当前位置:文档之家› 操作系统实验-第二讲、操作系统的启动

操作系统实验-第二讲、操作系统的启动

操作系统实验-第二讲、操作系统的启动
操作系统实验-第二讲、操作系统的启动

操作系统

实验报告

哈尔滨工程大学

计算机科学与技术学院

第二讲操作系统的启动

一、实验概述

1. 实验名称

操作系统的启动

2. 实验目的

1)、跟踪调试eos在pc机上从加电复位到成功启动的全过程,了解操作系统的启动过程。

2)、查看eos启动后的状态和行为,理解操作系统启动后的工作方式。

3. 实验类型(验证、设计)

验证

4. 实验内容

1)、启动OS Lab。

2)、新建一个EOS Kernel 项目。

3)、在“项目管理器”窗口中打开boot 文件夹中的boot.asm 和loader.asm 两个汇编文件。boot.asm 是软盘引导扇区程序的源文件,loader.asm 是loader 程序的源文件。简单阅读一下这两个文件中的NASM 汇编代码和注释。

4)、按F7 生成项目。

5)、生成完成后,使用Windows 资源管理器打开项目文件夹中的Debug 文件夹。找到由boot.asm 生成的软盘引导扇区程序boot.bin 文件,该文件的大小一定为512 字节(与软盘引导扇区的大小一致)。找到由loader.asm 生成的loader 程序loader.bin 文件,记录下此文件的大小1566 字节,在下面的实验中会用到。找到由其它源文件生成的操作系统内核文件kernel.dll。

二、实验环境

进行实验使用的操作系统、编译器、语言及工具等。

操作系统:Windows XP

编译器:Tevalaton OS Lab

语言:C++

三、实验过程(每次实验不一定下面6条都写,根据实际情况定)

*需要解决的问题以及解答

(1)、自己设计两个查看内存的调试命令,分别验证这两个用户可用区域的高地址端也是空白的。

答:命令为:xp /512b 0x7a00和cp /512v 0x9fe00。因为第一个用户区的高位地址截止到0x7c00,第二个用户区高位地址截止到0xA0000,命令表示显示从0x7a00和0x9fe00以后512b空间的所有字节码,即两个用户区的高位地址端,可以看到所有字节全为0,说明高地址端是空白的。如图一、图二所示。(2)、自己设计一个查看内存的调试命令,验证上位内存的高地址端已经被系统占用。

答:命令为:xp /512b 0xffe00。因为上位内存的高位地址截止到0x100000,命令表示显示从0xffe00以后的512b空间的所有字节码,即两个用户区的高位地址端。可以看到所有字节都有值,说明高地址端被占用。如图三所示。(3)、根据之前记录的loader.bin文件的大小,自己设计一个查看内存的调试命令,查看内存中loader程序结束位置的字节码,并与loader.lst文件中最后指令的字节码比较,验证loader程序被完全加载到了正确的位置。

答:命令为xp /8b 0x1616.程序的初始位置为0x1000,加上1566的十六进制61E-8b,答案即为1616.如图四、图五、图六、图七所示。

(4)、仔细比较实验指导10-5图和10-6图,尝试说明哪个是应用程序的进程,它和系统进程有什么区别,那个是应用程序的主线程,它和系统线程有什么区别?

答:进程列表中ID为31的进程是应用程序的进程,其优先级为8,包含1个线程,主线程ID为33,映像名称为a:\hello.exe。而ID为1的是系统进程,其优先级为24,包含有10个线程,其中的ID为2的线程是该进程的主线程,系统进程没有映像名称。主要区别为:应用程序的进程优先级较低。

线程列表中ID为33的线程是应用程序的线程,其优先级为8,处在阻塞状态,而ID为20~28的是系统进程,其优先级为24,其中ID为22的处于运行状态

图一

图二

图三

(5)、为什么 EOS 操作系统从软盘启动时要使用 boot.bin 和 loader.bin 两个程序?使用一个可以吗?它们各自的主要功能是什么?如果将 loader.bin 的功能移动到 boot.bin 文件中,则 boot.bin 文件的大小是否仍然能保持小于 512 字节?

答:在生成项目的时候,boot文件夹中的两个汇编文件boot.asm和loader.asm 分别生成了两个二进制文件boot.bin和loader.bin。这两个文件缺一不可,他们会被写入软盘镜像文件。在EOS操作系统启动的时候,boot.bin用于引导软盘,而loader.bin用于加载程序。如果把loader.bin的功能移动到boot.bin程序中,肯定会增加boot.bin的规模文件大小将会大于512字节。

(6)、软盘引导扇区加载完毕后内存中有两个用户可用的区域,为什么软盘引导扇区程序选择将loader.bin 加载到第一个可用区域的0x1000 处呢?这样做有什么好处?这样做会对loader.bin 文件的大小有哪些限制?

答:第一个用户可用区取余位于低地址端,便于检索查找,并且容量相对较小,适合容纳相对较小的文件,所以将loader.bin加载到第一个可用区域,节省资源。由于第一用户区域的大小限制,loader.bin的大小不能超过29.5KB。

图四

图五

如左图图六所示Loader.bin文件大小为1566B。

图七

*程序运行时的初值以及运行结果:

Bochs在CPU要执行的第一条指令处中断。Display窗口没有显示内容。如下图所示:

sreg命令查看当前CPU各个段寄存器的值:

r命令查看当前CPU中各个通用寄存器的值

输入调试命令xp/1024b 0x0000

输入调试命令xp/512b 0x7c00

输入调试命令vb 0x0000:0x7c00添加断点输入c继续执行

输入sreg验证CS寄存器的地址

输入调试命令r验证IP寄存器的值

输入调试命令xp/512b 0x7c00显示软盘引导扇区程序的所有字节码

输入调试命令xp/512b 0x0600

输入调试命令xp/512b 0x7e00

输入调试命令xp/512b 0xa0000验证上位内存已被系统占用

输入调试命令vb 0x0000:0x7d81添加一个断点

输入调试命令c继续执行,在断点处中断

输入调试命令xp 8b 0x10000查看内存0x1000处的数据

3.2.4 调试加载程序

查看eos版本号:

