材料摩擦磨损资料
- 格式:ppt
- 大小:1.51 MB
- 文档页数:8
摩擦磨损实验报告一、引言摩擦磨损实验是工程领域中常见的一种实验方法,通过模拟材料或器件表面的微观接触,研究摩擦过程中的磨损特性和机理。
本实验报告旨在对摩擦磨损实验的目的、原理、实验装置和结果进行全面、详细、完整且深入地探讨。
二、目的本实验的目的是通过设计和进行摩擦磨损实验,探究不同材料在不同工况下的磨损特性及其机理,为工程设计和材料选择提供理论依据。
三、原理摩擦磨损实验的原理基于摩擦学和材料科学的知识。
在实验中,通过施加一定的载荷和运动速度,使两个试样或试样与摩擦片之间发生摩擦接触。
在摩擦接触过程中,表面微观起伏、化学反应和热效应等因素共同作用,导致材料表面的磨损和形貌变化。
摩擦磨损实验可分为干摩擦和润滑摩擦两种情况。
在干摩擦实验中,试样之间没有润滑剂的存在,摩擦过程可能引起大量的磨粒生成和表面热量积累,导致试样表面的磨损。
而润滑摩擦实验则通过添加润滑剂,减少试样间的摩擦热和磨损程度。
四、实验装置进行摩擦磨损实验需要一套实验装置,包括:1.摩擦磨损试验机:用于施加载荷和控制运动速度,一般具有高精度和可控性能。
2.试样和摩擦片:选择不同材料的试样和摩擦片,根据实验需求确定形状、尺寸和表面处理方式。
3.测量仪器:包括摩擦力传感器、位移传感器、温度传感器等,用于实时监测试样的摩擦力、位移和温度等参数。
4.润滑剂:用于润滑摩擦接触表面,减少磨损程度和摩擦热。
五、实验过程本次实验的具体过程如下:1.准备试样和摩擦片:根据实验要求选择不同材料的试样和摩擦片,进行尺寸加工和表面处理。
2.调节实验参数:根据实验设计,设置载荷大小、运动速度和实验时间等参数。
3.安装试样和摩擦片:将试样和摩擦片固定在实验装置上,确保摩擦接触表面平整、清洁。
4.启动实验:运行实验装置,开始施加载荷和控制运动速度,记录实验过程中的数据和现象。
5.停止实验:根据实验时间或实验目标要求,停止实验运行,取下试样和摩擦片进行观察和分析。
6.数据处理:根据实验结果,进行数据处理和曲线拟合,得到摩擦力、位移和温度等参数的变化趋势。
磨损是指材料表面因摩擦、碰撞、剧烈运动等作用而逐渐失去其原有形状和尺寸的过程。
磨损现象是许多工程和生产活动中普遍存在的问题,了解常见的磨损分类、定义以及它们发生的条件,可以帮助我们更好地预防和解决磨损问题。
一、磨损的分类1. 表面磨损:表面磨损是指物体表面由于与外界环境或其他物体的作用而逐渐失去其原有形状和尺寸的现象。
表面磨损通常包括磨粒磨损、疲劳磨损、附着磨损等类型。
2. 体积磨损:体积磨损是指材料在受力作用下,局部或整体地磨损。
体积磨损主要包括磴岩磨损、疲劳磨损等类型。
二、磨损的定义磨损是指材料表面或体积由于摩擦引起的粒子脱落、塑性流动、位错聚集和断裂现象而逐渐失去其原有形状和尺寸的过程。
三、磨损的条件在工程和生产实践中,磨损的发生通常受到以下一些条件的影响:1. 材料硬度:硬度较低的材料容易受到表面磨损的影响,而硬度较高的材料更容易发生体积磨损。
2. 材料强度:材料的强度越低,越容易受到磨损的影响。
3. 环境条件:如温度、湿度、氧化性等环境条件对磨损的影响。
4. 润滑条件:润滑油的性质和润滑膜的形成对磨损有着重要的影响。
5. 负载条件:负载大小和方向对磨损的发生和发展有着重要影响。
6. 表面粗糙度:表面粗糙度的大小和形状对磨损的发生和发展也有着重要的影响。
