形的重要手段,在解方程、不等式及恒等式的证明、几何等诸多方面也起着重要作用.解答此类题常用的方法是通过对条件中的式子因式分解,使之含有所要求的因式即可.【例5-1】计算2022-22.【例5-2】(1)已知x-y=1,xy=2,求x3y-2x2y2+xy3的值;(2)已知2x-3=0,求x(x2-x)+x2(5-x)-9的值.6.因式分解的实际应用因式分解是一种重要的式子变形,灵活应用的话可以解决许多问题,有关因式分解的实际应用主要是根据题意列出式子,解答时利用因式分解的方法,将列出的代数式按照因式分解的步骤进行分解,若所得的代数式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,再进行分解,从而使问题得到快速解答.【例6】如图,在半径为R的圆形钢板上,除去半径为r的四个小圆,利用因式分解计算当R=7.8 cm,r=1.1 cm时剩余部分的面积.(π取3.14,结果精确到整数)7.运用分解因式解决动手操作题动手操作题是让学生在实际操作的基础上设计有关的问题.这类题对同学们的能力有更高的要求,有利于培养乐于动手、勤于思考的意识和习惯,有利于培养创新能力和实践能力.这类题目主要考查动手操作能力,它包括裁剪、折叠、拼图等.不仅考查动手能力,还考查想象能力,往往与面积、对称性质联系在一起.此类题目就是通过拼图,用不同的式子表示图形面积,以达到把多项式分解因式的目的.【例7】某同学剪出若干个长方形和正方形卡片,如图①所示,请运用拼图的方法,选取图中相应的种类和一定数量的卡片拼成一个大长方形,使它的面积等于a2+4ab+3b2,并根据你拼成的图形的面积,把此多项式分解因式.解:因为拼成一个面积等于a2+4ab+3b2的大长方形,就要用一个边长为a的正方形、3个边长为b的正方形和4个边长分别为a,b的长方形,可以拼成如图②所示的图形,由此知长方形的边长分别为(a+b)和(a+3b).由面积可知a2+4ab+3b2=(a+b)(a+3b).。
人教版八年级数学上册期末章节复习因式分解人教版八年级数学上册期末章节复习因式分解人民教育版八年级数学第一卷最后一章复习因式分解1.因式分解(1)定义将一个多项式转化为几个整数的乘积称为多项式因式分解,也称为多项式因式分解(2)因式分解与整式乘法的关系因式分解和整数乘法是相反方向的变形。
例如:(a+b)(a-b)a2-b2。
即多项式乘以多项式或单项式乘以多项式(整式乘法)是“积化和”,而因式分解则是“和化积”,故可以用整式乘法来检验因式分解的正确性.关注对因式分解的理解。
(1)因式分解具体指多项式的恒等变形。
等式的左边必须是多项式,右边的每个因子必须是整数。
(2)因式分解的结果必须以乘积的形式表示,否则就不是因式分解。
(3)如果分解中的每个括号中有相似的项,则应将它们合并,分解的结果要求每个分解必须完全分解【例1】下列各式由左边到右边的变形中,是因式分解的是().a.a(x+y)=ax+ayb、 y2-4y+4=y(y-4)+4c.10a2-5a=5a(2a-1)d.y2-16+y=(y+4)(y-4)+y答案:c规定:A是整数乘法,B和D的右边不是整数乘积的形式,而是和的形式,而不是因式分解2.公因式(1)定义多项式的每一项中包含的公因式称为多项式项的公因式。
(2)确定多项式公因式的方法确定一个多项式的公因式时,要对数字系数和字母分别进行考虑,确定公因式时:一看系数,二看字母,三看指数.公因子的确定方法:(1)对于系数(只考虑正数),取每个系数的最大公因子作为公因子的系数。
(2)对于信件,需要考虑两件事:一件事是拿同一封信;第二,同一个字母的索引采用最低阶,即同一个字母的最低次幂。
最后,应根据情况确定符号【例2】把多项式6a3b2-3a2b2-12a2b3分解因式时,应提取的公因式是().a.3a2bb.3ab2c.3a3b3d.3a2b2答案:d拨号:在多项式6a3b2-3a2b2-12a2b3中,这三个系数的最大公约数是3。
专题07 因式分解的六种方法大全题型一、提取公因式法与公式法综合例.分解因式:32214a ab ab -+=______.【答案】21()2a ab -【详解】解:32214a a b ab -+=221()4a a ab b -+=21()2a ab -.故答案是:21()2a ab -.【变式训练1】因式分解:322882x x y xy -+=________________.【答案】22(2)x x y -【详解】解:原式=2x (4x 2−4xy +y 2)=2x (2x −y )2故答案为:2x (2x −y )2.【变式训练2】因式分解:21222a b ab b -+=_________.【答案】21(2)2b a -【详解】22211122(44)(2)222a b ab b b a a b a -+=-+=-故答案为:21(2)2b a -.【变式训练3】分解因式:a 4﹣3a 2﹣4=_____.【答案】(a 2+1)(a +2)(a ﹣2)【详解】解:a 4﹣3a 2﹣4=(a 2+1)(a 2﹣4)=(a 2+1)(a +2)(a ﹣2),故答案为:(a 2+1)(a +2)(a ﹣2).