迅速按Ctrl+F2 切换到控制台2,并输入命令“pt”后按回车。输出的进程和线程信息如图10-6 所示

四、实验体会

本次实验主要采用了在EOS操作系统启动过程中设置断点,查看内存空间的占用情况来观察文件的加载情况。通过本次实验了解了了解操作系统的启动过程。通过查看eos启动后的状态和行为,理解操作系统启动后的工作方式。通过一步步的操作,加深了在操作系统上对程序创建、调试程序的掌握,但对OS的相关知识还不是很了解。

操作系统的启动实验报告

操作系统实验报告 工程大学 计算机科学与技术学院

一.实验概述 1.实验名称:操作系统的启动 2.实验目的: 1)跟踪调试EOS在PC机上从加电复位到成功后启动的全过程,了解操作系统的启动过程; 2)查看EOS启动后的状态和行为,理解操作系统启动后的工作方式。 3.实验类型:验证,设计 4.实验容: 1)准备实验,启动OS Lab,新建一个EOS Kernel项目; 2)调试EOS操作系统的启动过程 ①使用Bochs作为远程目标机 ②调试BIOS程序 ③调试软盘引导扇区程序 ④调试加载程序 ⑤调试核 ⑥查看EOS启动后的状态和行为 二.实验环境 操作系统:windows XP 编译器:Tevalaton OS Lab 语言:C++ 三.实验过程 1.设计思路和流程图: 2.实验过程:

1)在Console窗口中输入调试指令sreg,查看当前CPU中各个段寄存器的值,其中CS寄存器信息行中的“s=0xf000”表示CS寄存器的值为0xf000。 2)输入调试命令r,显示当前CPU中各个通用寄存器的值,“rip: 0x00000000:0000fff0”表示 IP 寄存器的值为 0xfff0。 3)输入调试命令 xp /1024b 0x0000,查看开始的 1024 个字节的物理存。在Console 中输出的这 1K 物理存的值都为 0,说明 BIOS 中断向量表还没有被加载到此处。 4)输入调试命令 xp /512b 0x7c00,查看软盘引导扇区应该被加载到的存位置。输出的存值都为 0,说明软盘引导扇区还没有被加载到此处。 可以验证 BIOS 第一条指令所在逻辑地址中的段地址CS寄存器值是一致的,偏移地址和 IP 寄存器的值是一致的。由于存还没有被使用,所以其中的值都为0。 5)输入调试命令 vb 0x0000:0x7c00,这样就在逻辑地址 0x0000:0x7c00(相当于物理地址 0x7c00)处添加了一个断点。输入调试命令 c 继续执行,在 0x7c00 处的断点中断。中断后会在 Console 窗口中输出下一个要执行的指令,即软盘引导扇区程序的第一条指令。 6)输入调试命令 sreg 验证 CS 寄存器(0x0000)的值。

操作系统作业二

1 填空题 1.设单CPU环境下,有三道作业,它们的提交时间及运行时间如下表: 若采用短作业优先调度策略,作业单道串行运行时的调度次序为 J1,J3,J2 ,平均周转时间= 8 。 2.进程间通信的类型有:基于内存通信、基于文件通信、基于网络通信 和基于报文传递通信。 3.在响应比最高者优先的作业调度算法中,当各个作业等待时间相同时,运行时间短作业将得 到优先调度;当各个作业要求运行的时间相同时,等待时间长得到优先调度。 4.有三个同时到达的作业J1,J2和J3,它们的执行时间分别是T1,T2和T3,且T1

C、多个进程竞争,资源出现了循环等待 D、多个进程竞争共享型设备 3.( C )不是分时系统的基本特征: A、同时性 B、独立性 C、实时性 D、交互性 4.进程所请求的一次打印输出结束后,将使进程状态从(B D) A、运行态变为就绪态 B、运行态变为等待态 C、就绪态变为运行态 D、等待态变为就绪态 5.一作业进入内存后,则所属该作业的进程初始时处于( B C)状态。 A、运行 B、等待 C、就绪 D、收容 6.运行时间最短的作业被优先调度,这种企业调度算法是(C ) A.优先级调度 B.响应比高者优先C.短作业优先D.先来先服务 7.产生死锁的主要原因是进程运行推进的顺序不合适(C ) A.系统资源不足和系统中的进程太多B.资源的独占性和系统中的进程太多 C.进程调度不当和资源的独占性D.资源分配不当和系统资源不足 8. B 是指从作业进入系统到作业完成所经过的时间间隔; D 是从作业进入后备队列起,到被调度程序选中时的时间间隔。 A:响应时间;B:周转时间;C:运行时间; D:等待时间;F:触发时间。 9.CPU的调度分为高级、中级和低级三种,其中低级调度是指 C 调度。 A:作业B:交换C:进程 10. 批处理系统的主要缺点是( B )。 的利用率不高 B.失去了交互性 C.不具备并行性 D.以上都不是 11. 引入多道程序的目的在于( B A)。 A.充分利用CPU,减少CPU等待时间 B.提高实时响应速度 C 有利于代码共享,减少主、辅存信息交换量充分利用存储器 12. 在分时系统中,时间片一定,(B ),响应时间越长。 A.内存越多 B.用户数越多 C.后备队列 D.用户数越少 13. 我们如果为每一个作业只建立一个进程,则为了照顾短作业用户,应采用 SJF B ;为照顾紧急作