通过对常见的磨损分类、定义以及它们发生的条件的了解,我们可以更好地预防和解决磨损问题,提高材料的使用寿命和性能。
磨损是材料表面或体积由于摩擦引起的粒子脱落、塑性流动、位错聚集和断裂现象而逐渐失去原有形状和尺寸的过程。
磨损的发生对工程和生产活动而言是不可避免的,但我们可以通过控制磨损的条件和采取相应的预防措施来减少磨损带来的损失。
一、磨损的分类1. 表面磨损表面磨损是指物体表面由于与外界环境或其他物体的作用而逐渐失去其原有形状和尺寸的现象。
表面磨损主要包括以下几种类型:- 磨粒磨损:在材料表面受到磨料颗粒的作用下,材料表面的微观形貌逐渐改变,最终形成磨损痕迹。
摩擦磨损试验标准(一)摩擦磨损试验标准背景摩擦磨损试验是指模拟机械部件在使用过程中因摩擦磨损所导致的性能变化和寿命缩短等现象的试验。
针对不同的材料和应用场景,需要制定相应的试验标准,以保证测试结果的可靠性和可重复性。
测试方法常用的摩擦磨损试验方法包括橡胶摩擦试验、磨损轮试验、球盘试验、滑动轮试验等。
其中,磨损轮试验是最为常见的方法之一,它通过在磨损轮和试样之间施加一定的负载、速度和循环次数,模拟实际工作环境下的摩擦磨损条件,来评价材料的耐磨性能。
试验参数为了确保试验结果可比较,需要规定一系列试验参数,包括载荷、速度、循环次数、试验温度等。
其中,载荷和速度是影响磨损试验结果的关键参数,需要根据实际使用情况选择适当的数值。
循环次数和试验温度则需要考虑材料的疲劳寿命和温度敏感性等因素。
结果分析磨损试验得到的结果一般包括材料的磨损量、磨损形貌、摩擦系数等。
在分析试验结果时,需要考虑试验方法和参数的影响因素,并结合实际使用环境进行评价。
此外,还需要注意试验误差的来源和限制,以确保结果的准确性和可靠性。
结论摩擦磨损试验标准是保证材料质量和性能的重要手段。
制定合理的试验方法和参数,准确分析试验结果,才能为实际应用场景提供可靠的参考数据。
因此,需要各行业相关专家和企业共同努力,不断完善和优化试验标准,推动材料科学和工程应用的发展。
不同产业的试验标准按照不同的产业领域和产品类型,摩擦磨损试验标准也有所不同。
以机械制造业为例,国际标准组织 ISO 发布了多项与摩擦磨损有关的标准,如 ISO 7148-2:1988 金属材料光洁度和粗糙度的测量和评价—第2部分:微表面形状的术语和 ISO 11505-2003 摩擦材料—旋转圆盘方法下生成的磨损方法。
而在汽车、建筑、航空等领域,也都有相应的标准适用于材料摩擦磨损性能的评价,并针对不同测试参数和环境规定了详细的规程和操作要求。
摩擦磨损试验设备进行摩擦磨损试验需要用到专门的设备和仪器,包括磨损仪、磨耗测试机、滑动磨损试验机等。
金属材料表面摩擦磨损机理研究一、引言金属材料是工业生产中使用广泛的材料之一,其表面的摩擦磨损问题影响着机械设备的性能和寿命。
因此,研究金属材料表面的摩擦磨损机理对于提高机械设备的可靠性有着重要意义。
本文将对金属材料表面摩擦磨损的机理研究进行梳理和总结。
二、金属材料表面摩擦磨损机理的分类1. 粘着磨损物体在摩擦过程中,由于接触表面产生的表面张力,导致物体表面产生差异形变, 造成损伤。
这种损伤形式我们称之为粘着(nowear)损伤.这种损伤是粒级以上(即微观尺度)表征摩擦过程的典型特征。
而微观尺度的磨损和水平方向的相互剪切是密切相关的。
当物体表面的粘着力越大,磨损越严重。