【变式训练4】小军是一位密码编译爱好者,在他的密码手册中,有这样一条信息:x y -,-a b ,c ,22x y -,a ,x y +,分别对应下列六个字:抗,胜,必,利,我,疫.现将()()2222ac x y bc x y ---因式分解,结果呈现的密码信息可能是( )A .抗疫胜利B .抗疫必胜C .我必胜利D .我必抗疫【答案】B【详解】解:原式=()()22x y ac bc --()()()c a b x y x y =-+-Q x y -,-a b ,c ,22x y -,a ,x y +,分别对应下列六个字:抗,胜,必,利,我,疫.x y \-对应抗,x y +对应疫,c 对应必,-a b 对应胜故结果呈现的密码信息可能是为:抗疫必胜故选:B题型二、十字相乘法例.将多项式()211a a --+因式分解,结果正确的是( )A .1a -B .()()12a a --C .()21a -D .()()11a a +-【答案】B【详解】解:()211a a --+=2211a a a -+-+=232a a -+=()()12a a --.故选B .【变式训练1】多项式239514x x +-可因式分解成(3)()x a bx c ++,其中a 、b 、c 均为整数,求2a c +之值为何?( )A .12-B .3-C .3D .12【答案】A【详解】解:利用十字相乘法,把239514x x +-多项式因式分解,可得,239514(32)(137)x x x x +-=+-∵多项式239514x x +-可因式分解成(3x +a )(bx +c )∴ 2a =,13b =,7c =-∴222(7)12a c +=+´-=-故选:A .【变式训练2】分解因式:321024a a a +-=____.【答案】()()122a a a +-【详解】解:()()()32210241024122a a a a a a a a a +-=+-=+-.故答案为:()()122a a a +-【变式训练3】因为()()22331x x x x +-=+-,这说明多项式223x x +-有一个因式为1x -,我们把1x =代入此多项式发现1x =能使多项式223x x +-的值为0.利用上述阅读材料求解:(1)若()3x +是多项式212x kx ++的一个因式,求k 的值;(2)若()3x -和()4x -是多项式3212x mx x n +++的两个因式,试求m ,n 的值.(3)在(2)的条件下,把多项式3212x mx x n +++因式分解.【答案】(1)7k =;(2)7m =-,0n =;(3)(3)(4)x x x --【解析】(1)解:Q 3x +是多项式212x kx ++的一个因式,\当3x =-时,21293120x kx k ++=-+=,解得7k =;(2)Q (3)x -和(4)x -是多项式3212x mx x n +++的两个因式,\3232331230441240m n m n ì+´+´+=í+´+´+=î,解得70m n =-ìí=î.\7m =-,0n =.(3)解:由(2)得3212x mx x n +++即为32712x x x -+,\32712x x x-+2(712)x x x =-+(3)(4)x x x =--.题型四、分组法例.分解因式:4322221x x x x ++++【答案】22(1)(1)x x ++【详解】解:4322221x x x x ++++423(21)(22)x x x x =++++,222(1)2(1)x x x ++=+,22(1)(1)2x x x +=++22(1)(1)x x =++【变式训练1】已知221m a b =+-,4614n a b =--,则m 与n 的大小关系是()A .m n ³B .m >nC .m n £D .m <n【答案】A【详解】解:∵221m a b =+-,4614n a b =--,∴()()2214614b a m b n a -=---+-2246114b b a a =+--++()()224469a a b b =-++++()()2223a b =-++0³m n \³,故选A【变式训练2】分解因式:224b 12c 9c -++.【答案】()()23c b 23c b +++-【详解】解:224b 12c 9c -++=()22412c 9c b ++-=()2223c b +-=()()23c b 23c b +++-【变式训练3】分解因式:2244x y y -+-=__________.【答案】(2)(2)x y x y +--+【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【变式训练4】阅读理解:把多项式am an bm bn +++分解因式.解法:()()am an bm bn am an bm bn +++=+++()()a m nb m n =+++()()m n a b =++观察上述因式分解的过程,回答下列问题:(1)分解因式:222mb mc b bc -+-.(2)ABC V 三边a 、b 、c 满足2440a bc ac ab -+-=,判断ABC V 的形状.