操作系统上机实验报告(西电)

操作系统上机题目 一、题目 实验1:LINUX/UNIX Shell部分 (一)系统基本命令 1.登陆系统,输入whoami 和pwd ,确定自己的登录名和当前目录; 登录名yuanye ,当前目录/home/yuanye 2.显示自己的注册目录?命令在哪里? a.键入echo $HOME,确认自己的主目录;主目录为/home/yuanye b.键入echo $PA TH,记下自己看到的目录表;/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games c.键入which abcd,看看得到的错误信息; 再键入which ls 和which vi,对比刚刚得到的结果的目录是否在a.、b. 两题看到的目录表中; /bin/ls /usr/bin/vi 3.ls 和cd 的使用: a.键入ls,ls -l ,ls -a ,ls -al 四条命令,观察输出,说明四种不同使用方式的区别。 1. examples.desktop 公共的模板视频图片文档音乐桌面; 总计32 2.-rw-r--r-- 1 yuanye yuanye 357 2011-03-22 22:15 examples.desktop drwxr-xr-x 2 yuanye yuanye 4096 2011-03-22 23:25 公共的 drwxr-xr-x 2 yuanye yuanye 4096 2011-03-22 23:25 模板 drwxr-xr-x 2 yuanye yuanye 4096 2011-03-22 23:25 视频 drwxr-xr-x 2 yuanye yuanye 4096 2011-03-22 23:25 图片 drwxr-xr-x 2 yuanye yuanye 4096 2011-03-22 23:25 文档 drwxr-xr-x 2 yuanye yuanye 4096 2011-03-22 23:25 音乐 drwxr-xr-x 2 yuanye yuanye 4096 2011-03-22 23:25 桌面 3. . .fontconfig .local .Xauthority .. .gconf .mozilla .xsession-errors .bash_logout .gconfd .nautilus 公共的 .bashrc .gksu.lock .profile 模板 .cache .gnome2 .pulse 视频 .chewing .gnome2_private .pulse-cookie 图片 .config .gnupg .recently-used.xbel 文档 .dbus .gstreamer-0.10 .scim 音乐 .dmrc .gtk-bookmarks .sudo_as_admin_successful 桌面 .esd_auth .gvfs .update-manager-core

操作系统实验1

#include "stdio.h" #include #include #define getpch(type) (type*)malloc(sizeof(type)) #define NULL 0 struct pcb { /* 定义进程控制块PCB */ char name[10]; char state; int ntime; int rtime; struct pcb* link; }*ready=NULL,*p; typedef struct pcb PCB; void sort() /* 建立对进程进行优先级排列函数*/ { PCB *first, *second; int insert=0; if((ready==NULL)||((p->ntime)<(ready->ntime))) /*运行时间最短者,插入队首*/ { p->link=ready; ready=p; } else /* 进程比较运行时间优先级,插入适当的位置中*/ { first=ready; second=first->link; while(second!=NULL) { if((p->ntime)<(second->ntime)) /*若插入进程比当前进程所需运行时间短,*/ { /*插入到当前进程前面*/ p->link=second; first->link=p; second=NULL; insert=1; } else /* 插入进程运行时间最长,则插入到队尾*/ { first=first->link; second=second->link; } } if(insert==0) first->link=p; } }

《 Windows7 操作系统》实验报告

实验(一) Windows 7基本操作 一、实验目的 1.掌握文件和文件夹基本操作。 2.掌握“资源管理器”和“计算机”基本操作。 二、实验要求 1.请将操作结果用Alt+Print Screen组合键截图粘贴在题目之后。 2.实验完成后,请将实验报告保存并提交。 三、实验内容 1.文件或文件夹的管理(提示:此题自行操作一遍即可,无需抓图)★期末机试必考题★ (1) 在D:盘根目录上创建一个名为“上机实验”的文件夹,在“上机实验”文件夹中创建1个名为“操作系统上机实验”的空白文件夹和2个分别名为“2.xlsx”和“3.pptx”的空白文件,在“操作系统上机实验”文件夹中创建一个名为“1.docx”的空白文件。 (2) 将“1.docx”改名为“介绍信.docx”;将“上机实验”改名为“作业”。 (3) 在“作业”文件夹中分别尝试选择一个文件、同时选择两个文件、一次同时选择所有文件和文件夹。 (4) 将“介绍信.docx”复制到C:盘根目录。 (5) 将D:盘根目录中的“作业”文件夹移动到C:盘根目录。 (6) 将“作业”文件夹中的“2.xlsx”文件删除放入“回收站”。 (7) 还原被删除的“2.xlsx”文件到原位置。 2.搜索文件或文件夹,要求如下: 查找C盘上所有以大写字母“A”开头,文件大小在10KB以上的文本文件。(提示:搜索时,可以使用“?”和“*”。“?”表示任意一个字符,“*”表示任意多个字符。)

3. 在桌面上为C:盘根目录下的“作业”文件夹创建一个桌面快捷方式。★期末机试必考题★ 3.“计算机”或“资源管理器”的使用 (1) 在“资源管理器”窗口,设置以详细信息方式显示C:\WINDOWS中所有文件和文件夹,使所有图标按类型排列显示,并不显示文件扩展名。(提示:三步操作全部做完后,将窗口中显示的最终设置结果抓一张图片即可) (2) 将C:盘根目录中“介绍信.docx”的文件属性设置为“只读”和“隐藏”,并设置在窗口中显示“隐藏属性”的文件或文件夹。(提示:请将“文件夹”对话框中选项设置效果与C:盘根目录中该文件图标呈现的半透明显示效果截取在一整张桌面图片中即可) 4.回收站的设置 设置删除文件后,不将其移入回收站中,而是直接彻底删除功能。