而硬度低, 表面粗糙度高的材料, 粘着损伤容易形成。
2. 疲劳磨损在应力循环的情况下,可能发生一系列的表面裂纹或者成为裂缝。
如果在这些裂纹处引入外力,就会使这些裂隙扩大甚至破裂,这种磨损形式我们称之为疲劳损伤。
疲劳磨损主要发生在金属材料经过重复循环或长时间的运动过程中,当材料表面应变过大或存在应力集中时,疲劳磨损很容易发生。
3. 磨粒磨损这种磨损模式的主要特征是物体表面明显存在磨损痕迹。
在物体表面经过长时间的运动过程中,很容易被杂质、粉尘、磨料等物质颗粒悬浮在介质中。
物质颗粒在物体表面上运动时,会产生表面切削,从而造成磨损。
磨粒磨损是金属材料摩擦磨损中最常见、最为普遍的一种机理。
三、金属材料表面摩擦磨损机理的原理1. 粘着磨损在两个金属物体的接触面上,会产生吸引力或剪切力,而这种力的大小与表面间的接触面积直接相关。
所以,当表面间的接触面积越大,粘着力越大,金属材料的表面粘着磨损越明显。
损伤的形式是由于表面接触部位接受高压力而形成的, 如盘状疲劳菲林(Fatigue Spalling)及磨耗铁锈(wear oxidation)等。
2. 疲劳磨损疲劳磨损的原理是由于物体表面裂纹处的应力集中效应,容易导致表面裂纹的形成和扩展。
在材料的裂纹阈值以下,材料表面裂纹会逐渐扩大和疲劳断裂,进而导致疲劳磨损。
必修实验八材料的摩擦与磨损实验一、实验目的1) 熟悉往复式摩擦磨损试验机的结构、实验原理和操作方法。
2) 掌握摩擦系数、磨损量的测定方法。
3) 比较不同材料的摩擦磨损性能,并分析其原因。
二、实验原理摩擦磨损是工业生产中普遍存在的现象,凡是具有相对运动的摩擦副间,必然会伴随有摩擦和磨损现象。
影响材料摩擦与磨损的因素很多,如压力、运动速度、工件表面质量、润滑剂及材料性能等。
所以材料的摩擦磨损特性并不是材料固有的,而是摩擦条件与材料性能的综合特性。
摩擦磨损试验机的种类很多,一般由加力装置、摩擦力测量机构及摩擦副相对运动驱动机构等部分组成。
现以往复式摩擦磨损试验机为例,介绍摩擦磨损试验机的结构及测试原理。
摩擦副由上试样和下试样组成;上试样与下试样间的往复运动由电机带动偏心轮的旋转而实现。
往复运动的振幅可通过偏心距进行调节。
摩擦副间的压力通过砝码加载、并由压力传感器进行测量;而摩擦副间的摩擦力通过拉/压传感器进行测量,如图1所示。
将压力、摩擦力和时间信号输入到计算机中,便可得到摩擦力、摩擦系数随时间的变化曲线,如图2。
经过一定时间(或滑动距离)后,下试样(待测试样)表面将产生具有一定深度的磨痕(图3a)。
利用表面轮廓仪,在垂直于往复运动的方向上测量磨痕的微观形貌(图3b),确定磨痕的深度、截面积,从而与往复运动的振幅相乘得到磨损的体积。
也可进一步由磨损体积求出材料的磨损重量,根据磨损量的大小即可判断材料的耐磨性能。
若在相同的时间(或距离)内磨损量愈大,表明材料的耐磨性能愈差。
反之,则表明耐磨性愈好。
图 1 往复式摩擦磨损试验机的原理图01002003004005006000.00.10.20.30.40.50.6摩擦时间 / s 摩擦系数图 2摩擦系数与时间的变化关系(a )宏观形貌 (b )微观形貌图 3 磨痕的宏微观形貌三、实验材料与样品本实验的上试样选用直径Φ8mm 的ZrO 2球或GCr15钢球,试验载荷为10N ,往复运动振幅为10mm ,频率为1Hz ,测试周期为20分钟。