【答案】(1)(2)()b c m b -+;(2)等腰三角形【解析】(1)解:222mb mc b bc-+-()2(2)2mb mc b bc =-+-(2)(2)m b c b b c =-+- (2)()b c m b =-+(2)解:∵2440a bc ac ab -+-=,∴2440a ab ac bc -+-=,∴()()40a a b c a b -+-=,∴()()40a b a c -+=,∵40a c +>,∴0a b -=,∴a b =,∴ABC V C 的形状是等腰三角形.题型四、添项、拆项法例.分解因式;.x 3﹣3x 2﹣6x +8=_______.【答案】(x ﹣4)(x ﹣1)(x +2)【详解】解:x 3﹣3x 2﹣6x +8=3232268x x x x x -+--+=()()323288x x x x -+--=()()()1281x x x x ----=()()128x x x ---éùëû=()()2128x x x ---=(x ﹣4)(x ﹣1)(x +2),故答案为:(x ﹣4)(x ﹣1)(x +2).【变式训练1】把多项式分解因式:x 3﹣2x 2+1=_________________.【答案】(x ﹣1)(x 2﹣x ﹣1)【详解】解:原式=x 3﹣x 2﹣x 2+1=x 2(x ﹣1)﹣(x +1)(x ﹣1)=(x ﹣1)(x 2﹣x ﹣1)故答案为:(x ﹣1)(x 2﹣x ﹣1)【变式训练2】因式分解:a a a 32+3+3+2【答案】()()a a a 2=+2++1【详解】原式()a a a 32=+3+3+1+1()a 33=+1+1()()()a a a 2éù=+1+1+1-+1+1ëû()()a a a 2=+2++1.故答案为:()()a a a 2=+2++1【变式训练3】添项、拆项是因式分解中常用的方法,比如分解多项式21a -可以用如下方法分解因式:①()()()()22111111a a a a a a a a a -=-+-=-+-=-+;又比如多项式31a -可以这样分解:②()()()()()3322221111111a a a a a a a a a a a a a a -=-+-+-=-+-+-=-++;仿照以上方法,分解多项式51a -的结果是______.【答案】()()43211a a a a a -++++【详解】解:51a -54433221a a a a a a a a a =-+-+-+-+-()()()()43211111a a a a a a a a a =-+-+-+-+-()()43211a a a a a =-++++,故答案为:()()43211a a a a a -++++题型五、换元法(整体思想)例.因式分解:()()()()222222261516121x x x x x x ++++++++【答案】()()229411x x x +++【解析】解:()()()()222222261516121x x x x x x ++++++++()()2222212216122x x x x x x =++++++++()()2294121x x x x =++++()()229411x x x =+++【变式训练1】分解因式:()()()222241211y x y x y +--+-【答案】()2221x y x y -++【详解】()()()222241211y x y x y +--+-=()()()()222412111y x y y x y +-+-+-=()()2211y x y éù+--ëû=()2221x y x y -++【变式训练2】因式分解:(x 2+4x )2﹣(x 2+4x )﹣20.【答案】2(5)(1)(2)x x x +-+【详解】解:原式=(x 2+4x ﹣5)(x 2+4x +4)=(x +5)(x ﹣1)(x +2)2.【变式训练3】因式分解:(1)2223238x x x x +-+-()() (2)421x x x --+【答案】(1)()()()()1241x x x x +++-;(2)()()3211x x x -+-.【详解】解:(1)原式=()()223234x x x x +++-=()()()()1241x x x x +++-;(2)原式=()()2211xx x ---=()()()2111x x x x +---=()()2111x x x éù-+-ëû=()()3211x x x -+-.题型六、主元法例.分解因式:2222372x y z xy yz xz --+++.【答案】(2)(3)x y z x y z =+--+【详解】解:2222372x y z xy yz xz--+++222(2)(273)x y z x y yz z =++--+=2(2)(2)(3)x y z x y z y z ++---∴原式(2)(3)x y z x y z =+--+.【变式训练1】因式分解:(1)a b c ab ac bc abc1+++++++(2)()()a a b b b 6+11+4+3-1-2(3)()()()y y x x y y 22+1+1+2+2+1【答案】(1)()()()a b c =+1+1+1;(2)()()b b 3+2-1;(3)()()yx y yx x y =++1++【详解】(1)把a 视为未知数,其它视为参数.