继电器电磁干扰的分析及抑制
- 格式:doc
- 大小:127.50 KB
- 文档页数:8
微机控制系统中电磁阀和继电器干扰的抑制措施发布时间:2008-10-12 来源:应用领域:自动化控制引言在热控调试的过程中,由于电磁阀或继电器的干扰导致微机板卡通道甚至整个板卡损坏的现象屡见不鲜.随着微机控制系统的普及,目前无论大小机组的热控专业都大量地采用计算机控制,而电磁阀和继电器又是控制设备中不可缺少的控制电器,因此抑制电磁阀或继电器的干扰对微机控制系统具有极其重要的意义.在成套控制系统中,常由可编程序控制器(PLC)或计算机分散型控制系统(DCS)的输出装置来控制电磁阀或继电器,由于种种原因这些输出装置(板卡)的抗干扰能力不尽相同,在上电调试之前应对这些回路进行必要的评估性测试,采取相应的抗干扰措施,杜绝损坏板卡通道或整块板卡的现象.1电磁阀的干扰及抑制措施电磁阀按驱动电源分为直流电磁阀和交流电磁阀.电磁阀是典型的感性负载.接通电磁阀线圈时,铁心尚未闭合,电感很小,所以交流电磁阀的启动电流冲击很大,约为稳态时电流的6~10倍.虽然此电流的绝对值并不大,一般不至于造成干扰,但必须充分评估输出板卡的容量是否能承受这种电流冲击的影响.电磁阀断电时,在线圈两端和连接导线上会出现很高的浪涌电压,并伴有衰减的高频振荡,这是一种很强的瞬变干扰,如果不采取抑制措施,不仅影响开关器件或触点,也会干扰电子装置的工作,甚至损坏电子元器件.1.1交流电磁阀的干扰抑制在施工中接触最多的是交流220V或交流110V电源驱动的交流电磁阀,除了需抑制切断线圈时的瞬变干扰外,还需抑制由低压电源带来的干扰,常用的方式有以下两种:1继电器控制,如图1所示.采用继电器控制时,除断开时的电弧和放电造成干扰外,还有接触时由于触点的弹跳现象形成脉冲列式的干扰.一般应采用RC吸收回路,既能抑制接通和断开时的干扰,又保护了继电器的触点.为了方便也可以把RC吸收回路并联在触点上,以起到保护触点的作用.但是当连接线过长时,往往在抑制干扰方面起不到应有的作用,这一点通过梅县电厂Ⅱ期工程和现场试验已得到证实.图1中,虽然继电器起隔离作用,但其线圈是易发生干扰的电感线圈,因此输出板卡与继电器之间必须采用光电隔离.当控制器某输出通道有输出时,该通道的光电耦合器中的发光二极管流过电流而发光,此光线使光电耦合器中的光敏三极管饱和导通,于是继电器线圈电触点闭合.由于发光二极管和光敏三极管没有电气联系,故能实现电气隔离.2双向晶闸管控制.该控制方式就是采用固态继电器或交流无触点继电器控制电磁阀,由于双向晶闸管的关断特性,此方式只能用于交流电磁阀的控制,如图2所示..双向晶闸管可以直接连接到交流负载回路,但是为了避免切断负载时的干扰,输出线上感应的干扰及动力电源的共模干扰等侵入控制器内部,仍需用光电在元件与控制器内部实现隔离,同时还要在双向晶闸管上并联RC吸收回路来缓冲关断时双向晶闸管上的电压变化.因为电磁阀是感性负载,负载电流滞后于电源电压,当驱动电压反相时,负载电流开始减少,经过一段时间后变为零,此时双向晶闸管才开始关断.但此刻突然加于阻断的双向晶闸管上的电压已很大,由于电压上升率很大,可能使双向晶闸管又导通,产生误动作,甚至损坏,所以必须使用RC吸收回路.R和C的数值取决于线路和电磁阀线圈的参数,但对一般应用场合,R为100Ω,C为0.1μF即可.C过大和R过小时,虽然能提高抑制效果,但会加大双向晶闸管关断时的漏电流,存在电磁阀不能由吸合变为释放的危险.1.2直流电磁阀的干扰抑制图1所示的方法适合于直流电磁阀,而图3所示的晶体管控制的方法也比较常用.当输出时,光电耦合器接受控制器内部回路来的输出信号,发光二极管发光,耦合器的输出端光敏三极管饱和导通.为驱动用晶体管提供基极电流,电磁阀闭合.由于晶体管关断时间很短,切断线圈时的感应电压很高,所以同样必须在线圈上并联RC回路或者并联二极管、稳压管等.1.3吸收回路的安装方法RC等吸收回路应如图4a所示,直接并联在交流或直流电磁阀线圈的两端,而不能像图4b那样接在电子控制装置侧.原因是现场施工中连接线一般都很长,其分布参数将影响吸收回路发挥作用.只在线圈处安装吸收回路也是不够的,因为切断电磁阀时,长连接线的分布参数在过渡过程中产生的干扰仍会影响控制装置的工作,最好的安装方法如图4c所示,在控制装置的驱动侧配置合适的吸收器件.2继电器和接触器的干扰和抑制措施继电器和接触器都是感性负载,所用的干扰抑制措施与电磁阀所采用的措施基本相同.不过从小的控制用继电器到大负载用的接触器的容量相差很悬殊.对小的继电器或接触器,通常由可编程序控制器或微机直接进行控制,而对大容量的接触器往往需通过辅助继电器进行控制.