开孔与开孔补强解读
- 格式:ppt
- 大小:892.00 KB
- 文档页数:27
目录1前言及概念31.1开孔补强的适应范围和方法 (3)1.2满足开孔条件时,可采用的三种补强方法 (3)1.3开孔补强的目的 (4)1.4补强结构(补强元件类型) (4)1.4.1加强管补强 (4)1.4.2整体锻件补强 (4)1.4.3加强圈的补强 (4)1.5壳体开孔的有关规定 (5)1.5.1允许不补强时开的最大孔直径 (5) (5)1.5.2壳体上允许开的最大孔直径dmax1.6等面积补强计算方法 (6)1.6.1各国压力容器规范主要采用的准则(补强准则的种类) (6)1.6.2等面积补强的原则 (6)1.6.3等面积补强计算方法 (6)2工艺设计 82.1设计要求 (8)2.2连续釜式反应器工艺设计 (8)2.2.1单段连续釜式反应器 (8)2.2.2反应器直径和高度的计算 (9)3 机械设计93.1手孔的开孔补强计算 (9)3.1.1计算是否需要补强 (10)3.1.2计算开孔失去的面积A. (10)3.1.3计算有效补强面积A (11)3.2进料口的开孔补强计算 (11)3.2.1计算是否需要补强 (11)4补强结构图125总结136参考文献 131前言及概念在日常的压力容器设计工作中,经常会遇到压力容器开孔补强问题。
压力容器开孔以后,不仅整体强度受到削弱,而且还因开孔引起的应力集中造成开孔边缘局部的高应力,加上接管上有时还有其他的外载荷所产生的应力及热应力,而容器材料、以及开孔结构在制造和焊接过程中又不可避免地会形成缺陷和残余应力,开孔和接管附近就成为压力容器的薄弱部位,于是开孔附近就往往成为压力容器的破坏源一一主要是疲劳破坏和脆性裂口。
因此,按照GBl50-1998Ⅸ钢制压力容器》的规定,在压力容器设计过程中必须充分考虑开孔的补强问题。
1.1开孔补强的适应范围和方法(1)当其内径Di≤1500mm时,开孔最大直径d≤1/2Di,且d≤520mm;当其内径D≥1500mm时,开孔最大直径d≤l/3Di,且d≤1000mm;(2)凸形封头或球壳的开孔最大直径d≤1/2Di;(3)锥壳(或锥形封头)的开孔最大直径d≤1/3Di,Di为开孔中心处的锥壳内直径;(4)在椭圆形或碟形封头过渡部分开孔时,其孔的中心线宜垂直于封头表面。
第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a ra r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a ra r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
1船体结构开孔及补强规则1 范围本标准规定了船体构件上的应力区域,船体结构开孔(含开口、切口)规则及补强形式。
本标准适用于钢质海船(船长≥建造过程中管系、电缆穿过船体构件时的开孔规则及补强形式,其它类型船舶及海上工程设施可参照执行。
2. 船体结构开孔规则 2.1 开孔基本原则2.1.1 开孔形状一般为圆形或腰圆形,孔长轴应沿结构跨度方向或船长方向布置,如需矩形开孔时,其四角需有足够大的圆角,圆角半径R≥h/8(h 为孔高)且R≥30。
2.1.2 开孔应远离流水孔、透气孔、减轻孔、人孔、型材贯穿孔等。
2.1.3 开孔边缘应光顺,无影响强度的缺口。
2.1.4 在强构件腹板上开孔时,其开孔位置应尽可能设置在构件的中和轴处或偏近骨架带板(即甲板、壁板或外板)一边,避免在近面板处开孔。
2.1.5 所有肋板、旁桁材上均应开人孔; 所有肋板、旁桁材、纵骨均应有适当的流水孔、透气孔,并应考虑泵的抽吸率;除轻型肋板外,开孔的高度应不大于该处双层底高度的50%, 否则应予加强。
各肋板开孔位置在船长方向应尽量按直线排列, 以便利人员出入。
在肋板的端部和横舱壁处的1 个肋距内的旁桁材上, 不应开人孔和减轻孔, 否则开孔边缘应予加强,肋板及旁桁材在支柱下的部分一般不应开孔, 否则应作有效加强。
2.1.6 船中0.75L 区域内双层底中桁材不允许开孔,特殊情况下必须开孔时,应予以有效加强;船中0.75L 以外中桁材上开孔高度不应大于该处中桁材高度的40%。
2.1.7高强度钢构件尽量少开孔,若开孔应采用圆形或腰圆形。