磨损基本概念磨损是零部件失效的一种基本类型.通常意义上来讲,磨损是指零部件几何尺寸〔体积〕变小.零部件失去原有设计所规定的功能称为失效.失效包括完全丧失原定功能;功能降低和有严重损伤或隐患,继续使用会失去可靠性及安全性和安全性.1、磨损的分类:按照表面破坏机理特征,磨损可以分为磨料磨损、粘着磨损、表面疲劳磨损、腐蚀磨损和微动磨损等.前三种是磨损的基本类型,后两种只在某些特定条件下才会发生.磨料磨损:物体表面与硬质颗粒或硬质凸出物〔包括硬金属〕相互摩擦引起表面材料损失.粘着磨损:摩擦副相对运动时,由于固相焊合作用的结果,造成接触面金属损耗.表面疲劳磨损:两接触表面在交变接触压应力的作用下,材料表面因疲劳而产生物质损失.腐蚀磨损:零件表面在摩擦的过程中,表面金属与周围介质发生化学或电化学反应,因而出现的物质损失.微动磨损:两接触表面间没有宏观相对运动,但在外界变动负荷影响下,有小振幅的相对振动〔小于100μm〕,此时接触表面间产生大量的微小氧化物磨损粉末,因此造成的磨损称为微动磨损2、表征材料磨损性能的参量为了反映零件的磨损,常常需要用一些参量来表征材料的磨损性能.常用的参量有以下几种:<1>磨损量由于磨损引起的材料损失量称为磨损量,它可通过测量长度、体积或质量的变化而得到,并相应称它们为线磨损量、体积磨损量和质量磨损量.<2>磨损率以单位时间内材料的磨损量表示,即磨损率I=dV /dt <V为磨损量,t为时间〕.<3>磨损度以单位滑移距离内材料的磨损量来表示,即磨损度E=dV/dL <L为滑移距离〕.<4>耐磨性指材料抵抗磨损的性能,它以规定摩擦条件下的磨损率或磨损度的倒数来表示,即耐磨性=dt/dV或dL/dV.<5>相对耐磨性指在同样条件下,两种材料〔通常其中一种是Pb-Sn合金标准试样〕的耐磨性之比值,即相对耐磨性εw=ε试样/ε标样.摩擦基本概念当物体与另一物体沿接触面的切线方向运动或有相对运动的摩擦趋势时,在两物体的接触面之间有阻碍它们相对运动的作用力,这种力叫摩擦力.接触面之间的这种现象或特性叫"摩擦".摩擦有利也有害,但在多数情况下是不利的,例如,机器运转时的摩擦,造成能量的无益损耗和机器寿命的缩短,并降低了机械效率.因此常用各种方法减少摩擦,如在机器中加润滑油等.但摩擦又是不可缺少的,例如,人的行走,汽车的行驶都必须依靠地面与脚和车轮的摩擦.在泥泞的道路上,因摩擦太小走路就很困难,且易滑倒,汽车的车轮也会出现空转,即车轮转动而车厢并不前进.所以,在某些情况下又必须设法增大摩擦,如在太滑的路上撒上一些炉灰或沙土,车轮上加挂防滑链等.3.〔个人或党派团体间〕因彼此厉害矛盾而引起的冲突.|| 也作磨擦.摩擦种类摩擦的类别很多,按摩擦副的运动形式摩擦分为滑动摩擦和滚动摩擦,前者是两相互接触物体有相对滑动或有相对滑动趋势时的摩擦,后者是两相互接触物体有相对滚动或有相对滚动趋势时的摩擦;按摩擦副的运动状态摩擦分为静摩擦和动摩擦,前者是相互接触的两物体有相对运动趋势并处于静止临界状态时的摩擦,后者是相互接触的两物体越过静止临界状态而发生相对运动时的摩擦;按摩擦表面的润滑状态,摩擦可分为干摩擦、边界摩擦和流体摩擦.摩擦又可分为外摩擦和内摩擦.外摩擦是指两物体表面作相对运动时的摩擦;内摩擦是指物体内部分子间的摩擦.干摩擦和边界摩擦属外摩擦,流体摩擦属内摩擦.干摩擦摩擦副表面直接接触,没有润滑剂存在时的摩擦.