操作系统实验08

实验8 缺页统计 实验目的 学习虚拟内存的基本原理和Linux虚拟内存管理技术;深入理解、掌握Linux的按需调页过程。 复习巩固Linux内核模块和虚拟文件系统的知识和运用能力。 实验原理 由于每发生一次缺页都要进入缺页中断服务函数do_page_fault一次,所以可以认为执行该函数的次数就是系统发生缺页的次数。通过定义一个全局变量pfcount作为计数变量,每次执行do_page_fault时,该变量值加1,从而得到一段时间内的缺页次数。 至于经历的时间则可以利用系统原有的变量jiffies。这是一个系统的计时器,在内核加载完以后开始计时,以10ms(缺省)为计时单位。 借助内核模块技术通过/proc虚拟文件系统来读出上述两个变量的值。在/proc文件系统下建立目录pf以及在该目录下的只读文件pfcount和jiffies。 实验内容 完成《边干边学》第7.3.1节的“系统缺页次数”实验。 1.修改现有的内核代码,在系统中添加一个全局变量pfcount。配置、编译、安装新 的内核,并重新启动,使用新的内核。 2.编辑、编译、安装新的内核模块pf,在/proc虚拟文件系统中创建目录pf以及只 读文件pfcount和jiffies。 3.编写用户程序,引发足够的缺页中断;观察一定时间内的缺页状况。 4.选做:学习《边干边学》第7章,阅读相关的内核源代码,分析Linux系统中缺页 的处理过程。 实验步骤 一、修改现有内核代码,添加缺页计数器pfcount 1.以root帐号登录,解包内核源码,并转入内核源码目录 cd /usr/src tar zxvf linux-2.4.18.tar.gz cd linux 2.修改include/linux/mm.h文件 添加变量pfcount的声明 即添加extern unsigned long volatile pfcount;一行

计算机启动过程

计算机启动过程 讲课教师:黄小龙 计算机启动过程总体分为两个过程,即硬件启动过程和操作系统启动过程。本课中操作系统我们仅选用Windows XP 的启动过程讲解。 一、硬件启动过程 ⑴加电 按下电源开关后,电源就开始向主板和其它设备供电,此时电压还不稳定, 主板上的控制芯片组会向CPU 发出并保持一个RESET(重置)信号,让CPU 初始化。当电源开始稳定供电后,芯片组便撤去RESET 信号(如果是按下Reset 按钮来重启,那么松开该按钮时芯片组就会撤去RESET 信号)。然后,CPU 马上就从地址FFFF0H 处开始执行指令(这是BIOS 的起始地址),但放在这里的只是一条跳转指令,跳到系统真正的BIOS 启动代码处,由BIOS 的代码进行下一步的POST 自检。 ⑵BIOS 进行post

POST就是加电自检,它是Power On Sel f Test的缩写。它是检查一些关键设备是否存在和能否正常工作,如内存和显卡等。如果发现错误,则通过喇叭发声来报告错误情况,此时的声音长短和次数代表了错误类型。 注:由于POST的检测过程在显示卡初始化之前,因此POST 自检过程发现的错误是无法在屏幕上显示出来的。 ⑶BIOS检测硬件的各种信息 BIOS进行加电自检后,就开始检测计算机上硬件设备的各种信息,如设备类型、工作频率、芯片组型号、出厂厂商等。这阶段的硬件检测顺序是:显示卡、CPU、内存、其它标准硬件设备(如硬盘、光驱、软驱、外设等)。 ⑷BIOS更新ESCD 按下来系统BIOS将更新ESCD(Extended System Configuration Data,扩展系统配置数据)。ESCD是系统BIOS用来与操作系统交换硬件配置信息的数据,这些数据被存放在CMOS之中。通常ESCD数据只在系统硬件配置发生改变后才会进行更新,因此不是每次启动都能看到"Update ESCD... Success"这样的信息。不过,某些主板的BIOS在保存ESCD数据时使用了与Windows 9x 不相同的数据格式,于是Windows 9x在每一次启动都会把ESCD 数据转换成自己的格式,导致BIOS每次重新启动时都认为是硬件配置发生变化,并重新改写ESCD数据,这就是为什么有的计算机在每次启动时都会显示"Update ESCD... Success"信息的原因。

操作系统实验-第二讲、操作系统的启动

操作系统 实验报告 哈尔滨工程大学 计算机科学与技术学院

第二讲操作系统的启动 一、实验概述 1. 实验名称 操作系统的启动 2. 实验目的 1)、跟踪调试eos在pc机上从加电复位到成功启动的全过程,了解操作系统的启动过程。 2)、查看eos启动后的状态和行为,理解操作系统启动后的工作方式。 3. 实验类型(验证、设计) 验证 4. 实验内容 1)、启动OS Lab。 2)、新建一个EOS Kernel 项目。 3)、在“项目管理器”窗口中打开boot 文件夹中的boot.asm 和loader.asm 两个汇编文件。boot.asm 是软盘引导扇区程序的源文件,loader.asm 是loader 程序的源文件。简单阅读一下这两个文件中的NASM 汇编代码和注释。 4)、按F7 生成项目。 5)、生成完成后,使用Windows 资源管理器打开项目文件夹中的Debug 文件夹。找到由boot.asm 生成的软盘引导扇区程序boot.bin 文件,该文件的大小一定为512 字节(与软盘引导扇区的大小一致)。找到由loader.asm 生成的loader 程序loader.bin 文件,记录下此文件的大小1566 字节,在下面的实验中会用到。找到由其它源文件生成的操作系统内核文件kernel.dll。 二、实验环境 进行实验使用的操作系统、编译器、语言及工具等。 操作系统:Windows XP 编译器:Tevalaton OS Lab 语言:C++