原式a ab ac abc b c bc =++++1+++()()a b c bc b c bc =1++++1+++()()a b c bc =+11+++()()()a b c =+1+1+1;(2)原式=()a b a b b 226+11+4+3--2,b b 23--2=()()b b 3+2-1,再次运用十字相乘法可知原式()()a b a b =2+3+23+-1;(3)选x 为主元,原式()()yx y yx x y =++1++.【变式训练2】因式分解:(1)a b ab bc ac222--++2(2)()x a b x a ab b 222+2+-3+10-3【答案】(1)()()a b b c 2+-+;(2)()()x a b x a ab b x a b x a b 222+2+-3+10-3=+3--+3【详解】(1)首先将原式按a 的降幂排列,写成关于a 的二次三项式()a c b a bc b 222+2-+-,此时的“常数bc b 2-”提取公因式b 即可分解成()b c b -,再运用十字相乘法便可很快将原式分解成()()a b a b c 2+-+;(2)这是x 的二次式,“常数项”可分解为()()a ab b a b a b 22-3+10-3=-3--3再对整个式子运用十字相乘()()()x a b x a ab b x a b x a b 222+2+-3+10-3=+3--+3.【变式训练3】因式分解:a b ab a c ac abc b c bc 222222-+--3++【答案】()()a b c ab ac bc =--+-【详解】原式()()()b c a b c bc a b c bc 22222=+-++3++()()()b c a b c bc a bc b c 222=+-++3++[()][()]a b c b c a bc =-++-()()a b c ab ac bc =--+-.课后作业1.如果2240m m +-=,那么20182019202032m m m --的值为( )A .2018m B .2018m -C .1D .-1【答案】B【详解】解:∵2m 2+m -4=0,∴-2m 2-m =-4,∴3m 2018-m 2019-2m 2020=m 2018×(3-m -2m 2)=m 2018×(3-4)=m 2018×(-1)=-m 2018,故选:B .2.如图,有一张边长为b 的正方形纸板,在它的四角各剪去边长为a 的正方形.然后将四周突出的部分折起,制成一个无盖的长方体纸盒.用M 表示其底面积与侧面积的差,则M 可因式分解为( )A .()()62b a b a --B .()()32b a b a --C .()()5b a b a --D .()22b a -【详解】解:底面积为(b ﹣2a )2,侧面积为a •(b ﹣2a )•4=4a •(b ﹣2a ),∴M =(b ﹣2a )2﹣4a •(b ﹣2a ),提取公式(b ﹣2a ),M =(b ﹣2a )•(b ﹣2a ﹣4a ),=(b ﹣6a )(b ﹣2a )故选:A .3.已知250x y -+=,则224201x y y -+-=______.【答案】24【详解】解:250x y -+=Q ,25x y \-=-,224201x y y \-+-()()22201x y x y y =+-+-()52201x y y =-++-5101x y =-+-()521x y =--- 251=-24=,故答案为:24.4.分解因式:2232x y xy y -+=____________.【答案】2()y x y -【详解】解:222223(2)(2)=-++=--x y xy y x xy y y x y y ;故答案为:2()y x y -5.阅读下列材料:因式分解的常用方法有提公因式法和公式法,但有的多项式仅用上述方法就无法分解,如22216x xy y -+-.我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.22216x xy y -+-()216x y =--()()44x y x y =-+--.这种因式分解的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)因式分解:226925a ab b -+-;(2)因式分解:22424x y x y --+;(3)△ABC 三边a 、b 、c 满足2222220a c b ab bc ++--=,判断△ABC 的形状并说明理由.【答案】(1)()()3535a b a b ---+;(2)()()222x y x y -+-;(3)△ABC 是等边三角形,理由见解析【解析】(1)解:226925a ab b -+-()2325a b =--()()3535a b a b =---+;(2)解:22424x y x y--+()()()2222x y x y x y =-+--()()222x y x y =-+-;(3)解:△ABC 是等边三角形,理由如下:∵2222220a c b ab bc ++--=,∴()()2222220a ab b c bc b -+-++=,∴()()220a b b c -+-=,∵()20a b -³,()20b c -³,∴a -b =0,且b -c =0,∴a =b ,且b =c ,∴a =b =c ,∴△ABC 是等边三角形.6.