一般情况下,触点容量30A以下者RC回路为470Ω和0.1μF,触点容量30A 以上者,RC回路为470Ω和0.47μF.3热控调试过程中应注意的问题1充分了解输出装置和电磁阀继电器的规格形式,确定是否必要增加RC回路.由于设计不够细致或厂家自身原因,电子输出装置不具备必要的抗干扰措施,或者抗干扰的能力不强.因此,通电调试前应仔细核对有关规格参数,充分评估电子输出装置的抗干扰能力.2认真检查线路的敷设情况,评估因长距离连线而产生的影响.3根据实际情况确定是否增加抗干扰措施及具体实施方法,如上述正确安装吸收回路法,必要时可以做一些现场试验.4由于干扰的不确定性,因此对干扰问题必须进行耐心的观察和评估,切勿掉以轻心,做到一劳永逸关于自动化装置受干扰及抗干扰措施的分析作者:彭岳云时间:2007-11-25 12:02:00来源:论文天下论文网摘要:电磁兼容是现代自动化装置抗电磁干扰能力方面非常关注的目标。
浅析继电保护的电磁干扰及其防护措施摘要:本文分析了电气设备中继电器及的干扰因素及其机理,并提出了抑制干扰的有效措施。
关键词:继电器电磁干扰保护措施随着我国经济的高速发展,人们生活和社会活动对电力的需求越来越高,与之相应的为了保障安全可靠地供电,对继电保护也不断提出新的要求,继电保护元件也在向安装调试简单、运行维护方便、保护动作迅速、灵敏可靠方向发展。
但是在现场运行过程中,如果抗干扰措施落实不当,则很容易受到外界环境的干扰,造成保护不正常、继电保护的误动、拒动等会严重威胁到电网的安全运行,因此继电保护的抗干扰措施一直是继电保护工作的重点。
干扰源产生的干扰之所以能影响继电器的正常工作,须经过一定的方式传输给被干扰的设备,这就是形成干扰的三个要素:形成电磁能量的干扰源、干扰传递的途径、对干扰敏感的接受设备。
电气设备和电子设备在其运行过程中都会产生电磁能,并能通过传导、辐射两种形式对继电保护设备产生干扰。
电磁干扰具有很宽的频率范围,又有一定的幅度,经过传导和辐射会污染电磁环境,对电子设备造成干扰,有时甚至危及操作人员的安全。
一、继电保护的电磁干扰因素一般情况下,电力系统的电磁干扰主要来源于内部干扰和外部干扰两个方面:内部干扰是指系统内部的元件,如电容和杂散电感的结合,引起了不同信号的感应,多点接地造成的电位差干扰,高频信号传输造成的电磁波反射等;外部干扰主要指外部环境因素所决定的干扰,如雷击、直流电源的中断与恢复、中压开关柜操作等原因都将产生较强的电磁干扰。
常见的干扰有以下几种[1]:(1)工频干扰当变电所内发生接地故障时,会在变电所地网中和大地中流过接地故障电流,通过地网的接地电阻,使得地网上任意不同的两点之间产生很高的地电位差,这种干扰的电位幅值取决于地网接地电阻及入地电流的大小。
(2)高频干扰电力系统的隔离开关的动静触点接近后会产生电弧闪络,从而产生操作过电压,干扰电压通过母线、电容器等设备进入地网,从而对相关二次回路和二次设备产生干扰,当干扰水平超过装置逻辑元件允许的干扰水平时,将引起继电保护装置的不正常工作。
降低电磁干扰的方法分析摘要:电磁干扰存在于电气设备及电子产品之间,也存在于各部件之间,是一种静电放电干扰,从一定意义上可以说,电磁干扰是只能降低或减少而不能完全消失。
热电厂里到处都存在电磁干扰,主要的干扰源有大功率变频器、应急电源逆变器、发电机、电源谐波、大批使用电子节能灯等等。
根据本人在热电厂电气维修过程中的实际工作经验,认为降低电磁干扰的主要方法有很多,如:电源线加滤波磁环、信号线采用屏蔽线、电磁干扰源外部加金属网屏蔽、干扰源电源与别的用电器电源分开等。
关键词:电磁干扰热电厂屏蔽降低中图分类号:tn03 c 文献标识码:a 文章编号:1007-9416(2013)01-0202-01电磁干扰主要是感应线圈产生的,屏蔽是主要的方法,但是在无法屏蔽的场合,如家用电磁炉、汤桶、可移动的商用电磁炉、工业用高频感应加热圈等等,线圈辐射是很大的。
按国标检测范围是30m到1000m。
一个理想的正弦波是没有高次谐波的,也就是说几十khz的高频电流如果是理想的正弦电流的话就没有高次谐波,在30m以上的频率范围内检测是完全可以通过辐射干扰的。
通常来说,降低辐射干扰有三大主要方式:(1)一个是屏蔽,另一个是减小各个电流回路的面积(磁场干扰),和带电导体的面积及长度(电场干扰)。
(2)当载流体的长度正好等于干扰信号四分之一波长的整数倍的时候,干扰信号会在电路中产生谐振,这时辐射干扰最强,这种情况应尽量避免;(3)磁场辐射干扰主要是流过高频电流回路产生的磁通窜到接收回路中产生的,因此,要尽量减小流过高频电流回路的面积和接收回路的面积。
