1.6 一元一次不等式组(含答案)
- 格式:doc
- 大小:168.50 KB
- 文档页数:10
2021中考数学 三轮专题冲刺:一元一次不等式(组)一、选择题1. 一个不等式组的解集在数轴上表示出来如图,则下列符合条件的不等式组为( )A. B.2,1x x <⎧⎨>-⎩C.2,1x x <⎧⎨≥-⎩D.2,1x x <⎧⎨≤-⎩2. (2019·广安)若m n >,下列不等式不一定成立的是A .33m n +>+B .33m n -<-C .33m n> D .22m n >3. 已知点P (a -3,2-a )关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是 ( )4. 直线l 1:y =k 1x +b与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图X2-2-3,则关于x 的不等式k 1x +b <k 2x +c 的解集为( ) A .x >1 B .x <1 C .x >-2 D .x <-25. (2019•山西)不等式组13224x x ->⎧⎨-<⎩的解集是A .x>4B .x>-1C .-1<x<4D .x<-16. (2019·无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为A.10 B.9 C.8 D.77. 不等式组2442xx->⎧⎪⎨≤⎪⎩的解集为A.68x≤< B.68x<≤C.28x≤<D.28x<≤8. (2019·重庆A卷)若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为A.0 B.1 C.4 D.6二、填空题9. 不等式321x->的解集是__________.10. 如图所示,点C位于点A、B之间(不与A、B重合),点C表示12x-,则x 的取值范围是__________.11. 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.12. 不等式312(4)x x+>+的解为__________.13. 若关于x的不等式组有且只有两个整数解,则m的取值范围是.14. (2019•鄂州)若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足x+y≤0,则m的取值范围是__________.15. (2019•甘肃)不等式组2021xx x-≥⎧⎨>-⎩的最小整数解是__________.16. (2019•宜宾)若关于x的不等式组214322x xx m x--⎧<⎪⎨⎪-≤-⎩有且只有两个整数解,则m的取值范围是__________.三、解答题17. (1)解方程:x2-2x-1=0.(2)解方程组:(3)解分式方程:-1=.(4)解不等式组:并把解集在数轴上表示出来.18. 某服装店用4500元购进一批衬衫,很快售完.服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?19. (2019•河南)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的13.请设计出最省钱的购买方案,并说明理由.20. (2019·聊城)某商场的运动服装专柜,对A B,两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.(1)问A B,两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?21. 某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.(1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?2021中考数学三轮专题冲刺:一元一次不等式(组)-答案一、选择题1. 【答案】C2. 【答案】D【解析】A、不等式的两边都加3,不等号的方向不变,故A错误;B、不等式的两边都乘以-3,不等号的方向改变,故B错误;C、不等式的两边都除以3,不等号的方向不变,故C错误;D、如2223m n m n m n==-><,,,,故D正确,故选D.3. 【答案】C[解析]∵点P(a-3,2-a)关于原点对称的点在第四象限,∴点P(a-3,2-a)在第二象限,∴解得∴不等式组的解集是a<2,在数轴上表示如选项C所示.故选C.4. 【答案】B5. 【答案】A【解析】13224xx->⎧⎨-<⎩①②,由①得:x>4,由②得:x>-1,不等式组的解集为:x>4,故选A.6. 【答案】B【解析】设原计划m天完成,开工x天后3人外出培训,则有15am=2160,得到am=144,由题意得15ax+12(a+2)(m-x )<2160,即:ax+4am+8m-8x<720, ∵am=144,∴将其代入得:ax+576+8m-8x<720,即:ax+8m-8x<144, ∴ax+8m-8x<am ,∴8(m-x )<a (m-x ), ∵m>x ,∴m-x>0,∴a>8,∴a 至少为9,故选B .7. 【答案】B由①得6x >, 由②得8x ≤,∴不等式组的解集为68x <≤, 故选B .8. 【答案】B【解析】由不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩,解得5x a x ≤⎧⎨<⎩,∵解集是x≤a ,∴a<5.由关于的分式方程24111y ay y y ---=--得得2y-a+y-4=y-1,∴32ay +=,又∵非负整数解,∴a≥-3,且a=-3,a=-1(舍,此时分式方程为增根),a=1,a=3它们的和为1,故选B .