动力总成悬置的设计方法
- 格式:ppt
- 大小:1.74 MB
- 文档页数:29
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能对整车舒适性和耐久性的影响日益显著。
汽车动力总成悬置系统作为连接发动机和车身的重要部分,其振动特性的优劣直接关系到整车的运行平稳性和乘坐舒适性。
因此,对汽车动力总成悬置系统的振动进行分析及优化设计,已成为汽车工程领域的研究热点。
本文旨在分析汽车动力总成悬置系统的振动特性,并对其优化设计进行探讨。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、悬置件、支撑结构等组成,其作用是减小发动机振动对整车的影响,保证发动机的正常运行,同时提高整车的乘坐舒适性和耐久性。
该系统的性能直接影响整车的动力性、经济性、舒适性和安全性。
三、汽车动力总成悬置系统振动分析1. 振动来源分析汽车动力总成悬置系统的振动主要来源于发动机的运转和外部环境的干扰。
发动机的运转会产生周期性振动和非周期性振动,而外部环境如道路不平度、风力等也会对系统产生振动影响。
2. 振动传递路径分析汽车动力总成悬置系统的振动通过悬置件传递到车身,进而影响整车的振动特性。
在传递过程中,悬置件的刚度和阻尼对振动的传递具有重要影响。
3. 振动特性分析通过对汽车动力总成悬置系统进行模态分析和响应分析,可以了解系统的振动特性。
模态分析可以获得系统的固有频率和振型,而响应分析则可以了解系统在不同工况下的振动响应情况。
四、汽车动力总成悬置系统优化设计1. 设计目标汽车动力总成悬置系统的优化设计旨在提高整车的乘坐舒适性和耐久性,降低发动机的振动和噪声对整车的影响。
2. 优化方案(1)改进悬置件的设计:通过优化悬置件的刚度和阻尼,减小发动机的振动传递到车身的幅度。
(2)优化支撑结构:通过改进支撑结构的布局和刚度,提高系统的整体刚度和稳定性。
(3)采用先进的控制技术:如主动悬置技术、半主动悬置技术等,通过控制算法对发动机的振动进行主动控制。
3. 优化设计方法(1)理论分析:通过建立数学模型和仿真分析,了解系统的振动特性和优化目标。
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言汽车作为现代社会出行的重要工具,其舒适性和安全性已成为消费者选购车辆的重要考量因素。
动力总成悬置系统作为汽车的重要组成部分,其性能直接影响到整车的振动噪声水平及乘坐舒适性。
因此,对汽车动力总成悬置系统的振动进行分析,并进行优化设计,对于提升汽车性能具有重要意义。
本文将就汽车动力总成悬置系统的振动分析及优化设计进行探讨。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、变速箱、传动系统等组成,其作用是将发动机产生的动力传递至车轮,同时起到减震、降噪、提高乘坐舒适性的作用。
该系统的性能直接影响到整车的运行平稳性和乘坐舒适性。
三、汽车动力总成悬置系统振动分析1. 振动产生原因汽车动力总成悬置系统的振动主要来源于发动机的燃烧、气缸内的工作过程、燃油的喷入以及各种力的相互作用等因素。
此外,路面不平、车身结构等因素也会对系统产生一定的振动影响。
2. 振动分析方法针对汽车动力总成悬置系统的振动分析,可采用理论分析、仿真分析和实车测试等方法。
理论分析主要依据动力学原理和弹性力学原理对系统进行建模和分析;仿真分析则通过建立系统的有限元模型,对系统进行动力学仿真分析;实车测试则是通过在真实环境下对车辆进行测试,获取系统的振动数据。
四、汽车动力总成悬置系统优化设计1. 设计目标汽车动力总成悬置系统的优化设计目标主要包括降低系统振动、提高乘坐舒适性、减少噪声等。
通过对系统进行优化设计,可提高整车的性能和品质。
2. 优化设计方法(1)材料选择:选用高强度、轻量化的材料,如铝合金、复合材料等,以降低系统重量,提高刚度和减震性能。
(2)结构优化:通过优化结构布局和刚度分配,使系统在受到外界力时能够快速恢复稳定状态,减少振动。
(3)主动控制技术:采用主动控制技术,如主动悬挂系统、电磁减震器等,对系统进行实时控制,以降低振动和噪声。