2.1.8开孔边缘不要靠近板缝,至少离开50mm; 开孔与板缝相交时,孔边缘离板缝不小于75mm,孔中以全部开孔的最大外轮廓尺寸作为开孔计算的宽度和长度,密集小孔可扩为一腰圆孔。
2.1.10 开孔总长度不能超过0.6肋距(或0.6纵骨间距),开孔应分散,不能同时密集在邻近的肋距(或纵骨间距)内。
2.1.11在船舯0.5L 区域内的强力甲板上开孔,其圆角半径为开口宽度的1/24(Rmin≥300mm)。
浅谈压力容器开孔补强的方法浅谈压力容器开孔补强的方法2011-04-17 09:23 来源:未知浏览次数:关键字:方法,补强,开孔,压力容器,浅谈,浅谈压力容器开孔补强的方法李文英摘要:本文主要对压力容器开孔后进行补强的方法进行探讨,主要针对等面积补强;压力容器大开孔补强方法;平盖开孔补强;高压蒸汽过热器联箱开孔补强这几种方法进行了比较。
关键词:压力容器开孔补强方法随着化工行业的发展,压力容器在化工厂中越来越普遍,其安全性也越来越受到重视。
这样在压力容器设计中一些较易出现问题的地方,更引起人们的注意了,如压力容器封头上的开孔及补强是一个非常爱出问题的地方,一旦计算有误就会造成容器的破坏,甚至引起工作人员的伤害,或者造成经济上的浪费。
下面就对压力容器的开孔补强进行分析。
1.等面积补强化工容器常用的开孔补强方法是等面积补强法,其基础理论是在有效补强范围内所加补强材料的截面积必须大于或等于因为开孔而失去的截面积。
其实质在于补强壳体的平均强度,即维持容器整体的屈服强度,理论模型是无限大平板开小孔,不至于因开边缘附加弯曲应力引起大的误差,故对小直径开孔安全可靠,其计算方法如下:满足下列条件不需补强:A1+A2+A3≥A不满足这一条件则需要补强,补强金属的面积为:AO= A一(A1+A2+A3 )式中:A---壳体因开孔而削弱的截面积;AO----补强金属的面积;A1---筒体或封头上超过计算厚度S所多余的金属截面积;A2---接管上超过强度计算厚度所多余的金属截面积;A3---补强区内焊缝的截面积。
其适用范围是局部补强的材料基本上应与壳体相同,其强度不应小于壳壁材料强度的75%。
适用于筒体的最大开孔直径dI≤1000毫米,而封头的开孔最大直径是dI≤1/2DJ。
d i—开孔最大直径;DJ—封头内径。
这类计算方法只能在一般情况下应用,在特殊情况下则不适用,例如容器大开孔时补强,平盖的开孔补强以及高压蒸汽过热器的开孔补强,下面将分别讨论。
开孔补强章节一、孔和孔桥补强计算的基本内容s。
--可不考虑孔间影响的的相邻两孔的最小节距(P10)S。
=dp +2√(Dn+δ)δ[d]—未补强孔的最大允许尺寸1 单孔和孔桥单孔:S≥S。
孔桥:S<S02 补强(1)S≥S。
d≤[d] 不需补强(2)S≥S。
d> [d] 按单孔补强(仅适用于d/Dn<0.8, 且d<600mm的径向孔径)补强条件是A1+A2+A3+A4≥A 且补强所需面积的2/3应分布在孔边1/4孔径的范围内(3)S<S0d<d。
按孔桥补强计算孔桥减弱系数,或在满足11.5.2 a、b的条件下,用管接头补强(4)S<S0 一孔d>[d] 在满足11.5.2 a、b的条件下,按单孔补强计算,补强后该孔在该孔桥中按无孔处理。
二孔d>[d] 按13章处理。
二、本章节的主要修正内容关于未减弱集箱筒体的内径Dn和补强管接头内径dn定义的修正原版标准中,补强计算的锅筒筒体、集箱筒体、补强管接头内径Dn 均以名义内径表示。
集箱筒体Dn=Dw-2δ补强管接头dn=dw-2δ1新版修改为集箱筒体Dn=Dw-2δy补强管接头dn=dw-2δ1y原因:由于名义壁厚中包含了壁厚的附加量,而通常集箱筒体和管子的尺寸控制点在外径(外径管),壁厚附加量的损耗会使集箱筒体、管子的实际内径大于其名义内径,而使原先按名义内径得出的一些计算结果偏于不安全。
故新版标准用有效壁厚代替上式中的名义壁厚,即剔除壁厚附加量的影响。
三、孔和孔桥章节的具体修改内容(一)单孔的补强1 未补强孔的最大允许直径(图19) (P41)修改1:k计算中,未减弱集箱筒体Dn的修正系数k k= PDn / (2[б]-P)Sy横坐标DnSyGB9222-88 无论是锅筒筒体或集箱筒体,Dn 指名义内径,GB9222(新版):锅筒筒体同上,集箱筒体Dn=Dw-2S 修改为Dn=Dw-2δy2 孔的补强结构形式和未补强孔的概念(1)孔的补强结构形式(P43)修改2:增加了新版(a)的结构,并规定只适用于额定压力不大于2.5MPa的锅炉,同时a的结构形式适用于不受热锅筒筒体。