三、实验过程(每次实验不一定下面6条都写,根据实际情况定) *需要解决的问题以及解答 (1)、自己设计两个查看内存的调试命令,分别验证这两个用户可用区域的高地址端也是空白的。 答:命令为:xp /512b 0x7a00和cp /512v 0x9fe00。因为第一个用户区的高位地址截止到0x7c00,第二个用户区高位地址截止到0xA0000,命令表示显示从0x7a00和0x9fe00以后512b空间的所有字节码,即两个用户区的高位地址端,可以看到所有字节全为0,说明高地址端是空白的。如图一、图二所示。(2)、自己设计一个查看内存的调试命令,验证上位内存的高地址端已经被系统占用。 答:命令为:xp /512b 0xffe00。因为上位内存的高位地址截止到0x100000,命令表示显示从0xffe00以后的512b空间的所有字节码,即两个用户区的高位地址端。可以看到所有字节都有值,说明高地址端被占用。如图三所示。(3)、根据之前记录的loader.bin文件的大小,自己设计一个查看内存的调试命令,查看内存中loader程序结束位置的字节码,并与loader.lst文件中最后指令的字节码比较,验证loader程序被完全加载到了正确的位置。 答:命令为xp /8b 0x1616.程序的初始位置为0x1000,加上1566的十六进制61E-8b,答案即为1616.如图四、图五、图六、图七所示。 (4)、仔细比较实验指导10-5图和10-6图,尝试说明哪个是应用程序的进程,它和系统进程有什么区别,那个是应用程序的主线程,它和系统线程有什么区别? 答:进程列表中ID为31的进程是应用程序的进程,其优先级为8,包含1个线程,主线程ID为33,映像名称为a:\hello.exe。而ID为1的是系统进程,其优先级为24,包含有10个线程,其中的ID为2的线程是该进程的主线程,系统进程没有映像名称。主要区别为:应用程序的进程优先级较低。 线程列表中ID为33的线程是应用程序的线程,其优先级为8,处在阻塞状态,而ID为20~28的是系统进程,其优先级为24,其中ID为22的处于运行状态

操作系统上机实验报告

大连理工大学实验报告 学院(系):专业:班级: 姓名:学号:组:___ 实验时间:实验室:实验台: 指导教师签字:成绩: 实验名称:进程控制 一、实验目的和要求 (1)进一步加强对进程概念的理解,明确进程和程序的区别 (2)进一步认识并发执行的实质 二、实验环境 在windows平台上,cygwin模拟UNIX运行环境 三、实验内容 (1) getpid()---获取进程的pid 每个进程都执行自己独立的程序,打印自己的pid; (2) getpid()---获取进程的pid 每个进程都执行自己独立的程序,打印自己的pid; 父进程打印两个子进程的pid;

(3)写一个命令处理程序,能处理max(m,n), min(m,n),average(m,n,l)这几个命令(使用exec函数族)。 Max函数 Min函数 Average函数 Exec函数族调用 四、程序代码 五、运行结果 六、实验结果与分析 七、体会 通过这次上机,我了解了fork函数的运行方法,同时更深刻的了解了进程的并行执行的本质,印证了在课堂上学习的理论知识。同时通过编写实验内容(3)的命令处理程序,学会了exec函数族工作原理和使用方法。通过这次上机实验让我加深了对课堂上学习的理论知识的理解,收获很多。

大连理工大学实验报告 学院(系):专业:班级: 姓名:学号:组:___ 实验时间:实验室:实验台: 指导教师签字:成绩: 实验名称:进程通讯 一、实验目的和要求 了解和熟悉UNIX支持的共享存储区机制 二、实验环境 在windows平台上,cygwin模拟UNIX运行环境 三.实验内容 编写一段程序, 使其用共享存储区来实现两个进程之间的进程通讯。进程A创建一个长度为512字节的共享内存,并显示写入该共享内存的数据;进程B将共享内存附加到自己的地址空间,并向共享内存中写入数据。 四、程序代码 五、运行结果 六、实验结果与分析 七、体会

操作系统实验报告生产者与消费者问题模拟

操作系统上机实验报告 实验名称: 生产者与消费者问题模拟 实验目的: 通过模拟生产者消费者问题理解进程或线程之间的同步与互斥。 实验内容: 1、设计一个环形缓冲区,大小为10,生产者依次向其中写入1到20,每个缓冲区中存放一个数字,消费者从中依次读取数字。 2、相应的信号量; 3、生产者和消费者可按如下两种方式之一设计; (1)设计成两个进程; (2)设计成一个进程内的两个线程。 4、根据实验结果理解信号量的工作原理,进程或线程的同步\互斥关系。 实验步骤及分析: 一.管道 (一)管道定义 所谓管道,是指能够连接一个写进程和一个读进程的、并允许它们以生产者—消费者方式进行通信的一个共享文件,又称为pipe文件。由写进程从管道的写入端(句柄1)将数据写入管道,而读进程则从管道的读出端(句柄0)读出数据。(二)所涉及的系统调用 1、pipe( ) 建立一无名管道。 系统调用格式 pipe(filedes) 参数定义 int pipe(filedes); int filedes[2]; 其中,filedes[1]是写入端,filedes[0]是读出端。 该函数使用头文件如下: #include #inlcude #include 2、read( ) : 系统调用格式 read(fd,buf,nbyte) 功能:从fd所指示的文件中读出nbyte个字节的数据,并将它们送至由指针buf 所指示的缓冲区中。如该文件被加锁,等待,直到锁打开为止。 参数定义:

int read(fd,buf,nbyte); int fd; char *buf; unsigned nbyte; 3、write( ) 系统调用格式 read(fd,buf,nbyte) 功能:把nbyte 个字节的数据,从buf所指向的缓冲区写到由fd所指向的文件中。如文件加锁,暂停写入,直至开锁。 参数定义同read( )。 (三)参考程序 #include #include #include int pid1,pid2; main( ) { int fd[2]; char outpipe[100],inpipe[100]; pipe(fd); /*创建一个管道*/ while ((pid1=fork( ))==-1); if(pid1==0) { lockf(fd[1],1,0); /*把串放入数组outpipe中*/ sprintf(outpipe,child 1 is using pipe!); /* 向管道写长为50字节的串*/ write(fd[1],outpipe,50); sleep(5); /*自我阻塞5秒*/ lockf(fd[1],0,0); exit(0); } else { while((pid2=fork( ))==-1); if(pid2==0) { lockf(fd[1],1,0); /*互斥*/ sprintf(outpipe,child 2 is using pipe!); write(fd[1],outpipe,50); sleep(5); lockf(fd[1],0,0);

