压力容器设计 开孔及补强设计
- 格式:pptx
- 大小:989.87 KB
- 文档页数:21
压力容器的开孔与补强压力容器是一种用于储存和运输高压气体、液体或气体液体混合物的装置。
由于容器内部承受着巨大的压力,因此对于压力容器的结构设计和制造质量的要求非常高,尤其是它的壁厚和容积大小等参数必须经过精密计算和实验验证。
然而,即使设计和制造工艺都非常优秀,压力容器在使用过程中,也一定会出现开孔或由于压力过高而造成形变或者破裂的情况。
为了避免这种情况的发生,我们可以采用开孔和补强两种方法进行预防和解决。
开孔是一种常见的预防压力容器事故的方法。
通过在容器的垂直和水平方向上开孔,可以使容器内部受到更好的冷却和通风,从而减少容器内部压力的累积。
另一方面,开孔的位置也可根据容器内部压力变化而进行调整,使事故的风险降到最低。
此外,设定开孔的位置和数量还可以为维护和保养提供更大的便利。
例如在容器的底部开孔,可以更轻松地清除容器内部积存的物质。
尽管开孔是一种有效的预防措施,但在一些情况下,由于开孔会改变容器的整体结构,从而降低容器的承载能力。
这时,可以采用补强的方法来保证容器的安全。
补强的方法主要是在容器受力较大的地方加装加强筋或者钢板等材料来提高容器的强度和承载能力。
这种方法的优点是可以增加整个容器的稳定性和韧性,从而避免容器内部压力过高而造成的泄漏和破裂等意外事件的发生。
需要注意的是,在进行压力容器的开孔和补强的时候,我们必须严格遵守国家标准,以确保容器的质量和安全。
另外,在进行相关的维修和改装时必须由具备相关资质、资历的专业人员进行操作,这样可以有效地避免其他安全隐患的发生。
最后,压力容器在工业生产和人们的日常生活中发挥着重要的作用,但与之相关的安全问题也时刻需要引起人们的重视。
因此,在日常生活和工作中,我们应该尽可能地避免对压力容器的摩擦和碰撞,同时,也应该注意对其的定期检查和维修,以避免意外事件的发生。
第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4)GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a ra r r (2) 平板开孔的最大应力在孔边2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a ra r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a ra r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a ra r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
开孔补强4.5.5.5等面积补强的分析与计算■等面积补强----壳体承受应力所必需的金属截面,因开孔被削去多少,就必须在开孔周围的补强范围内补回同样截面的金属面积。
有效补强的金属面积大于或等于开孔削弱的金属面积A 、判断是否可以不补强和不作进一步补强计算(1)强度裕量(开孔后仍有的)●容器实际壁厚大于计算壁厚(δδφe )●接管厚度大于计算厚度(t et δδφ)●接管根部有填角焊缝 ●所开孔不在焊缝处,但壁厚计算的中径公式仍考虑了焊缝系数,计算壁厚有裕量。
(2)GB150-1998对不另行补强的规定同时满足下列条件时,开孔后可不另行补强:②相邻两孔中心的距离()2d d +≥B、等面积补强计算(1)所需最小补强面积接管有效面积:接管转化为壳体的当量面积:ΔA-----弥补[][]tttσσ≤而需增加的面积;或接管有效承载面积的折减量。
■圆柱壳■外压柱壳或球壳■平盖注:上述平盖和外压容器的公式来由参见丁伯民《压力容器设计----原理及应用》对平盖和外压容器,决定壳体厚度或承载能力的是弯曲应力,开孔削弱的是抗弯截面模量(而不是壁厚截面积)。
为保证开空前后的抗弯截面模量相等(w=w 0),要求k=A/A 0=1/(2+S/S 0),为保守起见,取k=0.5。
s —补强圈厚度,s 0----平盖厚度;A----补强面积,A 0----开孔削弱面积。
(2)补强范围■有效宽度B■接管外侧高度h 1■接管内侧高度h 2{}接管实际内伸高度,min 2nt d h δ=1(3)补强范围内富裕的可作补强的金属面积A e■A 1----壳体有效厚度减去计算厚度之后的多余面积■接管有效厚度减去计算厚度之后的多余面积()()r et r t et f C h f h A 221222-+-=δδδ■A 3----有效补强区内焊缝金属的截面积(4)有效补强区内另外再增加的补强元件的金属截面积A 4若A A e >,则开孔后无需补强。
(情绪管理)压力容器的开孔和补强第13章压力容器的开孔和补强本章重点内容及对学生的要求:(1)回转壳体上开小孔造成的应力集中;(2)开孔补强的原则、补强结构和补强计算;(3)不另行补强的要求;(4)GB150-98对容器开孔及补强的有关规定。
第壹节容器开孔附近的应力集中1、关联概念(1)容器开孔应力集中(Openingandstressconcentration)于压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔且安装接管,例如:人孔、手孔、进料和出料口等等。
容器开孔接管后于应力分布和强度方面会带来下列影响:◆开孔破坏了原有的应力分布且引起应力集中。
◆接管处容器壳体和接管形成结构不连续应力。