1.接管.接管是压力容器与介质输送管道或仪表、安全附件管道等进行连接的附件.常用的接管有三种型式,即螺纹短管、法兰短管与平法兰。
螺纹短管式接管是一段带有内螺纹或外螺纹的短管。
短管插入并焊接在容器的器壁上。
短管螺纹用来与外部管件连接。
这种型式的接管一般用于连接直径较小的管道,如接装测量仪表等。
法兰短管式接管一端焊有管法兰,一端插入并焊接在容器的器壁上。
法兰用以与外部管件连接。
这种型式的接管在容器外面的一段短管要求有一定的长度,以便短管与外部管件连接时能够顺利地穿进螺栓和上紧螺帽,这段短管的长度一般不小于100毫米.当容器外面有保温层时,或接管靠近容器本体法兰安装时,短管的长度要求更长一些。
法兰短管式多用于直径稍大的接管。
平法兰接管是法兰短管式接管除掉了短管的一种特殊型式。
它实际上就是直接焊在容器开孔处的一个管法兰。
不过它的螺孔与一般管法兰的孔不同,是一种带有内螺纹的不穿透孔.这种接管与容器的连接有贴合式和插入式两种型式,贴合式接管有一面加工成圆柱状(或球状),使与容器的外壁贴合,并焊接在容器开孔的外壁上,因而容器的孔可以开得小一些,但圆柱形的法兰面加工比较困难。
插入式法兰接管两面都是平面,它插入到容器壁内表面并进行两面焊接.插入式接管加工比较简单,但不适宜用于容器内装有大直径部件(如塔板)的容器上.平法兰式接管的优点是它既可以作接口管与外部管件连接,又可以作补强圈,对器壁的开孔起补强作用,容器开孔不需另外再补强,缺点是装在法兰螺孔内的螺栓容易被碰撞而折断,而且一旦折断后要取出来则相当困难。
2。
开孔。
为了便于检查、清理容器的内部,装卸、修理工艺内件及满足工艺的需要,一般压力容器都开设有手孔和人孔.手孔的大小要使人的手能自由通过,并考虑手上还可能握有装拆工具和供安装的零件。
一般手孔的直径不小于150毫米。
对于内径≥1000mm的容器,如不能利用其它可拆除装置进行内部检验和清洗时,应开设人孔,人孔的大小应能使人能够钻入。
第 开孔补强设计根据GB 150规定,当在设计压力P c ≤2.5MPa 的在壳体上开孔,两相邻开孔中心的间距大于两孔直径之和的两倍,且接管公称外径不大于89mm 时,接管厚度满足要求,不另行补强,故该储罐中只有DN=500mm 的 人孔需要补强。
1. 补强设计方法判别按HG/T 21518-2005,选用回转盖带颈对焊法兰人孔。
开孔直径22C d d i +==500+2×2=504 mm 。
∵ 2/i D d <=3000/2=1500 mm故可以采用等面积法进行开孔补强计算。
接管材料选用10号钢,其许用应力[σ]t=117MPa根据GB150-1998中式8-1,开孔所需补强面积()r et f d A -+=12δδδ 其中:壳体开孔处的计算厚度δ=17.758mm 接管的有效厚度21C C nt et --=δδ=20-0-2=18mm 强度削弱系数[][]r tn r f δδ/==117/170=0.689所以开孔所需补强面积为()r et f d A -+=12δδδ=504×17.758+2×17.758×18×0.311 =4238.452mm 2. 有效补强范围2.1有效宽度B 的确定按GB150中式8-7,得:d B 21==2×504=1008 mmnt n d B δδ++=22=504+2×18+2×20=580mm B=()max 2,1B B=1008 mm2.2有效高度的确定 (1)外侧有效高度h的确定根据GB150中式8-8,得:11h =ntd δ=18504⨯=95.25mm12h =接管实际外伸高度H=H 1=280mm 1h =(()min 12,11h h =95.25mm(2)内侧有效高度2h的确定根据GB150-1998中式8-9,得:21h =ntd δ=18504⨯=95.25mm22h =0()min 22,212h h h ==03. 