1 电磁干扰的涵义一般来说,电磁干扰主要有两种形式,即辐射干扰和传导干扰。
辐射干扰是在一定空间内干扰源将其信号耦合传到另一个电系统,能成为辐射干扰源的物体有很多,如:频率高的信号线、高速pcb 及系统设计、发电机线圈、集成电路、各类接插件;传导干扰是指一个电网络上的信号耦合(干扰)通过导电介质传到另一个电网络。
电磁干扰解决方案
《电磁干扰的解决方案》
随着现代科技的不断发展,电磁干扰问题也越来越突出。
电磁干扰指的是电磁场对设备或系统正常工作造成的影响,它可能导致通信中断、设备损坏甚至安全事故。
因此,如何解决电磁干扰成为了一个迫在眉睫的问题。
在面对电磁干扰问题时,我们可以采取以下解决方案:
1. 设备屏蔽:为了减少电磁干扰,可以在设备上采用屏蔽措施,如在电路板设计中添加屏蔽层、采用屏蔽壳体等,以阻隔外部电磁波的干扰。
2. 使用滤波器:在通信系统中,可以采用滤波器来削弱或者消除干扰信号,保证信号的稳定传输。
3. 地线布局优化:通过合理设计电子设备的地线布局,减少电磁干扰的传播,从而提高设备的抗干扰能力。
4. 电磁兼容性测试:在产品研发的早期阶段,进行电磁兼容性测试,及时发现并解决潜在的电磁干扰问题。
5. 频谱管理:在无线通信系统中,通过合理的频谱规划和管理,避免不同系统之间的频谱干扰,确保通信质量和可靠性。
总的来说,要解决电磁干扰问题,需要综合考虑设计、测试、
管理等多方面的因素。
通过合理的规划和技术手段,可以有效地解决电磁干扰问题,为现代科技的发展提供稳定的环境和保障。
EFT原理及解决方法本帖被fasten 从测试报告共享学习移动到本区(2008-05-20)瞬态脉冲骚扰及抑制方法瞬态脉冲骚扰及抑制方法2006-9-11 11:51:30未知来源供稿摘要:量度继电器、继电保护及自动化装置(以下简称继电器及装置)随着电子技术的发展已实现微机化及数字化。
在电力系统恶劣的电磁环境中经常受到电磁骚扰,出现电磁干扰的几率很大,严重影响量度继电器及装置的正常工作。
其中影响较大的是瞬态脉冲骚扰。
本文从分析瞬态脉冲骚扰产生的原因着手,总结出各种瞬态脉冲骚扰的特征,提出抑制的方法。
关键词:瞬态脉冲骚扰;原因及特征;抑制方法。
1 引言在电力系统的电磁环境中存在着一些短暂的高能量的脉冲骚扰源,这些骚扰对继电器及装置的正常工作有非常大的影响,严重时也要损坏元器件,甚至损坏设备以至于整个系统。
这些骚扰源就称为瞬态脉冲骚扰源。
产生瞬态脉冲骚扰源的原因有:雷电放电、静电放电、电力系统的开关动作过程等。
常见的瞬态脉冲骚扰源有电快速瞬变脉冲群骚扰、静电放电骚扰、浪涌(冲击)骚扰及1MHz(100kZHz)脉冲群骚扰等。
2 瞬态脉冲骚扰的产生原因2.1 瞬态脉冲骚产生的机理在开关断开电感负载电路的过程中,在电感上要产生反电势。
根据楞次定律:这个反电势应为。
反电势要向寄生电容C反向充电,随着充电电压的升高,当达到一定数值时,在触点之间要出现击穿现象,形成导电通路。
一旦出现导电通路时,电容C就要开始放电,使电压下降,当电压降到维持触点导通电压以下时,触点又将处于断开状态。
上述过程就要重复发生,此过程重复到触点的间距大至电容上电压不能使触点间再击穿为止。
当电容不能通过击穿触点放电时,就通过电感回路放电,直至电感中能量消耗完为止。
在上述过程中,电容C每次击穿触点时都要向电源回路反向充电,因此在电源回路上形成很大的脉冲电流,由于电源回路也有阻抗存在,脉冲电流通过电源回路时,在其两端就要形成脉冲电压,而共用此电源回路的其它的电路(或继电器及装置就要受到该脉冲电压的影响。
继电器电磁干扰的分析及抑制文/侯智烨 供稿:《广播电视信息》2009年08月19日12:58 来源:人民网-传媒频道摘要:本文主要介绍了对电气设备中继电器及其开关触点干扰抑制的机理,提出了抑制干扰的有效措施。
关键词:继电器 电磁干扰 分析 抑制1前言随着科学技术的飞速发展,电子、电力电子、电气设备应用越来越广泛,它们在运行过程中会产生较强的电磁干扰和谐波干扰。
其中,电磁干扰具有很宽的频率范围(从几百Hz到MHz),又有一定的幅度,经过传导和辐射会污染电磁环境,对电子设备造成干扰,有时甚至危及操作人员的安全。
特别是大功率中、短波广播发射中心,其周围电磁环境尤为复杂,要想保证设备安全稳定运行,电子设备及电源必须具有更高的电磁兼容性。
2电磁干扰的抑制电磁干扰EMI(Electromagnetic Interference)是指由无用信号或电磁骚扰(噪声)对有用电磁信号的接收或传输所造成的损害。
一个系统或系统内,某一线路受到电磁干扰的程度可以表示为如下关系式:N=G×C/I其中:G为噪声源强度;I为受干扰电路的敏感程度;C为噪声通过某种途径传导受干扰处的耦合因素。