二、填空题 9. 【答案】1x > 【解析】321x ->, 3x>1+2, 3x>3, x>1.故答案为:x>1.10. 【答案】102x -<< 【解析】根据题意得:1122x <-<, 解得:102x -<<, 则x 的范围是102x -<<, 故答案为:102x -<<.11. 【答案】m >2 解析:由第一象限点的坐标的特点可得⎩⎨⎧m >0,m -2>0.解得m >2.12. 【答案】7x >【解析】312(4)x x +>+,3128x x +>+,7x >.故答案为:7x >.13. 【答案】-2≤m<1[解析]解不等式①得x>-2;解不等式②得x ≤,∴不等式组的解集为-2<x ≤.∵不等式组有且只有两个整数解, ∴0≤<1,解得-2≤m<1.14. 【答案】m≤-2【解析】34355x y m x y -=+⎧⎨+=⎩①②,①+②得2x+2y=4m+8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤-2. 故答案为:m≤-2.15. 【答案】0【解析】不等式组整理得:21xx≤⎧⎨>-⎩,∴不等式组的解集为-1<x≤2,则最小的整数解为0,故答案为:0.16. 【答案】-2≤m<1【解析】214322x xx m x--⎧<⎪⎨⎪-≤-⎩①②,解不等式①得:x>-2,解不等式②得:x≤23m+,∴不等式组的解集为-2<x≤23m+,∵不等式组只有两个整数解,∴0≤23m+<1,解得:-2≤m<1,故答案为:-2≤m<1.三、解答题17. 【答案】解:(1)配方法:移项,得x2-2x=1,配方,得x2-2x+1=1+1,即(x-1)2=2,开方,得x-1=±,即x1=1+,x2=1-.公式法:a=1,b=-2,c=-1,Δ=b2-4ac=4+4=8>0,故方程有两个不相等的实数根,∴x===1±,即x1=1+,x2=1-.(2)②-①,得:3x=9,解得:x=3.把x=3代入①,得:3+y=1,解得:y=-2.∴原方程组的解为(3)方程左右两边同乘以3(x -1),得 3x -3(x -1)=2x , 3x -3x +3=2x , 2x=3, x=1.5.检验:当x=1.5时,3(x -1)≠0, ∴原分式方程的解为x=1.5. (4)解不等式①,得:x>-4; 解不等式②,得:x ≤0, ∴不等式组的解集为-4<x ≤0.将这个不等式组的解集表示在数轴上如图:18. 【答案】解:(1)设第一次购进这种衬衫x 件,第二次购进这种衬衫12x 件,根据题意得:4500x =210012x+10, 解得x =30,(2分)经检验x =30是原方程的解,且符合题意, ∴12x =12×30=15.答:第一次购进这种衬衫30件,第二次购进这种衬衫15件.(4分) (2)设第二批衬衫每件销售a 元,根据题意得:30×(200-450030)+15×(a -210015)≥1950,(6分) 解得a≥170.答:第二批衬衫每件至少要售170元. (7分)19. 【答案】(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得3212054210x y x y +=⎧⎨+=⎩,∴3015x y =⎧⎨=⎩, ∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30-z )个,购买奖品的花费为W 元,由题意可知,z≥13(30-z ),∴z≥152, W=30z+15(30-z )=450+15z , 当z=8时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少.20. 【答案】(1)设A B ,两种品牌运动服的进货单价分别为x 元和y 元,根据题意,得203010200304014400x y x y +=⎧⎨+=⎩,解得240180x y =⎧⎨=⎩,经检验,方程组的解符合题意.答:A B ,两种品牌运动服的进货单价分别为240元和180元.(2)设购进A 品牌运动服m 件,则购进B 品牌运动服3(5)2m +件,∴3240180(5)213002m m ++≤,解得,40m ≤.经检验,不等式的解符合题意,∴3354056522m +≤⨯+=. 答:最多能购进65件B 品牌运动服.21. 【答案】(1)设甲种水果的单价是x 元,则乙种水果的单价是(4)x +元,80010004x x =+, 解得,16x =,经检验,16x =是原分式方程的解, ∴420x +=,答:甲、乙两种水果的单价分别是16元、20元.(2)设购进甲种水果a 千克,则购进乙种水果(200)a -千克,利润为w 元, (2016)(2520)(200)1000w a a a =-+--=-+,∵甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元, ∴3(200)1620(200)3420a a a a ≤-⎧⎨+-≤⎩, 解得,145150a ≤≤,∴当145a =时,w 取得最大值,此时855w =,20055a -=,答:水果商进货甲种水果145千克,乙种水果55千克,才能获得最大利润,最大利润是855元.。
第四章一元一次不等式(组)考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质(3-5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。
一.分配问题:1.把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?2.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?5. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。