操作系统实验二

操作系统实验实验二进程管理 学号 1215108019 姓名克帆 学院信息学院 班级 12电子2

实验目的 1、理解进程的概念,明确进程和程序的区别。 2、理解并发执行的实质。 3、掌握进程的创建、睡眠、撤销等进程控制方法。 实验容与要求 基本要求:用C语言编写程序,模拟实现创建新的进程;查看运行进程;换出某个进程;杀死进程等功能。 实验报告容 1、进程、进程控制块等的基本原理。 进程是现代操作系统中的一个最基本也是最重要的概念,掌握这个概念对于理解操作系统实质,分析、设计操作系统都有其非常重要的意义。为了强调进程的并发性和动态性,可以给进程作如下定义:进程是可并发执行的程序在一个数据集合上的运行过程,是系统进行资源分配和调度的一个独立单位。 进程又就绪、执行、阻塞三种基本状态,三者的变迁图如下: 由于多个程序并发执行,各程序需要轮流使用CPU,当某程序不在CPU上运行时,必须保留其被中断的程序的现场,包括:断点地址、程序状态字、通用寄存器的容、堆栈容、程序当前状态、程序的大小、运行时间等信息,以便程序再次获得CPU时,能够正确执行。为了保存这些容,需要建立—个专用数据结构,我们称这个数据结构为进程控制块PCB (Process Control Block)。 进程控制块是进程存在的惟一标志,它跟踪程序执行的情况,表明了进程在当前时刻的状态以及与其它进程和资源的关系。当创建一个进程时,实际上就是为其建立一个进程控制块。 在通常的操作系统中,PCB应包含如下一些信息: ①进程标识信息。为了标识系统中的各个进程,每个进程必须有惟一的标识名或标 识数。 ②位置信息。指出进程的程序和数据部分在存或外存中的物理位置。 ③状态信息。指出进程当前所处的状态,作为进程调度、分配CPU的依据。 ④进程的优先级。一般根据进程的轻重缓急其它信息。 这里给出的只是一般操作系统中PCB所应具有的容,不同操作系统的PCB结构是不同的,我们将在2.8节介绍Linux系统的PCB结构。

Windows启动过程详解

Windows启动过程详解 我们每天都在和Windows打交道,很多人可能每天都要面对多次W indows的启动过程,可是您知道在Windows的启动过程背后,隐藏着什么秘密吗?在这一系列过程中都用到了哪些重要的系统文件?系统的启动分为几个步骤?在这些步骤中计算机中发生了什么事情?这些就是本文试图告诉您的。 本文的适用范围 随着技术的发展,我们能够见到的计算机硬件种类越来越多。以计算机上最重要的组件CPU来说,目前就有很多选择。当然,这里的选择并不是说AMD或者Intel这种产品品牌,而是指其内部的体系结构。目前常见的CPU体系结构主要基于复杂指令集(Complex I nstruction Set Computing,CISC)或者精简指令集(Reduced Ins truction Set Computing,RISC),我们常用的Intel的Pentium、C eleron系列以及AMD的Athlon、Sempron系列都是基于复杂指令集的,而这些基于复杂指令集的CPU还有32位和64位的寄存器数据带宽区别。关于这些指令集以及寄存器数据带宽之间的区别等内容比较繁杂,而且不是本文的重点,感兴趣的朋友可以自己在网上搜索相关内容。因为CPU种类的不同,在不同CPU的系统中运行的Wind ows的启动过程也有一些小的不同。本文将会以目前来说最普遍的,在x86架构的系统上安装的32位Windows XP Professional为例向

您介绍。 基本上,操作系统的引导过程是从计算机通电自检完成之后开始进行的,而这一过程又可以细分为预引导、引导、载入内核、初始化内核,以及登录这五个阶段。 在继续阅读之前,首先请注意图1,这是Windows XP的操作系统结构,其中包括了一些在后台工作的组件以及经常和我们打交道的程序。在了解Windows XP的启动过程之前,对系统结构有一个初步概念是很重要的。