(4)仿真分析:利用仿真软件对系统进行动力学仿真分析,预测系统的振动性能,为优化设计提供依据。
某项目悬置布置方案案例一、动力总成悬置系统的设计原则一般在分析动力总成悬置系统振动问题时,由于其固有频率远远低于动力总成和车架弹性体振动频率,因此习惯上将动力总成看做空间运动刚体,把车架看成固定刚体,弹性悬置元件可以简化为具有三个主刚度轴的弹簧阻尼元件。
由理论力学可知,空间刚体运动有6个自由度,这样,发动机悬置系统振动问题就简化为6自由度空间刚体振动问题。
该系统可以看做整车振动的一个子系统,在研究该系统的刚体模态时,它受其它子系统的影响很小。
一般地,对动力总成—悬置这样6个自由度刚体振动系统,各个自由度之间存在运动耦合,即一个方向的激励不但可以引起本方向的振动而且还可以引起其它方向的振动,这就使动力总成振动比较复杂和剧烈,显然是工作过程中不希望出现的。
而且,当各阶振动耦合时,会导致系统振动的最高频率上升,扩大了引起共振的频率范围。
动力总成悬置系统设计的基本原则是解耦布置,即消除各自由度间的弹性耦合和惯性耦合。
这种解耦布置方式的优点是当动力总成上作用有一个方向的激振力或力矩时,系统仅在该方向产生响应,而不影响其它方向的运动。
理论上,当系统所有弹性元件的等效弹性中心与被支承物体的质心重合时,即悬置做汇聚式布置时,系统可以实现完全弹性解耦,即各自由度间的刚度影响系数为零,系统刚度阵成为对角阵。
但实际的发动机悬置设计中,由于受安装空间和制造工艺等因素的限制,不可能将悬置元件布置在系统任意位置上或布置为任意方向,因此汇聚式布置在汽车发动机悬置系统中难于实现。
悬置系统的作用是降低发动机振动的传递和控制发动机位移,悬置系统设计应包括以下几个目标:1.动力总成悬置系统的最高阶固有振动频率应小于发动机工作中的最小激振频率的0.717倍,以实现减振的作用;2.与车身的其他固有频率不产生重合导致共振叠加;3.悬置在系统共振频带内应有较大的阻尼值;4.尽可能多的实现各自由度间的解耦;5.动力总成在诸如汽车起步、制动、转向等极限工况下位移值不能超过允许取值;6.悬置支架应有足够的强度,以承受动力总成悬置系统的各种工况载荷;7.悬置支架应有足够高的固有频率,避免在各个工况激励下产生噪音影响;二、C项目悬置系统布局推荐方案此项目车型的底盘与一汽威姿类似,发动机选用东安汽车发动机制造有限公司的DA4G18发动机。
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的飞速发展,消费者对汽车的性能和舒适性要求越来越高。
其中,汽车动力总成悬置系统的振动问题直接影响着汽车的乘坐舒适性和驾驶稳定性。
因此,对汽车动力总成悬置系统的振动进行分析及优化设计显得尤为重要。
本文将重点探讨汽车动力总成悬置系统的振动分析方法及优化设计策略,以期为相关研究和应用提供参考。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统是连接发动机、变速器等动力总成部件与车身的重要装置,其主要作用是减少振动传递,提高乘坐舒适性和驾驶稳定性。
该系统通常由发动机悬置、变速器悬置、支撑架等组成。
三、汽车动力总成悬置系统振动分析1. 振动来源及传递路径汽车动力总成悬置系统的振动主要来源于发动机的运转、路面不平引起的车身振动等。
这些振动通过发动机悬置、变速器悬置等传递到车身,进而影响乘坐舒适性和驾驶稳定性。
2. 振动分析方法(1)理论分析:通过建立动力学模型,分析系统在不同工况下的振动特性。
(2)实验分析:利用传感器、数据采集系统等设备,对实际车辆进行振动测试,获取振动数据。
(3)仿真分析:运用计算机仿真技术,对系统进行仿真分析,预测振动特性。
四、汽车动力总成悬置系统优化设计1. 设计目标优化设计的目标是在保证动力总成部件安全性的前提下,降低振动传递,提高乘坐舒适性和驾驶稳定性。
2. 优化策略(1)材料选择:选用高强度、轻质材料,降低系统质量,提高系统刚度。
(2)结构优化:通过优化悬置结构、支撑架结构等,降低振动传递。
例如,采用多级减震设计、橡胶减震垫等措施。
(3)动力学性能优化:通过理论分析和仿真分析,对系统动力学性能进行优化,提高乘坐舒适性和驾驶稳定性。
3. 优化设计流程(1)需求分析:明确设计目标,了解用户需求。
