快切装置原理说明(文书特制)
- 格式:doc
- 大小:90.00 KB
- 文档页数:11
6kv快切装置的工作原理及切换方式
6kv快切装置是一种用于电力系统中的高压断路器,其工作原理主要包括电气触头的接合和分离、电磁驱动机构的动作。
其切换方式主要有手动切换和自动切换两种。
1. 工作原理:
- 接合:通过操作机械驱动机构,使两个电气触头接近并接通,电流得以从一侧通过断路器。
- 分离:当需要切断电流时,电梯式的机械驱动机构将两个电气触头分开,断开电路。
2. 切换方式:
- 手动切换:由人工通过手柄、手轮等手动操作装置控制断路器的开合,直接将机械驱动机构的动作信号传递给断路器,实现切换操作。
- 自动切换:通过自动化控制设备,如继电器、保护装置等,根据电力系统的实际工作状态,自动接通或分断断路器。
可以根据电流、电压等参数进行监测和控制,实现电力系统的自动保护和控制。
需要注意的是,6kv快切断路器通常应用于中小型变电站、配电站等场所,用于接通、切断电力系统中的电流。
工作原理和切换方式的具体实现有不同的品牌和型号,可能会有细微的差别。
厂用电快切装置的工作原理、作用认识快切之前要明白几个专用名词,如下图所示,高厂变所带的分支叫工作进线分支开关1DL,起备变带的分支叫备用进线分支开关2DL。
机组正常运行时,由高厂变合工作进线分支开关1DL,从而使母线带电,此时电厂机组自身给母线供电,称为工作。
在机组停机时,由起备变合备用进线分支开关2DL,给母线带电,此时电网给母线供电,称为备用。
快切是什么呢?字面上理解就是快速切换,说白了就是工作分支开关和备用分支开关的切换,就是合工作,跳备用;合备用,跳工作。
先合后跳,或者先跳后合。
这里就涉及到快切的两种基本切换方式,并联切换和串联切换。
并联切换就是先合后跳,如图,假设现在1DL合位,先合上2DL,再跳开1DL,就是并联切换,在并联切换的时候,会引起并联系统出现环流,切换必须是瞬间的,不能长时间并列。
串联切换,就是先跳后合,假设现在1DL合位,先跳开1DL,再合上2DL,就是串联切换。
串联切换会引起母线短时失电,严重会因某些重要设备停转,导致机组跳闸,因此也必须是瞬间的。
正常切换包括并联切换和串联切换,是双向的,可以由工作切到备用,也可以由备用切到工作,一般是在DCS画面操作的。
kju快切最多的是事故切换,保护动作时启动快切,事故切换一般为串联切换,而且只能由工作切到备用,是单向的。
保护动作接点,通常都是由发变组保护A\B\C屏接入。
另外快切的切换还有母线失压切换,开关偷跳切换,不再详述。
通过上面的介绍,咱们来看看快切究竟该设计哪些回路,首先要合跳1DL、2DL,那么就需要合、跳1DL、2DL的出口指令回路,需要1DL、2DL的位置反馈回路;有DCS操作,就需要有接到DCS的切换启动、串并联选择、复位等指令回路;有保护启动,就需要有保护屏接入的启动切换回路。
有切换回路,就会有接入的闭锁回路。
另外,需要有电流、电压回路,电压有母线电压(三相)、工作进线电压、备用进线电压,电流有工作进线电流、备用进线电流,电流取单相或三相,电压取相或线电压,有电压通常就会取母线PT隔刀位置接点。
电源快速切换装置原理及
与备自投的区别
一、RCS-9655S电源快速切换装置原理
1、快切原理:
正常运行情况下,两段母线分别由各自供电电源支路供电,分支1开关CB1、分支2开关CB2均闭合,母联开关CB3分位。
当任一供电支路故障时,PCS-9655S电源快速切换装置根据故障情况,跳开CB1(或CB2),合母联开关CB3,两段母线均由无故障的电源支路供电,保证两段母线不失电。
也可手动控制CB1(或CB2)和CB3的分合,进行供电电源支路的切换。
2、快切方式
二、RCS-9655S电源快速切换装置与备自投的区别及快切的优点
1、从内部程序上有些区别:备自投逻辑上复杂,需要与自己的操作回路配合,执行切换时判断条件简单;电源快速切换装置逻辑上简单,没有复杂的操作回路,逻辑判断,但执行快速切换上判断条件复杂。
2、备自投判断条件简单,无故障、过流等闭锁接点,而是通过逻辑上躲过时间来判断一些开关误合闭锁等条件;而电源快速切换装置判断条件复杂,可直接从开关上引故障、过流等闭锁接点,无需通过逻辑上判断来等待时间,从而加快了切换的速度。