从上式可以看出,电磁干扰抑制的技术就是围绕这三个要素所采取的各种措施,归纳起来就是:(1)抑制电磁干扰源;(2)切断电磁干扰耦合途径;(3)降低电磁敏感装置的敏感性。
2.1抑制电磁干扰源首先必须确定干扰源在何处,越靠近干扰源的地方采取措施抑制效果越好,一般来说,电流电压瞬变的地方(即di/dt或du/dt)即是干扰源,如:继电器开合、电容充放电、电机运转、集成电路开关工作等都可能成为干扰源。
另外,市电并非理想的50Hz正弦波,其中充满各种频率噪声,也是不可忽视的干扰源。
抑制干扰源就是尽可能的减小di/dt或du/dt,这是抗干扰设计时最优先和最重要的原则。
减小di/dt的干扰源,主要是在干扰回路串联电感或电阻以及增加续流二极管来实现;减小du/dt的干扰源,则是通过在干扰源两端并联电容来实现。
中间继电器线圈抑制器是一种用于继电器系统中的重要辅助装置,它主要的作用是对继电器线圈中的电磁干扰信号进行抑制,保证继电器系统的稳定性和可靠性。
本文将从工作原理和作用两个方面对中间继电器线圈抑制器进行详细介绍。
一、工作原理1.电磁干扰信号的产生在继电器系统中,线圈会受到外部电磁干扰信号的影响,这些信号可能来自于电气设备的开关操作、电机的启动和停止等。
这些干扰信号会使继电器的线圈产生过电压、浪涌电流甚至电弧,从而对继电器的正常工作造成影响。
2.中间继电器线圈抑制器的工作原理中间继电器线圈抑制器采用了特殊的电路设计,主要通过电感、电容等元件构成LC滤波器,对干扰信号进行滤波和抑制。
当有干扰信号进入继电器线圈时,中间继电器线圈抑制器会将这些信号导引至LC滤波器中,对其进行消除和降低,从而保证继电器线圈受到的电压和电流在可控范围内,避免对继电器系统的影响。
二、作用1.保护继电器线圈中间继电器线圈抑制器能够有效地保护继电器线圈免受外部电磁干扰信号的影响,避免因干扰信号产生的过电压和浪涌电流对线圈的损坏,延长继电器的使用寿命。
2.提高继电器系统的稳定性和可靠性通过对电磁干扰信号的抑制,中间继电器线圈抑制器能够提高继电器系统的稳定性和可靠性,保证继电器在各种工作环境下都能够正常工作,不受外界因素的影响。
3.改善电器设备的工作性能在电气设备控制和保护系统中,中间继电器线圈抑制器的应用能够改善电器设备的工作性能,保证设备的正常运行,并减少因电磁干扰引起的故障和损坏。
通过以上内容的介绍,我们对中间继电器线圈抑制器的工作原理和作用有了更深入的了解。
它在继电器系统中扮演着非常重要的角色,能够保护继电器线圈、提高系统的稳定性和可靠性,改善电器设备的工作性能,对于维护电气系统的正常运行具有重要意义。
希望本文的介绍能够为大家对中间继电器线圈抑制器的认识提供帮助,促进其在实际工程中的应用。
中间继电器线圈抑制器作为继电器系统中的重要辅助装置,其工作原理和作用已经在上文中进行了较为详细的介绍。
继电器的振动和电磁声噪声分析与控制继电器作为一种常用的电子元件,广泛应用于各种电力系统、自动化控制系统和通信系统中。
然而,继电器在工作过程中会产生振动和电磁声噪声,给系统的正常运行和使用者带来一定的困扰。
因此,对继电器的振动和电磁声噪声进行分析与控制是非常重要的。
首先,我们先来了解继电器的振动产生原因。
在继电器的工作过程中,由于继电器的电磁线圈中通过的电流在切换过程中会发生变化,从而产生磁场变化。
这一磁场变化会导致线圈中出现磁场力,使得线圈和其他机械结构发生位移。
继电器的振动主要来自以下几个方面:1.线圈电流变化引起的磁场力:当线圈中的电流通过变化时,线圈会受到磁场力的作用,从而产生振动。
2.机械结构的震动和共振:继电器的机械结构包括触点、弹簧、铁芯等部分,当这些结构受到磁场力的作用时,会发生振动和共振现象。
3.电流和电压的突变:继电器在切换过程中,电流和电压会出现突变,这些突变也会引起继电器的振动。
继电器的振动不仅会产生噪声,而且还会影响其正常工作,甚至导致失效。
因此,降低继电器的振动对于保证系统的可靠运行至关重要。
下面我们来讨论继电器振动的控制方法。
1.优化继电器的机械结构:通过优化设计和制造继电器的机械结构,可以降低振动和共振的发生。
例如,在设计触点和弹簧时,可以考虑减小质量、增加刚度以及提高制造工艺等方法,从而减少振动的发生。
此外,对于关键部件,还可以使用减振材料或采用减振结构等方式来降低振动。
2.电磁设计优化:通过优化继电器的电磁设计,减小电流和电压的突变,可以降低振动的发生。
例如,合理选取线圈匝数和线径,调整磁场强度和磁场分布等方法,可以降低磁场变化带来的力矩和振动。