(2)方案设计:根据需求分析,提出多种设计方案。
(3)理论分析:运用动力学理论,对各方案进行理论分析。
(4)仿真分析:运用计算机仿真技术,对各方案进行仿真分析,预测振动特性。
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能已成为决定汽车乘坐舒适性和驾驶稳定性的关键因素之一。
然而,由于动力总成系统在运行过程中产生的振动和噪音,严重影响了汽车的性能和使用寿命。
因此,对汽车动力总成悬置系统的振动进行分析,并进行优化设计,具有重要的理论价值和实践意义。
本文将重点对汽车动力总成悬置系统的振动进行分析,并探讨其优化设计的方法和措施。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、变速器、离合器等组成,是汽车的核心部件之一。
其作用是支撑和固定动力总成,减少振动和噪音的传递,保证汽车行驶的平稳性和舒适性。
然而,由于动力总成系统的复杂性和运行环境的多样性,使得其振动问题较为突出。
三、汽车动力总成悬置系统振动分析(一)振动产生的原因汽车动力总成悬置系统振动产生的原因主要包括发动机的燃烧过程、变速器的齿轮啮合、离合器的接合与分离等。
此外,道路不平度、车辆行驶速度等因素也会对系统振动产生影响。
(二)振动分析的方法目前,常用的汽车动力总成悬置系统振动分析方法包括实验分析和仿真分析。
实验分析主要通过在真实环境下对系统进行测试,获取其振动数据;仿真分析则通过建立系统的数学模型,利用计算机软件进行模拟分析。
(三)振动的影响汽车动力总成悬置系统的振动会直接影响汽车的乘坐舒适性和驾驶稳定性。
同时,长时间的振动还会导致系统零部件的磨损和损坏,影响汽车的使用寿命。
四、汽车动力总成悬置系统优化设计(一)优化设计的目标汽车动力总成悬置系统优化设计的目标主要包括提高汽车的乘坐舒适性和驾驶稳定性,延长汽车的使用寿命,降低噪音和振动等。
(二)优化设计的措施1. 改进材料:采用高强度、轻量化的材料,提高系统的刚度和减振性能。
2. 优化结构:通过改变系统的结构形式和参数,如增加橡胶减振器、调整悬置点的位置等,提高系统的减振效果。
3. 智能控制:利用现代控制技术,如主动悬挂系统、半主动悬挂系统等,实现对系统振动的主动控制。
V ol 39No.2Apr.2019噪声与振动控制NOISE AND VIBRATION CONTROL 第39卷第2期2019年4月文章编号:1006-1355(2019)02-0085-05纯电动汽车动力总成悬置系统设计方法朱鑫1,刘晓昂1,陈勇1,蒋春雷2(1.河北工业大学机械工程学院,天津300130;2.宁波丰茂远东橡胶有限公司,浙江余姚315400)摘要:根据纯电动汽车和内燃机汽车在动力总成激励上的不同,建立某型纯电动汽车动力总成6自由度动力学模型,以动力总成固有频率和能量分布合理分配为优化目标,各个悬置静刚度和安装位置为设计变量,应用MATLAB/Isight 对悬置系统参数进行优化,优化后固有频率和能量分布均满足设计要求。
为控制动力总成质心在各工况下的位移,对各悬置非线性段刚度及拐点进行设计,设计后的动力总成质心位移满足位移控制要求。
关键词:振动与波;纯电动汽车;动力总成悬置系统;固有频率;位移控制中图分类号:U469.72+2文献标志码:ADOI 编码:10.3969/j.issn.1006-1355.2019.02.016Design Method of the Powertrain Mounting System ofPure Electric VehiclesZHU Xin 1,LIU Xiaoang 1,CHEN Yong 1,Jiang Chunlei 2(1.School of Mechanical Engineering,Hebei University of Technology,Tianjin 300130,China;2.Ningbo Fengmao Far-East Rubber Co.,Ltd.,Yuyao 315400,Zhejiang China )Abstract :According to the difference of the powertrain excitation between