3、以I母失电为例;备投方式:检I母母线无压,进线1无流启动备投,经延时后,判断I母无压或检同期经延时合闸;电源快速切换方式:检I母低频,进线1无流启动电源快速切换,以快速切换方式合闸,无需等待延时;因此电源快速切换装置在切换上远快于备自投装置。
浅谈厂用电块切装置工作原理及应用在当代发电厂中,快切装置的切换效果直接影响厂用电系统的稳定性。
所以,了解快切装置的工作原理、切换方式、应用条件及应用环境,并提供有利的应用条件及应用环境,保证发电厂电源切换的成功率,进而保证发电厂的正常运行。
基于此种认识,本文主要阐述了快切装置的主要切换方式及其工作原理,并介绍了快切装置必要的应用条件及应用环境,旨在提高快切装置在切换过程中的成功率,对于维持发电厂稳定运行具有一定的意义。
标签:快切装置应用条件应用环境引言发电厂厂用电源切换多采用工作电源开关辅助接点联动备用电源投入。
采用此方法存在很多问题,当备用电源开关合闸瞬间若厂用点系统反馈电压与备用电源电压间相角差大于30度,极限情况可能为180°,此时备用电源开关合闸瞬间势必对备用电源、母线、电动机造成合闸冲击。
如采用延时切换、短延时切换方式,由于种种因素,未必可靠保证躲过反向点而切换成功。
若待母线残压衰减到一定幅值后再投入备用电源,则由于母线断电时间过长,母线电压和电动机转速下降幅度很大,将严重影响机组安全运行。
此时,在低电压保护的作用下,一部分辅机将退出运行。
即使切换成功备用电源合闸,成组电动机的巨大自启动电流,会继续拉低母线电压,从而导致电动机自启动困难,情况进一步恶化。
因此,对于从事发电厂行业的管理者,了解快切装置的工作原理及切换方式,以便更好地应用快切装进行厂用电切换,进而保障发电厂的的稳定运行。
一、快切装置的切换方式及原理分析快切装置常被应用在电厂的供电系统中,指的是发电厂厂用电电源快速切换装置,简称为快切装置。
从本质上来讲,应用在厂用电系统中的快切,其作用是为了使工作电源、备用电源得以迅速而可靠的切换,从而保证供电的正常,进而避免因电源切换而使某些设备受损。
厂用电源切换的方式可按开关动作顺序分类,也可按启动原因分类,还可按切换速度进行分类。
1.按工作电源开关、备用电源开关的动作顺序分类(以工作电源切换至备用电源为例)1.1并联切换:并联切换过程中,备用电源开关先合闸,工作电源、备用电源短时间并联,工作电源开关再跳开,在启停机是的厂用电电源切换多用此方法。
第一章概述MFC2000型微机厂用电快切装置,适用于发电厂厂用电切换,或其它工业部门,如化工、煤炭和冶金等有较多高压电动机负荷的电源切换,这些场合对电源切换要求较高,在电源切换是不能造成运行中断或设备冲击损坏。
以往厂用电切换一般采用工作开关辅助接点直接起动备用电源投入,这种方式,若合闸瞬间厂用母线反馈电压与备用电源电压间相交差较大,或可能接近180°,将对电动机造成很大的合闸冲击。
对加了固定延时的切换方式,也因各种因素,不能可靠保证躲过反向点合闸。
如残压衰减到一定幅值后投入备用电源,则由于断电时间过长,母线电压和电动机转速都下降很大,将严重影响锅炉运行工况,在这种情况下,一方面有些辅机势必退出运行,另一方面,备用电源合上后,由于电动机成组自起动电流很大,母线电压将可能难以恢复,从而导致自起动困难,甚至被迫停机停炉。
MFC2000型微机厂用电快切装置解决了上述厂用电安全运行问题,从1997年投运运行,已经在很多电厂广泛地应运,而且动作正确率和切换成功率均很高,实践证明其可靠性较强,本快切装置经历了两代装置,第一代是MFC2000-1型快切装置,第二代是MFC2000-2型快切装置,是MFC2000-1型装置的改进型,在硬件上和软件上都采用了较先进的技术,如硬件利用了双CPU结构,分工协调,保证了切换的可靠性、快速性和灵活性。
软件采用了汇编和C语言相结合的技术,是本装置功能得到了很大的增强,且有较强的实用性和实践中分析事故和问题的功能。
第二章厂用电切换原理及分析2.1 厂用电切换方式厂用电源切换的方式可按开关动作顺序分,也可按启动原因分,还可按切换速度进行分类。
