纯电动汽车三相异步电动机矢量控制
- 格式:pdf
- 大小:509.65 KB
- 文档页数:5
目录1 引言 (1)1.1 课题的背景与意义 (1)1.1.1 课题背景 (1)1.1.2 课题意义 (1)1.2 永磁电机发展概况 (1)2 机电能量转换和拉格朗日方程 (2)2.1 机电能量转换 (2)2.2 三相同步电机电磁转矩 (7)2.3 拉格朗日方程 (9)3 三相永磁同步电机的数学模型 (11)3.1 三相PMSM的基本数学模型 (11)3.2 三相PMSM的坐标变换 (13)3.2.1 Clark变换 (13)3.2.2 Park变换 (14)3.3 同步旋转坐标系下PMSM的数学模型 (14)4 三相永磁同步电机的矢量控制 (16)4.1 转速环PI调节器的参数整定 (16)4.2 电流环PI调节器的参数整定 (17)4.3 三相PMSM矢量控制系统的仿真 (19)4.3.1 仿真建模 (19)4.3.2 仿真结果分析 (22)总结 (23)参考文献 (23)三相永磁同步电机矢量控制建模与仿真摘要:永磁同步电机具有体积小、效率和功率因数高等优点,因此越来越多的应用在各种功率等级的场合。
永磁同步电机的控制是永磁同步电机应用的关键技术,永磁同步电机的结构特点使得采用矢量控制系统有很大的优势。
本文首先分析了永磁同步电机矢量控制的发展概况,然后从机电能量转换的角度出发,解释三相永磁同步电机的机电能量转换原理,推导拉格朗日运动方程。
此外,列写出永磁同步电机在三相静止坐标系和dq坐标系下的数学模型。
基于Simulink建立了转速电流双闭环矢量控制系统的仿真模型,通过对仿真结果分析,验证了永磁同步电机矢量控制系统性能的优越性。
关键词:永磁同步电机,矢量控制,Simulink1 引言1.1 课题的背景与意义1.1.1 课题背景交流电机的控制性能在磁场定向矢量控制技术提出后才有了质的飞跃。
磁场定向矢量控制技术采用的是励磁电流和转矩电流的解稱控制,兼顾磁场和转矩的控制,克服了交流电机自身耦合的缺点。
基于矢量控制的电动汽车用异步电动机弱磁控制方法窦汝振,辛明华,杜智明(中国汽车技术研究中心,天津300162)摘要:对需要异步电动机恒功率运行的应用领域,特别是电动汽车这种需要大范围扩速运行的情形,弱磁控制是一个非常重要的方法。
基于矢量控制提出一种恒交轴电压弱磁控制方法,该方法与电机参数无关,稳定性强,实现简单,试验结果验证了该方法的正确性和有效性。
关键词:矢量控制;弱磁控制;异步电动机中图分类号:TM301.2B TM343文献标识码:A文章编号:1673-6540(2009)05-0025-03F iel dW eakening Control of A synchronousM otors Based on V ector ControlDOU Ru-zhen,X I N M i n g-hua,DU Zhi-m ing(Ch i n a A uto m otive Technology&Research C enter,T i a nji n300162,Ch i n a)Abstract:The field w eaken i ng contro l is i m portan t for the i nducti on mo tor.s constant pow er ope ration that i s re-qu ired by t he e l ec tric veh icle.Based on the detail ed theo retical analysis,usi ng t he vector contro,l a constant q-ax i s sta t o r vo ltage fi e l d weaken i ng controlm e t hod t hat is stab l e,i ndependent o fm otor para m ete rs is presented.Its vali d it y is prov ed by experi m ental resu lts.K ey word s:vector con tro;l field weaken i ng con tro;l asynchronou sm otors0引言异步电动机结实耐用,在矿山机械、航空航天、轨道交通、电动汽车等领域有着广泛应用。
中国电工技术学会科学技术奖车用变频器中的异步电机传动控制技术聂子玲1,2马伟明1李卫超1李振3(1.海军工程大学电力电子技术研究所,武汉430033;2.华中科技大学电气学院,武汉430074;3.驻北京地区武备配套军事代表室,北京)摘要本文介绍了采用矢量控制和效率优化控制相结合的电动汽车/混合动力汽车异步电机驱动系统、工矿用窄轨电机车驱动系统。