◆壳体和接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stressconcentrationfactor)常用应力集中系数Kt来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax,则弹性应力集中系数为:(1)压力容器设计中对于开孔问题研究的俩大方向是:✧研究开孔应力集中程度,估算K t值;✧于强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig.1Variationinstressinaplatecontainingacircularholeandsubjectedtouniformtension 设有壹个尺寸很大的巨型薄平板,开有壹个圆孔,其小圆孔的应力集中问题能够利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽于孔径的5倍之上,孔附近的应力分量为:(2)平板开孔的最大应力于孔边处,孔边沿处:应力集中系数:3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig.2Variationinstressinasphereshellcontainingacircularhole孔边处r=a,,应力集中系数4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳俩向薄膜应力,,如果开有小圆孔,则孔边附近任意点的受力为:(3)Fig.3Variationinstressinacylindricalshellcontainingacircularhole孔边处。
浅析压力容器常规设计规范中的开孔补强设计压力容器的开孔补强设计是压力容器设计的重要环节。
目前,国内压力容器按常规规范设计开孔补强时的常用标准主要有GB150—1998《钢制压力容器》(以下简称GB150)、HG2058-1998《钢制化工容器强度计算规定》(以下简称HG20582)及ASME 锅炉及压力容器规范第Ⅷ卷第一册《压力容器建造规则》(以下简称ASME). GB150是强制性国家标准,是设计的最低要求,超出GB150开孔范围时,可以采用HG20582计算并遵循HG20583—1998《钢制化工容器结构设计规定》(以下简称HG20583)规定结构进行设计。
压力容器开孔补强设计的方法有很多,如等面积法、压力面积法、安定性分析法、极限分析法、PVRC法、增量塑性理论方法及实验屈服法等等.鉴于软硬件条件的限制和从设计成本考虑,国内一般采用等面积法和压力面积法进行开孔补强设计,上面提及的设计规范就是采用这两种方法设计开孔补强的.1。
各规范开孔补强方法的理论基础GB150和ASME规范均采用等面积法进行开孔补强设计,而HG20582中的补强计算采用的是压力面积补强法。
压力面积法与等面积法的实质是一致的,都是从确保容器受载截面的一次平均应力(平均强度)在一倍许用应力水平的计算方法,都未计及开孔边缘的局部应力和峰值应力对开孔的作用,只是两种方法对壳体有效补强范围的确定上有所不同;在补强金属面积的配置上,压力面积法比等面积法更具有密集补强的特点,对缓和接管根部应力集中的作用较大。
2各规范开孔补强方法的适用范围比较GB150和ASME规范均适用于壳体上开圆形、椭圆形(或类似形状)或长圆形孔.GB150规定孔的短径与长径之比应不大于0。
5;而ASME规定当短径与长径之比小于0. 5时,应增强短径方向的补强。
各规范对开孔直径的相对大小均有限制:GB150适用于d /D t ≤0.5;HG20582适用于d /Dt ≤0.8;而ASME适用于d /D t ≤0。
压力容器的开孔与补强压力容器是一种用于贮存和运输高压气体、液体或者混合物的设备。
它们通常需要承受巨大的压力,在日常使用中,压力容器容易出现开孔和损伤的情况。
这种情况下,我们需要对压力容器进行修复和加固。
下面,我们将重点探讨压力容器的开孔与补强的相关知识。
1. 压力容器开孔的原因压力容器开孔的主要原因是意外撞击和磨损。
在使用过程中,如果受到了外力的冲击或者过度的磨损,压力容器的表面很容易出现开孔或者裂缝。
另外,压力容器还可能在制造和储存过程中出现缺陷,导致它们容易出现开孔和损伤。
2. 压力容器补强的方法常见的压力容器补强方法包括金属厚板贴补、涂覆材料和拉毛加固等。
(1) 金属厚板贴补:该方法是在压力容器的开孔处贴补一块同样厚度的金属板,然后使用焊接技术将其固定。
这种方法的优点是容易操作,效果比较显著,但是需要小心操作,否则可能会导致更严重的气体泄漏。
(2) 涂覆材料:这种方法是把一个薄的涂覆材料铺在压力容器的表面,在开孔处多涂几层。
涂覆材料通常是耐高温、抗腐蚀的特殊塑料或者橡胶材料。
该方法的优点是简单易行,不会对整个压力容器造成太大的影响。
(3) 拉毛加固:这种方法是在压力容器的开孔处用拉毛工具让金属拉伸,使其保持平整。
然后在开孔处焊接一块金属板,以加强其整体性能。
拉毛加固的优点是成本较低,对环境污染较小,适合于一些小型压力容器的修补。
3. 压力容器补强的预防措施在压力容器的设计与制造中,预防措施是非常重要的。
以下几点应该注意:(1) 在制造过程中确保压力容器表面光滑、整齐,不要有裂缝或者瑕疵。
(2) 在储存和运输时要轻拿轻放,防止碰撞和磨损。
(3) 在使用过程中,要对压力容器的外部结构进行定期检查,发现缺陷及时修复。
总之,压力容器是现代工业中必不可少的储存和运输设备。
在使用过程中,如果出现了开孔和损伤的情况,我们应该及时进行修复和加固,以确保其安全稳定运行。
同时,在设计、制造和储存过程中,也要注意预防措施,减少压力容器出现开孔和损伤的可能性。