计算机操作系统(第四版)课后习题答案第二章

第二章 1. 什么是前趋图?为什么要引入前趋图? 答:前趋图(Precedence Graph)是一个有向无循环图,记为DAG(Directed Acyclic Graph),用于描述进程之间执行的前后关系。 2. 画出下面四条诧句的前趋图: S1=a:=x+y; S2=b:=z+1; S3=c:=a-b; S4=w:=c+1; 答:其前趋图为: 3. 为什么程序并发执行会产生间断性特征? 程序在并发执行时,由于它们共享系统资源,以及为完成同一项任务而相互合作,致使在这些并发执行的进程之间,形成了相互制约的关系,从而也就使得进程在执行期间出现间断性。 4. 程序并发执行时为什么会失去封闭性和可再现性? 因为程序并发执行时,是多个程序共享系统中的各种资源,因而这些资源的状态是由多个程序来改变,致使程序的运行失去了封闭性。而程序一旦失去了封闭性也会导致其再失去可再现性。 5. 在操作系统中为什么要引入进程概念?它会产生什么样的影响? 为了使程序在多道程序环境下能并发执行,并能对并发执行的程序加以控制和描述,从而在操作系统中引入了进程概念。影响: 使程序的并发执行得以实行。 6. 试从动态性,并发性和独立性上比较进程和程序? a. 动态性是进程最基本的特性,可表现为由创建而产生,由调度而执行,因得不到资源而暂停执行,以及由撤销而消亡,因而进程由一定的生命期;而程序只是一组有序指令的集合,是静态实体。 b. 并发性是进程的重要特征,同时也是OS的重要特征。引入进程的目的正是为了使其程序能和其它建立了进程的程序并发执行,而程序本身是不能并发执行的。 c. 独立性是指进程实体是一个能独立运行的基本单位,同时也是系统中独立获得资源和独立调度的基本单位。而对于未建立任何进程的程序,都不能作为一个独立的单位来运行。 7. 试说明PCB的作用?为什么说PCB是进程存在的唯一标志? a. PCB是进程实体的一部分,是操作系统中最重要的记录型数据结构。PCB中记录了操作系统所需的用于描述进程情况及控制进程运行所需的全部信息。因而它的作用是使一个在多道程序环境下不能独立运行的程序(含数据),成为一个能独立运行的基本单位,一个能和其它进程并发执行的进程。 b. 在进程的整个生命周期中,系统总是通过其PCB对进程进行控制,系统是根据进程的PCB而不是任何别的什么而感知到该进程的存在的,所以说,PCB是进程存在的唯一标志。 11.试说明进程在三个基本状态之间转换的典型原因。 答:(1)就绪状态→执行状态:进程分配到CPU资源(2)执行状态→就绪状态:时间片用完(3)执行状态→阻塞状态:I/O请求(4)阻塞状态→就绪状态:I/O完成 12.为什么要引入挂起状态?该状态有哪些性质? 答:引入挂起状态处于五种不同的需要: 终端用户需要,父进程需要,操作系统需要,对换需要和负荷调节需要。处于挂起状态的进程不能接收处理机调度。10.在进行进程切换时,所要保存的处理机状态信息有哪些?答:进行进程切换时,所要保存的处理机状态信息有:(1)进程当前暂存信息(2)下一指令地址信息(3)进程状态信息(4)过程和系统调用参数及调用地址信息。13.在进行进程切换时,所要保存的处理机状态信息有哪些? 答:进行进程切换时,所要保存的处理机状态信息有: (1)进程当前暂存信息 (2)下一指令地址信息 (3)进程状态信息 (4)过程和系统调用参数及调用地址信息。 14.试说明引起进程创建的主要事件。答:引起进程创建的主要事件有:用户登录、作业调度、提供服务、应用请求。 15.试说明引起进程被撤销的主要事件。答:引起进程被撤销的主要事件有:正常结束、异常结束(越界错误、保护错、非法指令、特权指令错、运行超时、等待超时、算术运算错、I/O 故障)、外界干预(操作员或操作系统干预、父进程请求、父进程终止)。 16.在创建一个进程时所要完成的主要工作是什么? 答:(1)OS 发现请求创建新进程事件后,调用进程创建原语Creat();(2)申请空白PCB;(3)为新进程分配资源;(4)初始化进程控制块;(5)将新进程插入就绪队列. 17.在撤销一个进程时所要完成的主要工作是什么? 答:(1)根据被终止进程标识符,从PCB 集中检索出进程PCB,读出该进程状态。(2)若被终止进程处于执行状态,立即终止该进程的执行,臵调度标志真,指示该进程被终止后重新调度。(3)若该进程还有子进程,应将所

操作系统实验二

GDOU-B-11-112广东海洋大学学生实验报告书(学生用表) 实验名称实验二课程名称操作系统课程号 学院(系) 信息学院专业物联网工程班级1131 学生姓名杨光学号201311672119 实验地点实验日期 实验1:线程的创建与撤销 1.实验目的 (1)熟悉Windows系统提供的线程创建与撤销系统调用。 (2)掌握Windows系统环境下线程的创建与撤销方法。 2.实验要求 能正确使用CreateThread()、ExitThread()及Sleep()等系统调用,进 一步理解进程与线程理论。 代码一: // ThreadCreate.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include "ThreadCreate.h" #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif ///////////////////////////////////////////////////////////////////////////// // The one and only application object CWinApp theApp; using namespace std; void ThreadName1(); static HANDLE hHandle1=NULL; //用于存储线程返回句柄的变量。 DWORD dwThreadID1; //用于存储线程标识符的变量。 int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])

电脑启动过程详解

电脑从按完开关加电开始直到进入到系统桌面的整个过程详解本文以Windows2000/xp和Windows Vista/7两个内核做讲解 电脑从加电到进桌面可以分为两大部分: 无论是Windows2000/XP还是Windows Vista/7,在硬件自检方面都是想同的,不同的是在系统加截。 硬件部分: 在讲解前,我们先来了解几个概念: BIOS:即“Basic Input/Output System”(基本输入输出系统),它是一组被“固化”在计算机主板上的一块 ROM 中直接关联硬件的程序,保存着计算机最重要的基本输入输出的程序、系统设置信息、开机后自检程序和系统自启动程序,其主要功能是为计算机提供最底层的、最直接的硬件设置和控制,它包括系统 BIOS(主板 BIOS).其它设备 BIOS(例如 IDE 控制器 BIOS、显卡 BIOS 等)其中系统 BIOS 占据了主导地位.计算机启动过程中各个 BIOS 的启动都是在它的控制下进行的。 CMOS:即“Complementary Metal-Oxide-Semiconductor”(互补金属氧化物半导体),它本是计算机系统内一种重要的芯片,保存了系统引导最基本的资料。 内存地址:我们知道,内存空间的最基本单位是位,8 位视为一个字节,即我们常用的单位 B,内存中的每一个字节都占有一个地址(地址是为了让 CPU 识别这些空间,是按照 16 进制表示的),而最早的 8086 处理器只能识别 1MB(2 的 20 次方 B)的空间,这 1MB 内存中低端(即最后面)的 640KB 就被称为基本内存,而剩下的内存(所有的)则是扩展内存。这 640KB 的空间分别由显存和各 BIOS 所得。 我们来看一下硬件部分的流程图:

操作系统的启动流程

1、预引导(Pre-Boot)阶段 2、引导阶段 3、加载内核阶段 4、初始化内核阶段 5、登陆 每个启动阶段的详细介绍 一、预引导阶段在按下计算机电源使计算机启动, 并且在Windows XP操作系统启动之前这段时间, 我们称之为预引导(Pre-Boot)阶段, 在这个阶段里,计算机首先运行Power On Self Test(POST), POST检测系统的总内存以及其他硬件设备的现状。 如果计算机系统的BIOS(基础输入/输出系统)是即插即用的, 那么计算机硬件设备将经过检验以及完成配置。 计算机的基础输入/输出系统(BIOS)定位计算机的引导设备, 然后MBR(Master Boot Record)被加载并运行。 在预引导阶段,计算机要加载Windows XP的NTLDR文件。 二、引导阶段 Windows XP Professional引导阶段包含4个小的阶段。 首先,计算机要经过初始引导加载器阶段(Initial Boot Loader), 在这个阶段里,NTLDR将计算机微处理器从实模式转换为32位平面内存模式。 在实模式中,系统为MS-DOS保留640kb内存,其余内存视为扩展内存, 而在32位平面内存模式中,系统(Windows XP Professional)视所有内存为可用内存。 接着,NTLDR启动内建的mini-file system drivers, 通过这个步骤,使NTLDR可以识别每一个用NTFS或者FAT文件系统格式化的分区, 以便发现以及加载Windows XP Professional, 到这里,初始引导加载器阶段就结束了。 接着系统来到了操作系统选择阶段, 如果计算机安装了不止一个操作系统(也就是多系统), 而且正确设置了boot.ini使系统提供操作系统选择的条件下, 计算机显示器会显示一个操作系统选单, 这是NTLDR读取boot.ini的结果。 三、加载内核阶段在加载内核阶段,ntldr加载称为Windows XP内核的ntokrnl.exe。 系统加载了Windows XP内核但是没有将它初始化。 接着ntldr加载硬件抽象层(HAL,hal.dll),然后, 系统继续加载HKEY_LOCAL_MACHINE\system键, NTLDR读取select键来决定哪一个Control Set将被加载。 控制集中包含设备的驱动程序以及需要加载的服务。 NTLDR加载HKEY_LOCAL_MACHINE\system\service\...下start键值为0的最底层设备驱动。当作为Control Set的镜像的Current Control Set被加载时, ntldr传递控制给内核,初始化内核阶段就开始了。 四、初始化内核阶段在初始化内核阶段开始的时候, 彩色的Windows XP的logo以及进度条显示在屏幕中央, 在这个阶段,系统完成了启动的4项任务: 内核使用在硬件检测时收集到的数据来创建了HKEY_LOCAL_MACHINE\HARDWARE键。 内核通过引用HKEY_LOCAL_MACHINE\system\Current的默认值复制Control Set来创建了

操作系统实验报告18038

福州大学数学与计算机科学(软件)学院 实验报告 课程名称:计算机操作系统 学号:221100218 姓名: 专业:软件工程 年级:2011级 学期:2012学年第2学期 2013年10 月24 日

实验一 Linux操作系统的使用和分析 一、实验目的 本实验主要学习和掌握Linux操作系统的基本应用。通过本实验,学生能够熟练掌握Linux环境下各种基本操作命令接口的应用。从系统安全角度出发,学习掌握系统的基本安全优化和配置,在操作系统层次进行有效安全加固,提高Linux系统的安全性能。通过本次实验,有助于学生进一步理解操作系统原理中的相关内容,加深认识。 二、实验要求 1、熟练掌握Linux系统的基本操作命令。 2、熟悉Linux 系统的基本配置。 3、实现Linux系统的安全加固。 4、掌握一种以上的网络应用软件的安装、配置与应用。 三、实验内容 系统的启动,如图: 关闭使用shutdowm 还有列出文件夹内的信息ls,cp复制拷贝,touch创建文件命令等等 ①下载文件压缩包pro.gz,解压如图:

②然后修改安装路径: ③之后用make编译文件 ④在安装路径/home/liaoenrui/11里的etc中修改文件的组名和用户名: 将groud 命名也命名为ftp,然后用groudadd和useradd命令将这两个添加在该目录的sbin目录下:

⑤最后运行文件,./profile即可 四、实验总结 通过本次的操作系统的上机实验,我熟练了Linux系统的基本操作命令,并且对安装文件有更深入的了解,比如在上述安装过程中对于通过froftpd来架构linux的ftp,由于之前都是用window系统,所以对于这些非常的生疏,因此在请教了多人和上网查询之后,终于有所了解,并且成功的将此实验顺利完成。在本次实验中,我发现自己的动手能力又有很大的提高,相信以后继续努力的话会有更大的进步,当然这也要归功于老师的教导。 参考文献 [1] Neil Maththew Richard Stones Linux 程序设计第四版人民邮电出版社 [2] 周茜,赵明生.中文文本分类中的特征选择研究[J].中文信息学报,2003,Vol.18 No.3

相关主题
文本预览
相关文档 最新文档