3.减小磁场力的影响:通过合理的电源设计和电流控制等方法,可以降低电路中的电磁干扰,减小电流和电压的波动,从而减小继电器的振动。
在继电器的电磁声噪声分析方面,主要是研究继电器在工作过程中产生的声音。
继电器的电磁声噪声主要来自于线圈和触点的振动以及机械结构的共振现象。
电磁继电器的电磁干扰现象与抑制方法嘿,朋友们!今天咱来聊聊电磁继电器的电磁干扰现象和抑制方法。
你想想啊,这电磁继电器就像个勤劳的小蜜蜂,在各种电路里忙忙碌碌地工作着。
但有时候呢,它也会惹出点小麻烦,这就是电磁干扰啦!就好比你正安静地听音乐呢,旁边突然有人大声喧哗,是不是挺烦人呀!电磁干扰出现的时候,那可真是让人头疼。
它可能会让你的电器设备变得怪怪的,一会儿抽风,一会儿又不正常工作了。
比如说,你家电视可能会突然出现雪花,或者音响发出奇怪的噪音,这都是电磁干扰在捣乱呢!那怎么对付这个小捣蛋鬼呢?嘿嘿,咱有办法!首先呢,可以从源头抓起呀,就像治理河流污染,先找到污染源头一样。
咱得给电磁继电器找个好地方安家,让它尽量少影响其他设备。
这就好比你把爱吵闹的小朋友放在一个单独的房间里,让他自己玩去,别打扰别人。
然后呢,给它穿上一层“防护服”,也就是一些屏蔽措施。
就像给人穿上厚厚的棉袄,能挡住寒风一样。
这些屏蔽措施能把电磁干扰给挡在外面,不让它乱跑。
还有啊,布线也很重要哦!把那些线整理得整整齐齐的,别让它们像乱麻一样纠缠在一起。
这就像你整理自己的房间,东西放得井井有条,找起来也方便,还不容易出乱子。
再说说接地吧,这可是个关键的环节呢!就好像给设备接上一根定海神针,让它稳稳地待着,不被电磁干扰轻易撼动。
咱平时使用的时候,也得注意一些小细节呀。
别把那些容易受干扰的设备放得离电磁继电器太近啦,就像你不会和一个爱捣蛋的家伙靠得太近一样。
总之呢,只要咱用心对待,电磁干扰这个小调皮是可以被我们制服的。
只要我们多留意,多采取一些措施,就能让我们的电器设备稳稳当当、顺顺利利地工作。
别让电磁干扰坏了我们的好心情和正常生活呀!大家说是不是这个理儿呢?电磁继电器的电磁干扰并不可怕,只要我们方法得当,就能和它和谐共处啦!。
电磁继电器的电磁干扰与抑制方式研究电磁继电器是一种电气控制设备,它利用电磁吸引力产生的机械运动将控制电路的通断进行切换。
它普遍应用于工业领域、电力系统、交通运输和家用电器等各个方面。
但是在实际应用中,电磁继电器常常面临电磁干扰的问题,这会影响到其正常工作和可靠性。
研究电磁继电器的电磁干扰与抑制方式对于提高电磁继电器的工作稳定性和可靠性具有重要意义。
一、电磁继电器的电磁干扰问题1.1 电磁干扰的成因电磁干扰是指外部的电磁场或者电磁波对电路、设备的影响,使其发生异常工作或损坏。
电磁继电器通常会受到来自电力系统、电机、电磁干扰源和其他电气设备等的电磁干扰,这些电磁干扰会导致电磁继电器的误动作、抖动、接触不良、触点烧毁等问题。
1.2 电磁干扰的影响电磁干扰对电磁继电器的影响主要表现在以下几个方面:1)误动作:电磁继电器在无控制信号的情况下误动作,这可能导致不必要的操作和设备损坏。
2)抖动:电磁继电器在工作过程中频繁的开合,导致触点的磨损和寿命的缩短。
3)接触不良:电磁干扰会导致电磁继电器触点的氧化、腐蚀,影响其导电性能,进而引起接触不良。
4)触点烧毁:在严重的电磁干扰下,电磁继电器的触点可能会被电弧击穿,导致接触不良或者短路,最终触点可能会烧毁。
以上这些问题都会严重影响电磁继电器的正常工作,研究电磁干扰的抑制方式具有重要的实际意义。
2.1 电磁屏蔽电磁屏蔽是通过在电磁继电器外部或内部设置屏蔽结构,来有效隔离和吸收外部的电磁干扰,保护电磁继电器内部的电路和器件。
电磁屏蔽的方法主要包括外部屏蔽和内部屏蔽。
外部屏蔽是在电磁继电器外部设置金属屏蔽罩或金属壳体,用来隔离外部电磁场对电磁继电器的影响。
这种方法对于电磁波的屏蔽效果比较好,但是对于低频的电磁干扰屏蔽效果相对较差。
2.2 地线合理布置电磁继电器的地线合理布置对于抑制电磁干扰也是非常重要的。
正确地连接电磁继电器的地线,可以有效的将电磁干扰引入地线,从而减小电磁干扰对电磁继电器的影响。
对于继电器控制电路抗干扰的一些建议继电器控制电路的稳定性和抗干扰能力对整个系统的正常运行起着至关重要的作用。
为了确保继电器控制电路的可靠性,下面给出一些建议来提高其抗干扰能力:1.电源滤波:确保电源电压稳定,避免电源电压的突变或波动对继电器控制电路的干扰。
可以使用电源滤波器来过滤电源中的噪声和干扰信号。
2.地线连接:正确连接系统的地线可以有效地抑制电磁干扰。
将地线设计成良好的导电路径,避免由于多个地线连接而导致对地的回路干扰。
