力矩分配法
- 格式:pdf
- 大小:3.61 MB
- 文档页数:29
力矩分配法简介力矩分配法是一种常用的工程分析方法,用于计算和分析物体受到的力的分布情况以及力矩的平衡。
根据力矩分配法,物体处于平衡状态时,所有作用于物体上的力矩和为零。
利用这个原理,可以计算物体上各点的力的大小和分布。
基本原理力矩是一个力在距离某一点的作用线上产生的旋转效果。
当物体受到多个力作用时,在平衡状态下,力的合力和力矩的合力都为零。
根据力矩的定义,可以得到如下的力矩分配方程:其中,表示物体上所有力矩的代数和。
力矩分配法的步骤力矩分配法一般包括以下几个步骤:1.给定各个力的大小和作用点位置。
2.计算每个力的力矩。
力的力矩可以通过力乘以力臂得到,力臂是力的作用点到某一参考点的直线距离。
3.将各个力矩代入力矩分配方程,求解未知力的大小和作用点位置。
可以利用代数方程或者力矩图等方法进行计算。
4.验证计算结果,检查力矩的合力是否为零,以验证平衡状态。
5.如果力矩不为零,则需要重新调整力的大小和作用点位置,再次计算和验证。
力矩分配法的应用力矩分配法在工程中有广泛的应用。
以下是一些常见的应用例子:1.结构平衡:力矩分配法可以用于计算结构上各个部分受力的平衡情况,如梁、桁架等结构的受力分析。
2.机械设计:力矩分配法可以用于计算机械装置中各个零件受力的分布情况,如齿轮传动、支撑结构等。
3.车辆平衡:力矩分配法可以应用于汽车、飞机等交通工具的平衡分析,确保车辆的稳定性和安全性。
4.物体悬挂:力矩分配法可以计算物体悬挂时各个支点的受力情况,如吊车、吊车臂等。
总结力矩分配法是一种常用的力学分析方法,通过计算力矩的平衡来推导出物体上各点的力的分布情况。
它在工程中的应用非常广泛,可以用于结构平衡、机械设计、车辆平衡等领域。
使用力矩分配法可以帮助工程师更好地理解和分析各种力的作用情况,从而设计出更加稳定和安全的结构和设备。
力矩分配法
力矩分配法是计算超静定结构的一种渐近方法。
力矩分配法是根据位移法基本原理,从开始建立近似状态,逐步通过增量调整来修正,最后收敛于真实状态。
力矩分配法的未知量为杆端弯矩,正负号规定同位移法。
力矩分配法只适用于求解无结点线位移的结构。
在力矩分配法求解超静定问题中,有四大步骤:
第一步:分析结构体系(是否为几何不变体系,是否有结点角位移),结构体系中的结点角位移就是结构的基本未知量。
第二步:求解四大参数(线刚度i 、转动刚度nm S 、分配系数nm 、
固端弯矩g nm M )
第三步:求解杆端弯矩
第四步:求跨中弯矩,作M 图,Q 图。
第十七章力矩分配法一、力矩分配法的基本概念力矩分配法是在位移法基础上发展起来的一种数值解法,它不必计算节点位移,也无须求解联立方程,可以直接通过代数运算得到杆端弯矩。
力矩分配法的适用对象:是连续梁和无节点线位移刚架。
内力正负号的规定:同位移法的规定一致。
杆端弯矩使杆端顺时针转向为正,固端剪力使杆端顺时针转向为正。
1、转动刚度(S)定义:杆件固定端转动单位角位移所引起的力矩称为该杆的转动刚度,(转动刚度也可定义为使杆件固定端转动单位角位移所需施加的力矩)。
转动刚度与远端约束及线刚度有关远端固定: S = 4 i远端铰支: S = 3i远端双滑动支座: S = i远端自由: S = 0 (i为线刚度)力矩分配法的基本思路,刚节点B将产生一个转角位移FM固端弯矩():是被约束隔离各杆件在荷载单独作用下引起的杆端弯矩。