把下列各式因式分解:(1)2416x -;(2)23216164a b a ab --.【答案】(1)4(2)(2)x x +-(2)24(2)a a b --【解析】(1)解:2224164(2)4(2)(2)x x x x -=-=+-.(2)23216164a b a ab --224(44)a ab a b =--224(2)4a a ab b éù=--+ëû24(2)a a b =--.7.(1)把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解.(2)已知ABC V 的三边长为a ,b ,c ,且满足220a b ac bc --+=,请判断ABC V 的形状.【答案】(1)答案见解析(2)ABC V 是等腰三角形【详解】(1)拼接如图:拼接成的长方形的面积还可以表示为一个正方形和三个长方形的面积之和:22212132x x x x x +++´=++g g ;拼接成的长方形的面积:长´宽()()21x x =++;∴据此可得到因式分解的式子为:()()23221++=++x x x x .故答案为:()()23221++=++x x x x .(2)∵220a b ac bc --+=,∴()()()0a b a b c a b +---=,∴()()0a b a b c -+-=.∵ABC V 的三边长为a ,b ,c ,∴a b c +>,∴0a b c +->,∴0a b -=,∴a b =,V是等腰三角形.∴ABCV是等腰三角形.故答案为:ABC。
专题 因式分解☞解读考点☞2年中考【2015年题组】 1.(2015北海)下列因式分解正确的是( )A .24(4)(4)x x x -=+-B .221(2)1x x x x ++=++C .363(6)mx my m x y -=-D .242(2)x x +=+ 【答案】D .考点:1.因式分解-运用公式法;2.因式分解-提公因式法.2.(2015贺州)把多项式22344x y xy x --分解因式的结果是( )A .34()xy x y x --B .2(2)x x y --C .22(44)x xy y x -- D .22(44)x xy y x --++ 【答案】B . 【解析】试题分析:原式=22(44)x x xy y --+=2(2)x x y --,故选B .考点:提公因式法与公式法的综合运用.3.(2015宜宾)把代数式3231212x x x -+分解因式,结果正确的是( )A .23(44)x x x -+B .23(4)x x -C .3(2)(2)x x x +-D .23(2)x x -【答案】D . 【解析】试题分析:原式=23(44)x x x -+=23(2)x x -,故选D . 考点:提公因式法与公式法的综合运用. 4.(2015毕节)下列因式分解正确的是( ) A .4322269(69)a b a b a b a b a a -+=-+ B .2211()42x x x -+=-C .2224(2)x x x -+=- D . 224(4)(4)x y x y x y -=+- 【答案】B .【解析】试题分析:A .4322269(69)a b a b a b a b a a -+=-+=22(3)a b a -,错误;B .2211()42x x x -+=-,正确;C .224x x -+不能分解,错误;D .224(2)(2)x y x y x y -=+-,错误; 故选B .考点:1.因式分解-运用公式法;2.因式分解-提公因式法.5.(2015临沂)多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x- D .()21x -【答案】A .考点:公因式.6.(2015枣庄)如图,边长为a ,b 的矩形的周长为14,面积为10,则22a b ab +的值为( )A .140B .70C .35D .24 【答案】B . 【解析】试题分析:根据题意得:a+b=14÷2=7,ab=10,∴22a b ab +=ab (a+b )=10×7=70;故选B . 考点:因式分解的应用. 7.(2015烟台)下列等式不一定成立的是( )A 0)b =≠B .3521a a a -∙= C .224(2)(2)a b a b a b -=+- D .326(2)4a a -= 【答案】A .考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.因式分解-运用公式法;4.负整数指数幂. 8.(2015杭州)下列各式的变形中,正确的是( )A .22()()x y x y x y ---+=- B .11x x xx --= C .2243(2)1x x x -+=-+ D .21()1x x x x ÷+=+【答案】A .