3.继电器的选择:选择抗干扰能力强的继电器,例如具有屏蔽外壳或抗电磁辐射性能好的继电器。
这样可以有效地减少外界电磁干扰对继电器的影响。
4.使用绞线:在长距离传输信号时,使用绞线可以减少电磁干扰对传输信号的影响。
绞线能够产生相互抵消的磁场,从而减少对继电器电路的干扰。
5.使用滤波器:对于需要抗电磁干扰的继电器控制电路,可以使用滤波器来滤除高频噪声和电磁干扰信号。
常见的滤波器有RC滤波器和LC滤波器等。
6.屏蔽措施:在继电器控制电路中,可以使用屏蔽材料或屏蔽设备来阻挡外界电磁场的干扰。
例如,在继电器周围使用金属屏蔽壳可以有效地屏蔽掉外界电磁干扰。
7.布局优化:在设计继电器控制电路时,要合理布置电路板上的元器件,避免信号线与电源线、高功率线等相互干扰。
同时,合理配备距离较近的元器件,并减小各种干扰源之间的距离。
8.使用抑制器:对于常见的噪声和干扰源,可以在继电器控制电路中使用抑制器来提高抗干扰性能。
抑制器可以将干扰源的信号抑制到一个可接受的范围内。
9.引入隔离器:在一些特殊情况下,可以在继电器控制电路中引入隔离器,将控制信号和被控制的电路进行隔离,从而减少外界干扰对继电器的影响。
10.优化接地系统:合理设计和优化接地系统,确保接地电阻小且导电性良好。
同时,避免地线回路产生的环形回路干扰。
总之,通过合理的电路设计、优化布局、使用抗干扰的元器件和电缆以及良好的接地系统,可以有效提高继电器控制电路的抗干扰性能。
电磁干扰抑制技术1.电磁干扰概述电磁干扰是指任何能使设备或系统性能降级的电磁现象。
一个系统或系统内某一线路受电磁干扰的程度可用公式表示。
(1)电磁干扰类型有传导干扰和辐射干扰,前者是电子设备产生的干扰信号通过导电介质或公共电源线互相产生干扰;后者是电子设备产生的干扰信号通过空间耦合将干扰信号传给另一个电网络或电子设备。
(2)电磁干扰源分为自然和人为干扰源两大类,前者指自然界固有的与人活动无关的电磁干扰现象,如大气放电、地球磁场、太阳所发出的辐射等;后者指人类工业和社会活动产生的电磁干扰,如点火系统、输电线系统、电感性设备、变频设备、开关器件和继电器等。
2.电磁干扰的抑制不论电磁干扰如何复杂,电磁干扰的逻辑拓扑关系由三个基本要素组成,即存在电磁干扰能源;存在电磁干扰受体,当电磁干扰强度超出界限时,被干扰设备的性能将发生混乱;在干扰源和干扰受体间存在耦合通道传输电磁能量。
电磁干扰抑制技术就是围绕三要素,抑制干扰源、切断电磁干扰耦合途径、降低电磁敏感装置的敏感性。
(1)抑制干扰源确定何处是干扰源,靠近干扰源采取相应措施,抑制效果就比较好。
一般来说,电流电压发生剧变的位置就是干扰源,如继电器通断、电容充电、电机运转、晶闸管导通、IGBT工作、集成电路开关工作等。
另外,市电电源并非理想的50Hz正弦波,也是干扰源。
可采用低噪声电路、瞬态抑制电路、旋转装置抑制电路、稳压电路等;选择的器件尽可能用低噪声、高频特性好、稳定性高。
但抑制电路选择不适当的器件也可能成为新干扰源。
(2)切断电磁干扰耦合途径主要为传导和辐射两种,噪声经导线直接耦合到电路中最常见。
抑制传导干扰的主要措施是串接滤波器。
有低通、高通、带通和带阻四种,根据信号与噪声频率选择相应的滤波器。
如噪声频率远高于信号频率,常用LC低通滤波器,结构简单,效果好。
但对于要求较高的产品,必须用穿心式滤波器。
此式滤波器也称为穿越式滤波器,有C型、T型和LC型结构,高频特性优良,可工作在1GHz以上,体积小、重量轻,允许电流大,可广泛用于各种场合。
继电器的电气噪声和电磁干扰分析与控制继电器是一种常用的电气开关装置,具有稳定可靠、承载能力强等特点,广泛应用于工业自动化控制系统中。
然而,在实际应用过程中,继电器会产生电气噪声和电磁干扰问题,对系统的正常运行和周围设备都会产生负面影响。
因此,对继电器的电气噪声和电磁干扰进行分析和控制显得十分重要。
首先,我们需要了解继电器产生电气噪声和电磁干扰的原因。
继电器的电气噪声主要由继电器内部的电磁线圈工作中产生的电流和磁场变化引起。
这种电气噪声可能是由于不良接触、电磁振动以及线圈中的电荷积累等问题导致的。
而电磁干扰则是指继电器的开关动作过程中产生的电磁辐射,会对周围的电子设备和通信系统造成干扰。
为了对继电器的电气噪声和电磁干扰进行有效控制,我们可以采取以下方法:1. 设计合适的继电器布局:合理的继电器布局可以减少电磁互干扰的可能性。
例如,可以通过选择适当的距离来减少继电器之间的相互干扰,或者使用隔离装置来隔离继电器与其他元件。
2. 优化继电器的电气连接:确保继电器的接线良好,减少接触电阻和电荷积累,从而降低电气噪声的产生。