该驱动系统不仅用D s P实现了异步电机四象限矢量控制,还采用效率优化算法提高了系统效率。
试验结果表明,异步电机电机驱动系统具有较大的高效率工作区。
关键词:矢量控制;效率优化;电动汽车;混合动力;工矿用窄轨电机车I m pl i cat i on of I nduct i on M ot or dr i V e For H ybr i d E l ect r i c V bhi cl eⅣf P zf f嘲12^妃姚泐f H91Lf耽f c.}l口D1“劢P疗3(1.N aV a l U ni V ers i t y of E ngi neer ing,、Ⅳ曲an430033;2.H ua zhong U ni V er s i t y of Sci ence and T echn ol ogyW uhan430074)A bs t m ct T he ve啪D r.Con仃ol of3.p hase A C i nduct i on m ot or dr i ve s ys细n w hi ch is appl i e d i nt o E.v/H EV (E l e ct r i c V el l i cl e/Hyb栅E l ect ri c ve Il i c l e)锄d el ect r i c l ocom嘶ve is i n昀duced.T he s yst emdes i gned t o oper at ei n禾qua蛔l t w i m r e ge ner at i on and br a:虹ng.E f f i c i ency of i nduc廿on m ot or嘶V e has been opt i r ni ze d i Il t llew hol e0pe谢on rc百on.E xpe—m ent aI r esul t s sh ow t he V al i di t y of m e pr叩osed m e nl od.K ey w or ds:i nduct i on m ot or;V ec t o r con t r ol;r egener at i on br aki ng;ef nci ency opt i m i zat i on;H E V(H ybr i d E l ect r i c V bhi cl e)1引言混合动力电动汽车是集光、电、化各学科领域的最新技术于一体,是车辆、电力拖动、功率电子、智能控制、化学电源、计算机、新能源、新材料等工程技术中最新成果的集成产物。
矢量控制的控制方法矢量控制是一种电机控制方法,通过改变电机中的磁场分量来实现对电机的精确控制。
相比于传统的传递函数控制方法,矢量控制在动态响应、调节性能和鲁棒性等方面有明显的优势。
本文将详细介绍矢量控制的原理、实现方法和应用领域。
矢量控制的基本原理是利用一个与转子磁场同步而不依赖于电机等效电路的转子位置估计器来控制电机。
这样,控制器便可以通过调节定子和转子电压的频率和幅值来控制转子磁场和电流。
通过控制定子电压,可以使得电机既能产生高转矩,又能产生高转速。
矢量控制的关键是对电机进行准确的磁场定位,并根据所需的运行状态对电机进行调节。
矢量控制的实现方法主要包括电压矢量控制和电流矢量控制两种。
电压矢量控制是通过向电机施加一个旋转磁场,使得电机产生一个旋转磁场和一个定子磁场,从而实现电机的准确控制。
电压矢量控制的核心是对电机进行磁场定位,即通过控制定子电压的频率和幅值,使电机的磁场始终与转子磁场同步。
通过控制定子电压的频率,可以控制电机的转速;通过控制定子电压的幅值,可以控制电机的转矩。
电压矢量控制的优点是动态响应快、调节性能好,适用于高性能和精确控制的应用场合。
电流矢量控制是通过控制电机的电流矢量来控制电机的转子位置和运行状态。
通过测量电机的电流,可以准确估计电机的磁场定位,并根据所需的运行状态调节电机的电流矢量。
电流矢量控制的优点是控制精度高、鲁棒性好,适用于扭矩和速度变化较大的应用场合。
矢量控制在工业控制领域有着广泛的应用。
它可以用于直流电机、感应电动机以及永磁同步电动机等各种类型的电机控制。
在工业生产中,矢量控制可以实现电机的精确控制和高效运行,提高生产效率和质量。
在交通运输领域,矢量控制可以实现汽车、火车和船舶等交通工具的精确控制和高效能耗。
在家庭和办公设备中,矢量控制可以实现空调、洗衣机和冰箱等设备的高效运行和舒适控制。
总之,矢量控制是一种先进的电机控制方法,具有很大的应用潜力。
它通过改变电机中的磁场分量来实现对电机的精确控制。