the pure electric vehicle (PEV)and the traditional internal combustion engine car,the 6-DOF dynamic model of a PEV powertrain is established.Firstly,with the reasonable natural frequencies and energy distributions of the powertrain as the target,and the mount static stiffness and the installation positions as the design variables,the MATLAB /Isight software is used to optimize the parameters of the suspension system.After the optimization,the natural frequencies and the energy distributions can satisfy the design requirements.In order to control the displacement of powertrain centroid in the typical and extreme conditions,the static stiffness and the x-coordinates of the turning points of each mount in the nonlinear sections are designed.After the design,the displacement of the powertrain centre of gravity can satisfy the control requirements.Keywords :vibration and wave;pure electric vehicle;powertrain mounting system;natural frequency;displacement control随着纯电动汽车市场的发展,驾、乘员对纯电动汽车NVH 性能提出了更高的要求,悬置系统是一种应用在动力总成和车架之间的弹性连接件,有减振、限位及隔振的作用,悬置系统的设计对汽车NVH 性能有重要影响。
浅析汽车动力总成悬置系统设计摘要:汽车的NVH性能指标历来是产品开发过程中的重要内容。
作为汽车重要的振动激励源之一的动力总成,其悬置系统设计的合理性十分重要。
动力总成悬置系统的作用不仅是有效地隔离和衰减动力总成向整车其余部件的振动激励,而且也可以有效地隔离和衰减路面激励通过车轮、悬架以及副车架等部件传递到动力总成的振动激励。
本文围绕汽车动力总成悬置系统设计展开论述,仅供广大汽车设计人员参考。
关键词:NVH激励源动力总成悬置系统1悬置系统分类汽车动力总成悬置系统类型可以进行如下分类:1)悬置单元材质。
依据悬置单元采用材质的不同可以分为橡胶悬置、液阻悬置两大类。
当前中低档汽车采用的多为橡胶悬置,豪华型汽车多采用液压悬置。
2)布置方式。
按照悬置单元布置方式,可以分为平置式、斜置式、会聚式三类。
平置式的特点是结构简单且安装工艺性较好,悬置弹性元件的三向主轴均平行于车辆坐标系;斜置式悬置弹性元件的三向主轴中只有某一向主轴与车辆坐标系平行,其余两向主轴与车辆坐标系有一定的夹角,当前应用的最多;会聚式悬置元件弹性隔震主轴会聚于一点,对布置空间等要求比较高。
三种布置方式的悬置系统简图分别如下图1(a平置式、b斜置式、c会聚式)所示。
3)悬置元件的数量。
依据悬置元件的数量可以分为三点式(左右后、前后左等)、四点式悬置、五点式悬置、六点式悬置四大类型。
主要依据动力总成的种类、质量、布置型式(前置前驱、前置后驱等)等决定。
3能量解耦法动力总成悬置系统要求空间6自由度方向能量解耦率必须达到一定的要求,通常主要方向要求解耦率不低于90%,其余方向不低于80%。
能量解耦法是当前常用的解耦方法之一。