(1)按照开关动作顺序分类(动作顺序以工作电源向备用电源为例):◆并联切换:先合上备用电源开关,两电源短时并联,再跳开工作电源开关,这种方式多用于正常切换,如起、停机过程中的厂用电倒换。
并联方式分为自动和并联半自动两种。
◆串联切换:先跳开工作电源开关,在确认工作开关跳开后,在合上备用电源开关。
第一章概述MFC2000型微机厂用电快切装置,适用于发电厂厂用电切换,或其它工业部门,如化工、煤炭和冶金等有较多高压电动机负荷的电源切换,这些场合对电源切换要求较高,在电源切换是不能造成运行中断或设备冲击损坏。
以往厂用电切换一般采用工作开关辅助接点直接起动备用电源投入,这种方式,若合闸瞬间厂用母线反馈电压与备用电源电压间相交差较大,或可能接近180°,将对电动机造成很大的合闸冲击。
对加了固定延时的切换方式,也因各种因素,不能可靠保证躲过反向点合闸。
如残压衰减到一定幅值后投入备用电源,则由于断电时间过长,母线电压和电动机转速都下降很大,将严重影响锅炉运行工况,在这种情况下,一方面有些辅机势必退出运行,另一方面,备用电源合上后,由于电动机成组自起动电流很大,母线电压将可能难以恢复,从而导致自起动困难,甚至被迫停机停炉。
MFC2000型微机厂用电快切装置解决了上述厂用电安全运行问题,从1997年投运运行,已经在很多电厂广泛地应运,而且动作正确率和切换成功率均很高,实践证明其可靠性较强,本快切装置经历了两代装置,第一代是MFC2000-1型快切装置,第二代是MFC2000-2型快切装置,是MFC2000-1型装置的改进型,在硬件上和软件上都采用了较先进的技术,如硬件利用了双CPU结构,分工协调,保证了切换的可靠性、快速性和灵活性。
软件采用了汇编和C语言相结合的技术,是本装置功能得到了很大的增强,且有较强的实用性和实践中分析事故和问题的功能。
第二章厂用电切换原理及分析2.1 厂用电切换方式厂用电源切换的方式可按开关动作顺序分,也可按启动原因分,还可按切换速度进行分类。
(1)按照开关动作顺序分类(动作顺序以工作电源向备用电源为例):◆并联切换:先合上备用电源开关,两电源短时并联,再跳开工作电源开关,这种方式多用于正常切换,如起、停机过程中的厂用电倒换。
并联方式分为自动和并联半自动两种。
◆串联切换:先跳开工作电源开关,在确认工作开关跳开后,在合上备用电源开关。
快切装置原理说明————————————————————————————————作者:————————————————————————————————日期:ﻩ快切装置原理说明一快切的作用:火力发电厂厂用电系统一般都具有两个电源:即厂用工作电源和备用(启动)电源,其典型接线如图1所示。
目前绝大多数大型机组火力发电厂都采用单元接线,正常运行时机组厂用电由单元机组供电,停机状态由备用电源供电,机组在启动和停机过程都必须带负荷进行厂用电切换。
另外,当机组或厂用工作电源发生故障时,为了保证厂用电不中断及机组安全有序地停机,不扩大事故,必须尽快把厂用电电源从工作电源切换到备用电源。
ﻫ二启动快切的模式1正常手动切换功能手动切换是指电厂正常工况时,手动切换工作电源与备用电源。
这种方式可由工作电源切换至备用电源,也可由备用电源切换至工作电源。
它主要用于发电机起、停机时的厂用电切换。
该功能由手动起动,在控制台或装置面板上均可操作。
手动切换可分为并联切换及串联切换。
1.1手动并联切换(切换逻辑示意图见附图3)A 并联自动并联自动指手动起动切换,如并联切换条件满足要求,装置先合备用(工作)开关,经一定延时后再自动跳开工作(备用)开关。
如果在该段延时内,刚合上的备用(工作)开关被跳开,则装置不再自动跳开工作(备用)开关。
如果手动起动后并联切换条件不满足,装置将立即闭锁且发闭锁信号,等待复归。
b 并联半自动并联半自动指手动起动切换,如并联切换条件满足要求,装置先合备用(工作)开关,而跳开工作(备用)开关的操作则由人工完成。
如果在规定的时间内,操作人员仍未跳开工作(备用)开关,装置将发告警信号。
如果手动起动后并联切换条件不满足,装置将立即闭锁且发闭锁信号,等待复归。
注意:1:手动并联切换只有在两电源并联条件满足时才能实现,并联条件可在装置中整定。