有效补强面积根据GB150中式8-10 到 式8-13,分别计算如下:321A A A A e ++= 3.1 筒体多余面积AA=(B-d)(δe-δ)-2δet(δe-δ)(1-fr)=(1008-504)(20-17.758)-2×20(20-17.758)(1-0.689)=1102.0782mm 3.2接管的多余面积 接管厚度:ct ic t P D P 5.0φ]σ[2δ==9184.15.09.011725009184.1⨯-⨯⨯⨯=4.94mm()21222h f h A r t e +-=δδ()2C e -δ=2×92.25×(20-17.758)×0.689+0=285.004 2mm4.接管区焊缝截面积(焊角取6.0mm )262/123⨯⨯=A =36 2mm5.补强面积321A A A A e ++==1102.078+285.004+36=1451.0822mm因为,A e <A 所以开孔需另行补强。
(情绪管理)压力容器的开孔和补强第13章压力容器的开孔和补强本章重点内容及对学生的要求:(1)回转壳体上开小孔造成的应力集中;(2)开孔补强的原则、补强结构和补强计算;(3)不另行补强的要求;(4)GB150-98对容器开孔及补强的有关规定。
第壹节容器开孔附近的应力集中1、关联概念(1)容器开孔应力集中(Openingandstressconcentration)于压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔且安装接管,例如:人孔、手孔、进料和出料口等等。
容器开孔接管后于应力分布和强度方面会带来下列影响:◆开孔破坏了原有的应力分布且引起应力集中。
◆接管处容器壳体和接管形成结构不连续应力。
◆壳体和接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stressconcentrationfactor)常用应力集中系数Kt来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax,则弹性应力集中系数为:(1)压力容器设计中对于开孔问题研究的俩大方向是:✧研究开孔应力集中程度,估算K t值;✧于强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig.1Variationinstressinaplatecontainingacircularholeandsubjectedtouniformtension 设有壹个尺寸很大的巨型薄平板,开有壹个圆孔,其小圆孔的应力集中问题能够利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽于孔径的5倍之上,孔附近的应力分量为:(2)平板开孔的最大应力于孔边处,孔边沿处:应力集中系数:3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig.2Variationinstressinasphereshellcontainingacircularhole孔边处r=a,,应力集中系数4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳俩向薄膜应力,,如果开有小圆孔,则孔边附近任意点的受力为:(3)Fig.3Variationinstressinacylindricalshellcontainingacircularhole孔边处。
第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中;(2) 开孔补强的原则、补强结构和补强计算;(3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax =t K (1) 压力容器设计中对于开孔问题研究的两大方向是:✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a r a r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r 应力集中系数:0.3max ==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max ==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a r a r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