FFFF MMMM,,,BBABCBDFM一般地不等于零,称为节点不平衡力矩现放松转动约束,即去掉刚臂,这个状态称为放松状态,节点B将产生角位移,并在各杆端(包括近端和远端)引起杆端弯矩,记作M’,则固端弯矩与位移弯矩的代数和就是最终杆端弯矩2、近端位移弯矩的计算及分配系数AB杆:远端为固定支座,转动刚度SBA = 4iBC杆:远端为铰支座,转动刚度SBC = 3iBD杆:远端为双滑动支座,转动刚度SBD = i 各杆近端(B端)的杆端弯矩表达式:FFF,MMMiMSM4,,,,,,,,BABABABABABAFFF,MMMiMSM3,,,,,,,,CCBBCBCBBCBCFFF,MMMiMSM,,,,,,,,BBDBDBBDBDDD式中:23FlqlFFFM,,M,0M,CBDBAB1612显然,杆的近端位移弯矩为:,,,MS,MS,,MS,,,BABABDBDBCBC由B节点的力矩平衡条件ΣM = 0得:FFFS,,M,S,,M,S,,M,0BABABCBCBDBDM,M,M,0 BABCBD解得未知量θ为:FFFF(,M,M,M)(,,M)BCBCBCB,,, S,S,S,SBABCBDB解得的未知量代回杆近端位移弯矩的表达式,得到将未知量代回杆近端分配弯矩的表达式,得到:SFBA,M,S,,(,,M)BABAB,SBSFBC,M,S,,(,,M)BCBCB,SBSFBD,M,S,,(,,M)BDBDB,SB上式中括号前的系数称为分配系数,记作μ,即:SSSBCBABD,,,,,,BABCBD,S,,SSBBB一个杆件的杆端分配系数等于自身杆端转动刚度除以杆端节点所连各杆的杆端转动刚度之和。
土木工程力学(2)辅导(四)——力矩分配法1. 力矩分配法的基本运算●三个基本概念转动刚度:111zSM kk=kS1:1k杆的1用的弯矩。
分配系数:MSSMkkk)1(111=∑k1μ:当结点1杆的1端的力矩。
传递系数:kkkMCM111=kC1矩的比值。
当单位力偶作用在结点1弯矩乘以传递系数。
●一个基本运算如图1所示,各杆的转动刚度为:141413131212,4,2iSiSiS===各杆的力矩分配系数为:∑∑∑===)1(11414)1(11313)1(11212,,kKkSSSSSSμμμ分配给各杆的分配力矩即近端弯矩为:MSSMMSSMMMSSMkkk∑∑∑====)1(11414)1(1131312)1(11212,,μμμμ各杆的传递系数为:1,21,0141312-===CCC各杆的传递弯矩即远端弯矩为:144113131331121221,21,0MMMMCMMCM CCC-=====2.具有一个结点角位移结构的计算步骤:● 加约束:在刚结点i 处加一附加刚臂,求出固端弯矩,再求出附加刚臂给结点的约束力矩f i M 。
● 放松约束:为消掉约束力矩f i M ,加-f i M ,求出各杆端弯矩。
● 合并:将上两种情况相加。
固端弯矩+分配弯矩=近端弯矩 固端弯矩+传递弯矩=远端弯矩 例1. 用力矩分配法计算图2所示连续梁的弯矩图。
分配系数固端弯矩分配及传递弯矩最后弯矩M图(单位:KN.m)mKNplMmKNqlMmKNqlMBCfCBfBAf.60163.6012.1351222-=-====-=附加刚臂对结点的约束力矩为:mKNM B f.7560135=-=●放松结点:在结点B上加外力偶B fM-,求出分配弯矩和传递弯矩。
定义lEIi=转动刚度为:iiSiiSBCBCABBA44,33====分配系数为:57.043.0=+==+=BCABBCBCBCBABABASSSSSSμμ分配弯矩为:()()mkNMmkNMBCBA.25.327543.0.75.427557.0-=-⨯=-=-⨯=μμ传递弯矩为:()mkNMMCBcABc.38.2175.4221-=-⨯==●合并,固端弯矩+分配弯矩=近端弯矩,固端弯矩+传递弯矩=远端弯矩。