2:两电源并联条件满足是指:⑴两电源电压幅值差小于整定值。
⑵两电源频率差小于整定值。
第一章概述MFC2000型微机厂用电快切装置,适用于发电厂厂用电切换,或其它工业部门,如化工、煤炭和冶金等有较多高压电动机负荷的电源切换,这些场合对电源切换要求较高,在电源切换是不能造成运行中断或设备冲击损坏。
以往厂用电切换一般采用工作开关辅助接点直接起动备用电源投入,这种方式,若合闸瞬间厂用母线反馈电压与备用电源电压间相交差较大,或可能接近180°,将对电动机造成很大的合闸冲击。
对加了固定延时的切换方式,也因各种因素,不能可靠保证躲过反向点合闸。
如残压衰减到一定幅值后投入备用电源,则由于断电时间过长,母线电压和电动机转速都下降很大,将严重影响锅炉运行工况,在这种情况下,一方面有些辅机势必退出运行,另一方面,备用电源合上后,由于电动机成组自起动电流很大,母线电压将可能难以恢复,从而导致自起动困难,甚至被迫停机停炉。
MFC2000型微机厂用电快切装置解决了上述厂用电安全运行问题,从1997年投运运行,已经在很多电厂广泛地应运,而且动作正确率和切换成功率均很高,实践证明其可靠性较强,本快切装置经历了两代装置,第一代是MFC2000-1型快切装置,第二代是MFC2000-2型快切装置,是MFC2000-1型装置的改进型,在硬件上和软件上都采用了较先进的技术,如硬件利用了双CPU结构,分工协调,保证了切换的可靠性、快速性和灵活性。
软件采用了汇编和C 语言相结合的技术,是本装置功能得到了很大的增强,且有较强的实用性和实践中分析事故和问题的功能。
第二章厂用电切换原理及分析2.1 厂用电切换方式厂用电源切换的方式可按开关动作顺序分,也可按启动原因分,还可按切换速度进行分类。
(1)按照开关动作顺序分类(动作顺序以工作电源向备用电源为例):◆ 并联切换:先合上备用电源开关,两电源短时并联,再跳开工作电源开关,这种方式多用于正常切换,如起、停机过程中的厂用电倒换。
并联方式分为自动和并联半自动两种。
◆ 串联切换:先跳开工作电源开关,在确认工作开关跳开后,在合上备用电源开关。
10kv高压快切装置原理引言高压装置是电力系统中重要的设备,其运行安全和可靠性对能源供应和电网稳定运行至关重要。
10k v高压快切装置作为一种重要的防护装置,能够快速切断高压电路,保护电力设备和人员的安全。
本文将介绍10kv高压快切装置的原理及其工作过程。
1.基本原理10kv高压快切装置基于电磁原理实现高压电路的迅速切断。
当电路中出现短路故障或需要进行检修时,快切装置能够迅速将电路切断,防止电流过大导致设备损坏或人员受伤。
2.工作过程2.1准备阶段在正常情况下,10kv高压快切装置处于待机状态,等待故障发生或人工操作。
2.2故障检测当电路中出现短路故障或其他异常情况时,快切装置能够快速检测到电流异常或信号变化。
通过传感器等装置实时监测电流、电压、温度等参数,以判断是否需要切断电路。
2.3切断电路一旦检测到故障或接收到切断指令,快切装置会迅速启动切断机构,切断高压电路。
切断机构通常由电磁铁、气动机构或电动机等组成,通过释放电磁能量、气体压力或机械运动来切断电路。
2.4切断后处理当高压电路被切断后,快切装置还需要进行后续处理,如重置机构、释放能量、断开控制回路等。
这些步骤旨在将电路恢复至正常状态,为后续操作或修复做好准备。
2.5报警与显示在切断过程中,快切装置会输出相应信号,如报警或显示指示灯。
这些信号可被监控系统或操作人员感知,以及时采取措施,并提供故障信息以便排除故障。
3.应用领域10kv高压快切装置广泛应用于电力系统、工矿企业、交通运输和建筑等领域。
它们能够准确快速地切断高压电路,保护设备和人员的安全,避免故障扩大和事故发生。
结论10kv高压快切装置是一种重要的防护装置,通过电磁原理实现快速切断高压电路,保障电力设备和人员的安全。
本文介绍了其基本原理、工作过程和应用领域。
对于电力系统的安全运行和设备保护起着重要作用。
快切装置原理说明
一快切的作用:火力发电厂厂用电系统一般都具有两个电源:即厂用工作电源和备用(启动)电源,其典型接线如图1所示。