【解析】试题分析:A .22()()x y x y x y ---+=-,正确;B .211x x x x --=,错误; C .2243(2)1x x x -+=--,错误; D .21()1x x x x ÷+=+,错误;故选A .考点:1.平方差公式;2.整式的除法;3.因式分解-十字相乘法等;4.分式的加减法. 9.(2015南京)分解因式()(4)a b a b ab --+的结果是 .【答案】2(2)a b -.【解析】试题分析:()(4)a b a b ab --+=2254a ab b ab -++=2244a ab b -+=2(2)a b -.故答案为:2(2)a b -.考点:因式分解-运用公式法.10.(2015巴中)分解因式:2242a a -+= .【答案】22(1)a -.【解析】试题分析:原式=22(21)a a -+=22(1)a -.故答案为:22(1)a -.考点:提公因式法与公式法的综合运用.11.(2015绵阳)在实数范围内因式分解:23x y y -= . 【答案】)3)(3(-+x x y . 【解析】试题分析:原式=2(3)y x -=)3)(3(-+x x y ,故答案为:)3)(3(-+x x y .考点:实数范围内分解因式.12.(2015内江)已知实数a ,b 满足:211a a +=,211b b +=,则2015a b-|= .【答案】1.考点:1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题. 13.(2015北京市)分解因式:325105x x x -+= .【答案】25(1)x x -.【解析】试题分析:原式=25(21)x x x -+=25(1)x x -.故答案为:25(1)x x -. 考点:提公因式法与公式法的综合运用.14.(2015甘南州)已知210a a --=,则322015a a a --+= . 【答案】2015.【解析】 试题分析:∵210a a --=,∴21a a -=,∴322015a a a --+=2()+2015a a a a --=2015a a -+=2015,故答案为:2015.考点:1.因式分解的应用;2.条件求值;3.代数式求值;4.综合题.15.(2015株洲)因式分解:2(2)16(2)x x x ---= .【答案】(2)(4)(4)x x x -+-. 【解析】试题分析:原式=2(2)(16)x x --=(2)(4)(4)x x x -+-.故答案为:(2)(4)(4)x x x -+-.考点:提公因式法与公式法的综合运用.16.(2015东营)分解因式:2412()9()x y x y +-+-= .【答案】2(332)x y -+.考点:因式分解-运用公式法.17.(2015菏泽)若2(3)()x x m x x n++=-+对x恒成立,则n= .【答案】4.【解析】试题分析:∵2(3)()x x m x x n++=-+,∴22(3)3x x m x n x n++=+--,故31n-=,解得:n=4.故答案为:4.考点:因式分解-十字相乘法等.18.(2015重庆市)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.【答案】(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一),能;(2)y=2x(1≤x≤4,x为自然数).考点:1.因式分解的应用;2.规律型:数字的变化类;3.新定义.【2014年题组】1.(2014年常德中考)下面分解因式正确的是()A.x2+2x+1=x(x+2)+1 B. (x2﹣4)x=x3﹣4xC. ax+bx=(a+b)xD. m2﹣2mn+n2=(m+n)2【答案】C.【解析】试题分析:A、x2+2x+1=x(x+2)+1,不是因式分解,故错误;B、(x2﹣4)x=x3﹣4x,不是因式分解,故错误;C、ax+bx=(a+b)x,是因式分解,故正确;D、m2﹣2mn+n2=(m ﹣n)2,故错误.故选C.考点:1.因式分解-运用公式法;2.因式分解-提公因式法.2.(2014年海南中考)下列式子从左到右变形是因式分解的是()A.()2a4a21a a421+-=+-B.()()2a4a21a3a7+-=-+C.()()2a3a7a4a21-+=+-D.()22a4a21a225+-=+-【答案】B.考点:因式分解的意义.3.(2014年无锡中考)分解因式:x3﹣4x= .【答案】()() x x2x2+-.【解析】试题分析:()()() 32x4x x x4x x2x2 -=-=+-.考点:提公因式法和应用公式法因式分解.4.(2014年株洲中考)分解因式:x2+3x(x﹣3)﹣9=【答案】(x﹣3)(4x+3).【解析】试题分析:x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).考点:因式分解.5.(2014年徐州中考)若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.【答案】﹣2.【解析】试题分析:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.考点:1.