3.1坐标系定义以动力总成质心为坐标原点,坐标方向与整车坐标方向一致,以此方法建立动力总成坐标系;以悬置元件本身的弹性中心为坐标原点,三个弹性主轴与整车坐标方向存在一定的夹角,以此方法建立弹性元件坐标系。
3.2原理说明以三点式动力总成悬置系统为例进行说明。
动力总成悬置系统匹配设计方法一、动力总成设计参数的输入1、动力总成的惯性参数动力总成的惯性参数包括动力总成的质量、质心位置以及动力总成的转动惯量10个数据。
质心位置的描述采用发动机坐标系,发动机坐标系的定义:坐标原点O 为发动机缸体后端面和发动机曲轴中心线的交点,x轴正向为过O点平行与曲轴中心线指向发动机端,z轴正向为过质心点平行于气缸中心线垂直向上,y轴正向根据右手定则确定,如下图示:转动惯量的描述采用动力总成质心坐标系下。
质心坐标系定义如下:坐标原点O为动力总成的质心,坐标方向和发动机坐标系相同,如下图所示:动力总成的惯性参数如表1所示:表1动力总成的惯性参数动力总成惯性参数的测定可采用三线摆法测定,误差要求在5%以内。
2、动力总成悬置系统的位置数据动力总成的位置数据包括所有悬置弹性中心的位置、发动机坐标原点位置、变速箱输出轴位置。
所有坐标均采用整车坐标系。
其中位置参数表如表2所示:表2动力总成悬置系统的位置数据3、动力总成悬置系统的刚度数据动力总成悬置系统的刚度参数为各个悬置的三向刚度,刚度参数采用悬置自身的坐标系。
坐标原点为悬置的弹性中心,三个方向为悬置的弹性主轴方向(p、q、r)。
参数表如下所示:表2动力总成悬置系统的位置数据4、变速器的各挡速比和主减速比表3变速箱各档速比和主减速比5、发动机的其他参数这些参数包括发动机的额定功率、最大扭矩、气缸数、发动机的怠速转速、最高转速、扭矩随转速的关系曲线。
参数表如下:表4 发动机的其他参数6、动力总成悬置系统及周边的相关数模二、动力总成悬置系统的解耦设计及固有频率的合理配置1、悬置系统的主要作用动力总成悬置系统的基本功用为:固定并支承汽车动力总成;承受和衰减动力总成内部因发动机不平衡旋转和平移质量产生的往复惯性力、力矩和不平衡扭矩;承受和衰减汽车行驶过程中,例如在换档、加速、启动等工况下作用于动力总成上的一切动态力和对车身造成的冲击;隔离由于发动机激励而引起的车架或车身的振动;隔离由于路面不平度以及车轮所受路面冲击而引起的车身振动向动力总成的传递。
动力总成悬置系统刚体模态优化设计方法的研究动力总成悬置系统是指汽车发动机、变速箱、传动轴等部件组成的整个驱动系统的支撑和连接方式,它与车辆的动态性能和舒适度密切相关。
而动力总成悬置系统的刚体模态优化设计是针对已有的悬置系统设计方案,通过分析和优化,达到使整个系统的刚度和自振频率达到最佳状态的目的。
刚体模态是指一个物体在固定支撑下的自由振动状态,它不仅涉及到物体的结构形态,还与物体的材料、质量等因素有关。
动力总成悬置系统的刚体模态主要包括重组刚体模态和飞翼刚体模态两种形态。
在研究动力总成悬置系统刚体模态优化设计方法时,需要结合实际情况进行综合考虑,确定优化设计的对象和优化目标,以此来指导整个优化设计过程。
动力总成悬置系统刚体模态优化设计方法主要包括以下几个步骤:1. 建立刚体模型:需基于悬置系统固有的刚体模态构建模型,模型主要包括悬置系统的结构布局、材料、体积质量等因素。
需要特别注意的是,模型应当考虑到悬置系统的实际工作情况,例如不同工况下的应力载荷等情况。
2. 模态分析:通过模态分析或有限元分析等方法,获取悬置系统在不同工况下的自振频率和模态形态。
这一步骤是确定悬置系统的弹性特性和自由振动状态的关键步骤。
3. 优化设计:根据模态分析结果,以悬置系统的刚度和自振频率为优化目标,通过设计和优化悬置系统的布局、结构、材料等方面的因素,以提高系统的自振频率和刚性,从而避免共振和失稳。
4. 模拟验证:通过动态试验、振动试验等方法,对优化后的悬置系统进行模拟验证,以确保优化设计的正确性和有效性。
总之,动力总成悬置系统刚体模态优化设计方法是一项重要的技术研究,通过对悬置系统的刚体模态进行优化设计,能够有效提高车辆的动态性能和舒适度,并且能够降低车辆的噪声和振动等问题。
未来,随着汽车技术的不断发展和创新,动力总成悬置系统刚体模态优化设计方法也将得到更好的发展和应用。
在动力总成悬置系统刚体模态优化设计过程中,需要注意三个方面的问题。