常用库仑摩擦定律表达摩擦表面间的滑动摩擦力F、法向力N和摩擦系数f间的关系:f=F/N.钢对钢的f值在大气中约为0.15~0.20,洁净表面可达0.7~0.8.根据英国的F.P.鲍登等人的研究,极为洁净的金属〔表面上的气体用加热、电子轰击等方法排除〕在高真空度的实验条件下,表面接触处被咬死,f值可高达100.这种极为洁净的金属表面一旦与大气相接触便立即被污染或氧化,从而使f值显著下降.静摩擦的测定方法有倾斜法和牵引法.①倾斜法:把重力为N的欲测物体放在对偶材料的斜面上,逐渐增加斜面的倾角,测得物体开始滑动时的倾角θ<摩擦角>,由此求得摩擦系数f=tgθ.②牵引法:把重力为N 的欲测物体放在对偶材料的平面上,以力P牵引,物体开始滑动时的力F就是最大的静摩擦力〔此时F=P〕,由此求得摩擦系数f=F/N.接触面粗糙程度决定摩擦力大小动摩擦可在各类型试验机上〔如往复式摩擦磨损试验机、旋转圆盘-销式摩擦磨损试验机和四球式摩擦试验机〕测定,为此在试验机上装设测定摩擦力或摩擦力矩的机构,先测出摩擦力,而后换算出摩擦系数.常见的测量方法有杠杆法、弹簧法和电测法等.测定时需要确保清洁,否则会影响所测的摩擦力.边界摩擦和流体摩擦边界润滑状态下的摩擦称为边界摩擦.边界摩擦系数低于干摩擦系数.边界摩擦状态下的摩擦系数只取决于摩擦界面的性质和边界膜的结构形式,而与润滑剂的粘度无关.流体润滑状态下的摩擦称为流体摩擦.这种摩擦是流体粘性引起的.其摩擦系数较干摩擦和边界摩擦为低.。
材料的耐磨和摩擦学材料的耐磨性和摩擦学是研究物质表面和界面的摩擦、磨损和润滑行为的重要科学领域。
在工程和科学领域中,我们经常面对材料在摩擦和磨损环境下的性能要求。
因此,了解材料的耐磨性及其与摩擦学之间的关系对于开发新材料、改进工程设计以及提高设备和产品的寿命至关重要。
一、耐磨性的定义和测试方法耐磨性是指材料在受到摩擦和磨损作用时能够维持其功能性能的能力。
不同材料因其组成和结构的不同,其耐磨性也会有显著差异。
衡量耐磨性主要通过磨损测试来进行,常用的测试方法包括滑动磨损试验、磨料磨损试验以及交互磨损试验等。
这些试验方法能够模拟不同工况下的摩擦和磨损行为,以评估材料的耐磨性能。
二、摩擦学的基本原理摩擦学是研究物体之间相对运动时所产生的摩擦力和摩擦现象的学问。
摩擦力是指两个物体相对运动时产生的抵抗运动的力,其大小受到材料表面性质、载荷、速度等多种因素的影响。
摩擦学的基本原理可以通过考虑材料之间的接触、摩擦和变形来解释。
表面粗糙度、润滑、界面接触的方式以及材料的硬度等因素都会对摩擦行为产生影响。
三、影响耐磨性的因素耐磨性能的好坏受到很多因素的影响,包括材料的硬度、表面粗糙度、润滑状况、载荷、温度等。
硬度是衡量材料耐磨性的重要参数,材料的硬度越高,其抗磨损性能通常也越好。
表面粗糙度对于摩擦行为和磨损的影响也非常显著,较光滑的表面能够减少材料之间的物理接触,从而减少摩擦力和磨损。
此外,润滑剂的使用和界面的润滑状态也会对材料的耐磨性能产生显著影响。
四、改善耐磨性的方法针对不同材料和工况,我们可以采取一些措施来改善材料的耐磨性能。
首先,可以通过选择合适的材料来满足特定的摩擦和磨损要求。
例如,在需要高耐磨性的装备部件中,常使用硬度高、耐磨性好的材料如陶瓷、金属基复合材料等。
其次,可以通过调整材料的表面粗糙度、润滑剂的选择以及改变载荷和温度等来改善材料的耐磨性能。
此外,利用表面涂层和热处理等方法也可以提高材料的耐磨性能。