求代数式的值;2.提公因式法因式分解;3.整体思想的应用.6.(2014年眉山中考)分解因式:225xy x-=__________________.【答案】x(y+5)(y﹣5).【解析】试题分析:原式=x(y2﹣25)=x(y+5)(y﹣5).考点:提公因式法与公式法的综合运用.7.(2014年绍兴中考)分解因式:2a a-= .【答案】() a a1-.【解析】试题分析:() 2a a a a1-=-.考点:提公因式法因式分解.8.(2014年台州中考)因式分解3a4a-的结果是.【答案】()() a a2a2+-.考点:提公因式法和应用公式法因式分解.9.(2014年泸州中考)分解因式:23a 6a 3++= .【答案】()23a 1+.【解析】 试题分析:()()2223a 6a 33a 2a 13a 1++=++=+.考点:提公因式法和应用公式法因式分解.10.(2014年北海中考)因式分解:x2y ﹣2xy2= . 【答案】()xy x 2y -.【解析】 试题分析:()22x y 2xy xy x 2y -=-.考点:提公因式法因式分解. ☞考点归纳归纳 1:因式分解的有关概念 基础知识归纳:因式分解:把一个多项式化成几个整式的积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 注意问题归纳:符合因式分解的等式左边是多项式,右边是整式积的形式. 2.因式分解与整式乘法是互逆运算.【例1】下列式子从左到右变形是因式分解的是( )()2a 4a 21a a 421+-=+- B .()()2a 4a 21a 3a 7+-=-+ C .()()2a 3a 7a 4a 21-+=+- D .()22a 4a 21a 225+-=+-【答案】B .考点:因式分解的有关概念.归纳 2:提取公因式法分解因式 基础知识归纳:将多项式各项中的公因式提出来这个方法是提公因式法,公因式系数是各项系数的最大公约数,相同字母取最低次幂.提取公因式法:ma+mb-mc=m(a+b-c)注意问题归纳:提公因式要注意系数;要注意查找相同字母,要提净.【例2】若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.【答案】﹣2.考点:因式分解-提公因式法.【例3】因式分解:2a3ab+=.【答案】() a a3+.【解析】() 2a3ab a a3+=+.考点:因式分解-提公因式法.归纳3:运用公式法分解因式基础知识归纳:运用平方差公式:a2-b2=(a+b)(a-b);运用完全平方公式:a2±2ab+b2=(a±b)2.注意问题归纳:首先要看是否有公因式,有公因式必须要先提公因式,然后才能运用公式,注意公式的特点,要选项择合适的方法进行因式分解.【例4】3x2y-27y= ;【答案】3y(x+3)(x-3).【解析】原式=3y(x2-9)=3y(x+3)(x-3).考点:提公因式法与公式法的综合运用.【例5】将多项式m2n-2mn+n因式分解的结果是.【答案】n(m-1)2.【解析】m2n-2mn+n,=n(m2-2m+1),=n(m-1)2.考点:提公因式法与公式法的综合运用.归纳4:综合运用多种方法分解因式基础知识归纳:因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.注意问题归纳:可以提取公因式的要先提取公因式,注意一定要分解彻底.【例6】分解因式:x2+3x(x﹣3)﹣9=【答案】(x﹣3)(4x+3).考点:因式分解-分组分解法.【例】7分解因式:x3-5x2+6x=【答案】x(x-3)(x-2).【解析】x3-5x2+6x=x(x2-5x+6)=x(x-3)(x-2).考点:因式分解-十字相乘法.☞1年模拟1.(2015届四川省成都市外国语学校中考直升模拟)若多项式x4+mx3+nx-16含有因式(x-2)和(x-1),则mn的值是()A.100 B.0 C.-100 D.50【答案】C.【解析】试题分析:设x4+mx3+nx-16=(x-1)(x-2)(x2+ax+b),则x4+mx3+nx-16=x4+(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b.比较系数得:a-3=m,b-3a+2=0,2a-3b=n,2b=-16,解得:a=-2,b=-8,m=-5,n=20,所以mn=-5×20=-100.故选C.考点:因式分解的意义.2.(2015届广东省佛山市初中毕业班综合测试)因式分解2x2-8的结果是()A.(2x+4)(x-4)B.(x+2)(x-2)C.2 (x+2)(x-2)D.2(x+4)(x-4)【答案】C.【解析】试题分析:2x2-8=2(x2-4)2(x+2)(x-2).故选C.考点:提公因式法与公式法的综合运用.3.(2015届河北省中考模拟二)现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016 B.1.1111111×1027 C.1.111111×1056 D.1.1111111×1017【答案】D.考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数.4.