另外,使用合适的导线和电缆可以降低电气噪声的传播。
3. 选择低电磁辐射的继电器:在选型过程中,可以优先选择具有低电磁辐射特性的继电器,这样可以减少电磁干扰对周围设备的影响。
4. 使用滤波器和隔离器:在继电器的电源输入和输出端口处加装滤波器和隔离器,可以有效地抑制电磁噪声和干扰信号的传播,保证系统的稳定性和可靠性。
5. 合理调整继电器的工作参数:通过调整继电器的工作电压和工作电流,可以减少电磁辐射和噪声的产生。
此外,使用合适的开关速度和工作周期也能降低电气噪声的频率和幅度。
6. 对继电器进行屏蔽和封装:采用金属屏蔽罩或金属外壳封装继电器,可以有效地限制电磁辐射和噪声的传播,提高系统的抗干扰能力。
7. 进行电磁兼容测试:在产品设计完成后,进行全面的电磁兼容测试,确保继电器符合相关的电磁兼容标准和要求,减少对周围设备以及通信系统的干扰。
摘要:本文主要介绍了对电气设备中继电器及其开关触点干扰抑制的机理,提出了抑制干扰的有效措施。
关键词:继电器电磁干扰分析抑制
1前言
随着科学技术的飞速发展,电子、电力电子、电气设备应用越来越广泛,它们在运行过程中会产生较强的电磁干扰和谐波干扰。
其中,电磁干扰具有很宽的频率范围(从几百Hz 到MHz),又有一定的幅度,经过传导和辐射会污染电磁环境,对电子设备造成干扰,有时甚至危及操作人员的安全。
特别是大功率中、短波广播发射中心,其周围电磁环境尤为复杂,要想保证设备安全稳定运行,电子设备及电源必须具有更高的电磁兼容性。
2电磁干扰的抑制
电磁干扰EMI(Electromagnetic Interference)是指由无用信号或电磁骚扰(噪声)对有用电磁信号的接收或传输所造成的损害。
一个系统或系统内,某一线路受到电磁干扰的程度可以表示为如下关系式:
N=G×C/I
其中:G为噪声源强度;
I为受干扰电路的敏感程度;
C为噪声通过某种途径传导受干扰处的耦合因素。
从上式可以看出,电磁干扰抑制的技术就是围绕这三个要素所采取的各种措施,归纳起来就是:
(1)抑制电磁干扰源;
(2)切断电磁干扰耦合途径;
(3)降低电磁敏感装置的敏感性。
2.1抑制电磁干扰源
首先必须确定干扰源在何处,越靠近干扰源的地方采取措施抑制效果越好,一般来说,电流电压瞬变的地方(即di/dt或du/dt)即是干扰源,如:继电器开合、电容充放电、电机运转、集成电路开关工作等都可能成为干扰源。
另外,市电并非理想的50Hz正弦波,其中充满各种频率噪声,也是不可忽视的干扰源。
抑制干扰源就是尽可能的减小di/dt或du/dt,这是抗干扰设计时最优先和最重要的原则。
减小di/dt的干扰源,主要是在干扰回路串联电感或电阻以及增加续流二极管来实现;减小du/dt的干扰源,则是通过在干扰源两端并联电容来实现。
抑制方法通常采用低噪声电路、瞬态抑制电路、稳压电路等,所选用的器件应尽可能采用低噪声、高频特性好、稳定性高的电子元件,特别要注意,抑制电路中不适当的器件选择可能会产生新的干扰源。
2.2切断电磁干扰耦合的途径
电磁干扰耦合途径主要包括传导和辐射两种。
所谓传导干扰是指通过导线传播到敏感器件的干扰,抑制传导干扰主要是通过在导线上增加滤波器的方法切断干扰源,有时也可加隔离光耦来解决。
滤波器分为低通(LPF)、高通(HPF)、带阻(BEF)、带通(BPF)等四种,可根据信号与噪声频率的差别选择不同类型的滤波器,对于要求较高的设备,则必须采用穿心滤波器。
辐射干扰是指通过空间辐射传播到敏感器件的干扰,对于辐射干扰,主要是采用屏蔽技术和分层技术。
屏蔽技术是一门科学,选择合适的屏蔽材料,在适当的位置进行屏蔽,对于屏蔽效果至关重要,尤其是屏蔽室的设计。
可供选择的屏蔽材料种类繁多,有各种金属板、铜丝网、导电橡胶、导电胶、导电玻璃等等,应根据需要进行选择。
屏蔽室的设计应充分考虑门窗、通风口、进出线口的屏蔽与搭接,除静电屏蔽外,还应考虑磁屏蔽及接地。
2.3降低电磁敏感装置的灵敏度
电磁敏感装置的灵敏度本身具有矛盾的双重性,一方面,人们希望电磁敏感装置灵敏度高一些,以提高对信号的接收能力;另一方面,其灵敏度越高,受噪声影响的可能性也就越大。
因此,应根据具体情况,采用降额设计、屏蔽设计、网络钝化、功能钝化等方法使问题得到解决。
电磁干扰抑制方法很多,可以选择一种或多种综合应用,但不论选择什么方法,都应从设计之初就着手系统电磁兼容性的考虑。
3继电器及其开关触点干扰的抑制
继电器是具有隔离功能的自动开关元件,广泛应用于遥控、遥测、通讯、自动控制、机电一体化及电力电子等设备中,是最重要的控制元件之一。
继电器的开合本身所产生的电磁干扰是绝对不能忽视的,为保证各种设备的安全稳定运行,对继电器及其开关触点电磁干扰的抑制尤为重要。