第三章 压力容器常见结构的设计计算方法常见结构的设计计算方法4.1 圆筒4.2 球壳 4.3 封头4.4 开孔与开孔补强 4.5 法兰4.6 检验中的强度校核4.1.1 内压圆筒 1)GB150中关于内压壳体的强度计算考虑的失效模式是结 构在一次加载下的塑性破坏,即弹性失效设计准则。
2)壁厚设计釆用材料力学解(中径公式)计算应力,利用第一强度理论作为控制。
轴向应力:环向应力:(取单位轴向长度的半个圆环)校核:σ1=σθ,σ2=σz ,σ1=0 σθ≤[σ]t ·φ对应的极限压力:2)弹性力学解(拉美公式)讨论:1)主应力方向?应力分布规律?径向、环向应力非线形分布(内壁应力绝对值最大),轴向应力均布; 2)K 对应力分布的影响?越大分布越不均匀,说明材料的利用不充分; 例如,k =1.1时,R =1.1内外壁应力相差10%; K =1.3时,R =1.35内外壁应力相差35%; 4 常见结构的设计计算方法 962)弹性力学解(拉美公式)主应力:σ1=σθ,σ2=σz ,σ3=σr 屈服条件:σⅠ=σ1=σθ=σⅡ=σ1-μ(σ2+σ3)=σⅢ=σ1-σ3=σⅣ=3)GB150规定圆筒计算公式(中径公式)的使用范围为:p/[σ]·φ≤0.4(即≤1.5)4.1.2 外压圆筒1)GB150中关于外压壳体的计算所考虑的失效模式:弹性失效准则和失稳失效准则(结构在横向外压作用下的横向端面失去原来的圆形,或轴向载荷下的轴向截面规则变化)2)失稳临界压力的计算长圆筒的失稳临界压力(按Bresse公式):长圆筒的失稳临界压力(按简化的Misse公式):失稳临界压力可按以下通用公式表示:圆筒失稳时的环向应力和应变:定义——外压应变系数于是取稳定系数m=3,有·应变系数A的物理意义-系数A是受外压筒体刚失稳时的环向应变,该系数仅与筒体的几何参数L、D。
、δe 有关,与材料性能无关·应力系数B的物理意义:与系数A之间反映了材料的应力和应变关系(应力),可将材料的δ-ε曲线沿σ轴乘以2/3而得到B-A曲线。
浅谈常规压力容器的开孔补强设计摘要:在压力容器上开孔,将会使压力容器的承压能力降低,在其设计工艺条件下会产生危险,因此压力容器开孔后需进行补强,本文介绍了压力容易开孔补强的两种方法和应注意的问题,并针对实例进行了计算演示。
关键词:压力容器补强开孔随着化工行业的发展,压力容器在化工厂中越来越普遍,其安全性也越来越受到重视。
开孔补强设计是压力容器设计中必不可少的一部分,标准和规范中虽然对设计和计算都作了较为详细的规定,但安全、经济、合理的设计仍是摆在我们面前的一个课题。
一旦计算有误就会造成容器的破坏,甚至引起工作人员的伤害,或者造成经济上的浪费。
按照GB150-1998《钢制压力容器》规定,在压力容器的设计过程中,应采用适当的开孔补强设计。
下面就对压力容器的开孔补强进行分析。
一、开孔补强方法的选择1.压力面积法压力面积是西德AD规范中采用的开孔补强方法,其开孔率可达0.8,较等面积法为大。
当开孔率超出等面积法适用范围时,常采用该法进行补强:压力面积法的意义如下。
式中,AP-为补强有效范围内的压力作用面积;Aσ-为补强有效范围内的壳体、接管、补强金属的截面积;P-设计压力;[σ]-材料许用应力公式(1)是以在壳体有效补强区域中的压力载荷与壳体的承载能力相平衡为基础的,即压力在壳体受压面积上形成的载荷与有效补强范围中的壳体、接管、补强材料的面积所具有的承载能力相平衡。
由式(1)的变形得出式(1a):式中左端项即压力在壳体受压面积上形成的载荷。
式中右端项为材料所具有的承载能力材料的承载能力,应大于压力引起的载荷,所以使用不等号相联接。
右端项中是由于采用“中径”公式的缘故。
2.等面积补强法等面积法是以拉伸的开孔大平板为计算模型的。
但随着壳体开孔直径增大,开孔边缘不仅存在很大的薄膜应力,而且还产生很高的弯曲应力,故该方法不能相适应。
补强计算时,在有效补强范围内的所有多余面积(即有效厚度提供的面积扣除壳体或接管本身强度所需的面积)均可作为补强面积。