(2014-2015学年山东省潍坊市诸城市实验中学中考三模)分解因式:2x2﹣12x+32= .【答案】2(x﹣8)(x+2).【解析】试题分析:原式提取2,再利用十字相乘法分解,原式=2(x2﹣6x+16)=2(x﹣8)(x+2).故答案为:2(x﹣8)(x+2).考点:提公因式法与公式法的综合运用.5.(2015届北京市平谷区中考二模)把a ﹣4ab2分解因式的结果是 .【答案】a (1+2b )(1﹣2b ).【解析】试题分析:先提取公因式,再利用平方差公式法,进而分解因式得出即可.考点:提公因式法与公式法的综合运用.6.(2015届北京市门头沟区中考二模)分解因式:29ax a -= .【答案】(3)(3)a x x -+.【解析】试题分析:29ax a - =2(9)a x -=(3)(3)a x x -+.故答案为:(3)(3)a x x -+. 考点:提公因式法与公式法的综合运用.7.(2015届四川省成都市外国语学校中考直升模拟)若a2-3a+1=0,则3a3-8a2+a+231a += .【答案】2.考点:1.因式分解的应用;2.条件求值.8.(2015届安徽省安庆市中考二模)因式分解:﹣3x2+3x ﹣= .【答案】﹣3(x ﹣21)2.【解析】试题分析:原式=﹣3(x2﹣x+41)=﹣3(x ﹣21)2.故答案为:﹣3(x ﹣21)2. 考点:提公因式法与公式法的综合运用.9.(2015届山东省威海市乳山市中考一模)分解因式:a3b-2a2b2+ab3= .【答案】ab (a-b )2.【解析】试题解析:a3b-2a2b2+ab3=ab (a2-2ab+b2)=ab (a-b )2.故答案为:ab (a-b )2. 考点:提公因式法与公式法的综合运用.10.(2015届山东省济南市平阴县中考二模)分解因式:3ax2-3ay2= .【答案】3a (x+y )(x-y ).【解析】试题分析:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).故答案为:3a(x+y)(x-y).考点:提公因式法与公式法的综合运用.11.(2015届山东省聊城市中考模拟)因式分解:4a3-12a2+9a= .【答案】a(2a-3)2.【解析】试题分析:4a3-12a2+9a=a(4a2-12a+9)=a(2a-3)2.故答案为:a(2a-3)2.考点:提公因式法与公式法的综合运用.12.(2015届山东省潍坊市昌乐县中考一模)把3x3-6x2y+3xy2分解因式的结果是.【答案】3x(x-y)2.考点:提公因式法和公式法的综合运用.13.(2015届广东省广州市中考模拟)分解因式:x2+xy= .【答案】x(x+y).【解析】试题分析:x2+xy=x(x+y).故答案为:x(x+y).考点:因式分解-提公因式法.14.(2015届广东省深圳市龙华新区中考二模)因式分解:2a3-8a= .【答案】2a(a+2)(a-2).【解析】试题分析:2a3-8a=2a(a2-4)=2a(a+2)(a-2).故答案为:2a(a+2)(a-2).考点:提公因式法与公式法的综合运用.15.(2015届江苏省南京市建邺区中考一模)若a-b=3,ab=2,则a2b-ab2= .【答案】6.【解析】试题分析:∵a-b=3,ab=2,∴a2b-ab2=ab(a-b)=2×3=6.故答案为:6.考点:因式分解-提公因式法.16.(2015届河北省中考模拟二)若M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,则M+N-2O的值为.【答案】4.【解析】试题分析:∵M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,∴M+N-2O=(2015-1985)2-2(2015-1985)×(2014-1986)+(2014-1986)2=[(2015-1985)-(2014-1986)]2=4.故答案为:4.考点:因式分解-运用公式法.17.(2015届浙江省宁波市江东区4月中考模拟)分解因式:a3﹣9a= .【答案】a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.18.(2015届湖北省黄石市6月中考模拟)分解因式:xy2﹣2xy+x=__________.【答案】x(y-1)2.【解析】试题分析:先提公因式x,再对剩余项利用完全平方公式分解因式.即xy2-2xy+x=x(y2-2y+1)=x(y-1)2.故答案为:x(y-1)2.考点:提公因式法与公式法的综合运用.19.(2015届浙江省宁波市江东区4月中考模拟)如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)这个几何体模型的名称是.(2)如图2是根据a,b,h的取值画出的几何体的主视图和俯视图(图中实线表示的长方形),请在网格中画出该几何体的左视图.(3)若h=a+b,且a,b满足14a2+b2﹣a﹣6b+10=0,求该几何体的表面积.【答案】(1)长方体或底面为长方形的直棱柱;(2)图形略;(3)62.考点:1.因式分解的应用;2.由三视图判断几何体;3.作图-三视图.。