目前绝大多数大型机组火力发电厂都采用单元接线,正常运行时机组厂用电由单元机组供电,停机状态由备用电源供电,机组在启动和停机过程都必须带负荷进行厂用电切换。
另外,当机组或厂用工作电源发生故障时,为了保证厂用电不中断及机组安全有序地停机,不扩大事故,必须尽快把厂用电电源从工作电源切换到备用电源。
二启动快切的模式
1 正常手动切换功能
手动切换是指电厂正常工况时,手动切换工作电源与备用电源。
这种方式可由工作电源切换至备用电源,也可由备用电源切换至工作电源。
它主要用于发电机起、停机时的厂用电切换。
该功能由手动起动,在
控制台或装置面板上均可操作。
手动切换可分为并联切换及串联切换。
1.1 手动并联切换(切换逻辑示意图见附图3)
A 并联自动
并联自动指手动起动切换,如并联切换条件满足要求,装置先合备用(工作)开关,经一定延时后再自动跳开工作(备用)开关。
如果在该段延时内,刚合上的备用(工作)开关被跳开,则装置不再自动跳开工作(备用)开关。
如果手动起动后并联切换条件不满足,装置将立即闭锁且发闭锁信号,等待复归。
b 并联半自动
并联半自动指手动起动切换,如并联切换条件满足要求,装置先合备用(工作)开关,而跳开工作(备用)开关的操作则由人工完成。
如果在规定的时间内,操作人员仍未跳开工作(备用)开关,装置将发告
警信号。
如果手动起动后并联切换条件不满足,装置将立即闭锁且发闭锁信号,等待复归。
注意:
1:手动并联切换只有在两电源并联条件满足时才能实现,并联条件可在装置中整定。
2:两电源并联条件满足是指:
⑴两电源电压幅值差小于整定值。
⑵两电源频率差小于整定值。
⑶两电源电压相角差小于整定值。
⑷工作、备用电源开关一个在合位、另一个在分位。
⑸目标电源电压大于所设定的电压值。
⑹母线PT 正常。
1.2 手动串联切换(切换逻辑示意图见附图4)
手动串联切换指手动起动切换,先发跳工作电源开关指令,不等开关辅助接点返回,在切换条件满足时,发合备用(工作)开关命令。
如开关合闸时间小于开关跳闸时间,自动在发合闸命令前加所整定的延时以保证开关先分后合。
切换条件:快速、同期判别、残压及长延时切换。
快速切换不成功时自动转入同期判别、残压及长延时切换。
需要注意的一个问题,由于厂用工作变压器和起动/备用变压器引自不同的母线和电压等级,它们之间往往有不同数值的阻抗及阻抗角,当变压器带上负荷时,两电源之间的电压将存在一定的相位差,此相位差通常称作“初始相角差”。
初始相角的存在,使手动并联切换时,两台变压器之间会产生环流,如环流过大,对变压器是十分有害的。
初始相角在20°时,环流的幅值大约等于变压器的额定电流。
因此当初始相角差超过20°时,慎用手动并联方式(此时可采用手动串联切换方式)。
2 事故切换
事故切换指由发变组、高压厂变保护(或其它跳工作电源开关的保护)接点起动,单向操作,只能由工作电源切向备用电源。
事故切换有两种方式可供选择。
2.1 事故串联切换(切换逻辑示意图见附图5)
由保护接点起动,先跳开工作电源开关,在确认工作电源开关已跳开且切换条件满足时,合上备用电源开关。
切换条件:快速、同期判别、残压及长延时切换。
快速切换不成功时自动转入同期判别、残压及长延时切换。
2.2 事故同时切换(切换逻辑示意图见附图6)
由保护接点起动,先发跳工作电源开关指令,不等待工作开关辅助接点变位,一旦切换条件满足时,立即发合备用电源开关命令(或经整定的短延时“同时切换合备用延时”发合备用电源开关命令)。
“同时切换合备用延时”定值可用来防止电源并列。
切换条件:快速、同期判别、残压及长延时切换。
快速切换不成功时自动转入同期判别、残压及长延时切换。
3 非正常工况切换
非正常工况切换是指装置检测到不正常运行情况时自行起动,单向操作,只能由工作电源切向备用电源。
该切换有以下两种情况。
3.1 母线低电压
当母线三线电压均低于整定值且时间大于所整定延时定值时,装置根据选定方式进行串联或同时切换。
切换条件:快速、同期判别、残压及长延时切换。
快速切换不成功时自动转入同期判别、残压及长延时切换。
3.2 工作电源开关偷跳
因各种原因(包括人为误操作)引起工作电源开关误跳开,装置可根据选定方式进行串联或同时切换。