3.1继电器线圈瞬变干扰的抑制
继电器线圈(以直流继电器为例)是感性负载,在电源断电瞬间会产生瞬变电压,有时高达几kV,如此高的电压足以损坏相关元器件;不仅如此,由于其含有丰富的谐波,可通过线路间的分布电容、绝缘电阻侵入控制系统,导致误动作。
为防止元器件损坏、电路误动作等,就必须采取抑制措施,由于断路产生的瞬变电压能量大、频谱宽,仅仅采用滤波或隔离措施难以凑效,抑制瞬变干扰,通常采用如下几种常见的方式:
(1)并联电阻
图1为并联电阻抑制瞬变干扰电路,在图1中,K为电路的控制开关,L为继电器线圈的电感。
该抑制电路的关键是正确选择所并联的电阻值,阻值过大起不了作用,过小增加功耗,且易烧坏开关触点。
例如,48V直流继电器以并联1kΩ/5W 电阻为宜,连接不必考虑电源的极性。
图1并联电阻方式
(2)并联二极管
图2为并联二极管抑制瞬变干扰电路,电源与二极管极性的相对关系不可任意改变。
采用这种方式,能量损耗小,瞬变电压低,但是该种方式延长了放电时间,导致继电器线包延时释放,降低了动态响应性能。
二极管峰值耐压应为负载电压的3倍以上。
图2并联二极管方式
(3)并联RC支路
并联RC支路如图3所示。
该种方式抑制效果好,但使用元器件较多,R、C数值的选择与线圈的电感及内阻有关,与电源极性无关,通常R在10~100Ω之间,C在0.1~0.5μF 之间,选用无极性电容器,且其耐压应高于电源电压的峰值。
图3并联RC支路方式
(4)其他方式
另外,还有并联电阻+二极管支路方式(如图4所示)和并联双向二极管或稳压管方式(如图5所示)。
并联电阻+二极管支路方式中,电源与二极管的极性不能颠倒,采用这种方式能减少释放时间,提高动态特性。
并联双向稳压二极管方式不必考虑电源极性,延迟时间短,但必须保证稳压二极管的耐压至少是电源电
压的2倍。
3.2 开关触点干扰的抑制
断开继电器负载时,为防止开关触点产生火花放电,除了在线圈两端加能量释放通路外,也可在开关触点两端增加并联保护网络,一般最常用的是RC保护网络。
该保护网络可延长接点的耐久性,防止噪音及减小电弧引起接点烧毁。
图6为继电器开关触点干扰抑制的典型电路。
在图6中,R、C串联后跨接在开关触点两端,当开关断开时电感性负载中存储的能量通过RC网络放电,避免了触点间产生放电。
R、C的选择应根据接点的电流和电压来确定,电阻R相对于接点电压为1V时,通常选择0.5~1Ω;电容C 相对于接点电流为1A时,通常选择0.5~1μF。
但是由于负载的性质和离散特性等的不同,必须考虑电容C具有抑制接点断开时的放电效果,在一般情况下使用200~300V的电容器耐压。
电阻R的选择应考虑两个方面的因素,一方面,在开关断开瞬间,希望R越小越好,以便电感上存储的能量变成电容器上的能量;另一方面,当开关闭合时,希望R尽可能的大,以免电容器上的能量通过开关触点放电时电流太大而烧毁触点。
一般情况下,开关触点间存在两种形式的击穿电压,即气体火花放电和金属弧光放电。
要防止气体火花放电,应控制触点间电压低于300V;要防止金属弧光放电,应控制触点间的起始电压上升率小于1V/μs,并把
触点间的瞬态电流控制在0.4A以下。
图7为一种改进型的抑制电路,即在电阻R上并联一只二极管D。
在开关断开时,电感中的能量通过由R、C、D组成的电路释放,由于二极管正向导通,内阻很小,能量很快释放;当开关闭合时,充满电的电容C通过电阻R和开关触点放电,由于二极管是反向偏置不导通,释放电流仅从电阻R上流过,如R选取足够大,就不会引起触点烧坏。
另外,还可采用在开关触点两端并联稳压二极管的抑制电路,如图8所示。
图8并联稳压二极管方式
在图8中,当开关触点断开时,触点两端出现高电压形成火花放电,由于稳压管的稳压特性,使触点两端的电压不会大于电源电压的1.5倍,从而抑制了瞬变电压和火花。
这种电路由于仅用一个元件,电路简单而且效果不错。
一般情况下,电感性负载比纯阻性负载更容易产生气体火花放电和金属弧光放电,只要选择适当的抑制电路,可以达到和纯阻性负载相同的效果。
由于抑制电路的种类很多,在此不再作详细介绍。
4结束语
随着信息技术的不断发展,电台自动化建设不断深入,干扰问题已成为制约系统自动化控制的瓶颈,如何减小相互间的电磁干扰,使各种设备和系统能正常运转,是一个亟待解决的问题。
在采用不同的方法对电磁干扰进行抑制时,应分析其综合效应,并对所采用的干扰抑制手段的作用进行恰当的预估,才能获得较理想的效果。
参考文献:
[1] 蔡仁钢. 电磁兼容原理和预测技术, 北京航空航天大学出版社,1997
[2] 张乃国. 电源干扰与抗干扰, 华港出版社, 2003。