已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
一元一次不等式组练习题(含答案)一元一次不等式组(总分:100分 时间45分钟) 姓名分数一、选择题(每题4分,共32分)1、下列不等式组中,解集是2<x <3的不等式组是( )A 、⎩⎨⎧>>23x xB 、⎩⎨⎧<>23x xC 、⎩⎨⎧><23x xD 、⎩⎨⎧<<23x x 2、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( )A 、a <12B 、a <0C 、a >0D 、a <-123、(2007年湘潭市)不等式组10235x x +⎧⎨+<⎩≤,的解集在数轴上表示为( )4、不等式组31025x x +>⎧⎨<⎩的整数解的个数是( ) A 、1个 B 、2个 C 、3个 D 、A B C DA.910m >B. 109m >C. 1910m > D. 1019m > 二、填空题(每题4分,共32分)9、若y 同时满足y +1>0与y -2<0,则y 的取值范围是______________.10、(2007年遵义市)不等式组3010x x -<⎧⎨+⎩≥的解集是 .11、不等式组20.53 2.52x x x -⎧⎨---⎩≥≥的解集是 . 12、若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是 .13、不等式组15x x x >-⎧⎪⎨⎪<⎩≥2的解集是_________________14、不等式组2x x a >⎧⎨>⎩的解集为x >2,则a 的取值范围是_____________.15、若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x <1,那么(a +1)(b -1)的值等于________.16、若不等式组4050a x x a ->⎧⎨+->⎩无解,则a 的取值范围是_______________.三、解答题(每题9分,共36分)17、解下列不等式组(1)328212x x -<⎧⎨->⎩(2)572431(1)0.54x x x -≥-⎧⎪⎨--<⎪⎩(3)2x <1-x ≤x + 5(4)3(1)2(9)34140.50.2x x x x -<+⎧⎪-+⎨-≤-⎪⎩18、(2007年滨州)解不等式组3(21)42132 1.2x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩≤,把解集表示在数轴上,并求出不等式组的整数解.19、求同时满足不等式6x -2≥3x -4和2112132x x +--<的整数x 的值.20、若关于x 、y 的二元一次方程组533x y m x y m -=-⎧⎨+=+⎩中,x 的值为负数,y 的值为正数,求m 的取值范围.参考答案1、C2、D3、C4、B5、A6、D7、A8、D 9、1<y <2 10、-1≤x <311、-14≤x ≤4 12、m >2 13、2≤x <5 14、a <2 15、-6 16、a ≤117、(1)31023x <<(2)无解(3)-2<x <13(4)x >-3 18、2,1,0,-119、不等式组的解集是27310x ≤<-,所以整数x 为020、-2<m <0.5。
1.6一元一次不等式组(二)预习目标:1.进一步巩固解一元一次不等式组的过程.2.总结解一元一次不等式组的步骤及情形.(一)知识回顾:1.解下列不等式组 ⑴⎪⎩⎪⎨⎧<->+x x x 987121 )2()1( ⑵⎩⎨⎧+>++<-145123x x x x )2()1( ⑶⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325)2()1( ⑷⎩⎨⎧<>-621113x x )2()1(2、做一做:在什么条件下,长度为3cm ,7cm ,xcm 的三条线段可以围成三角形?二:探究新知请大家认真观察一下上面1题中的四组解,你发现了什么?由(1)得,两个不等式的解集中不等号的方向都是大于号,在数字1和-4中取大数1,不等号取大于号.由(2)得,两个不等式的解集中不等号的方向都是小于号,在不等式组的解集中不等号的方向取小于,而数字取比较小的数字34. 由(3)得,两个不等式的解集中不等号的方向有大于也有小于,数字25<4,并且是x >25,x ≤4,最后的结果中是x 取大于小数而小于大数,即25<x ≤4. 由(4)得,两个不等式的解集中不等号的方向有大于也有小于,并且是x >4,x <3,因为4>3,即x 应取大于4而小于3的数,而这样的数根本不存在,所以原不等式组的解集为无解.总结:两个一元一次不等式所组成的不等式组的解集有以下四种情形. 设a <b ,那么(1)不等式组⎩⎨⎧>>b x ax 的解集是x______;(2)不等式组⎩⎨⎧<<b x ax 的解集是x ______;(3)不等式组⎩⎨⎧<>bx ax 的解集是______;(4)不等式组⎩⎨⎧><b x ax的解集是_______.这是用式子表示,也可以用语言简单表述为:大大取大;小小取小;大小小大取中间;大大小小题无解.三:验证新知,同化知识:1.解下列不等式组(1)⎩⎨⎧>-<+81353x x (2)⎪⎪⎩⎪⎪⎨⎧+>-<+523)1(212x x x x2.解下列不等式组(1).⎪⎩⎪⎨⎧->+≥--13214)2(3x x x x (2).⎪⎪⎩⎪⎪⎨⎧+>+<+33221)4(21x x x。
一元一次不等式组(总分:100分 时间45分钟) 姓名 分数一、选择题(每题4分,共32分)1、下列不等式组中,解集是2<x <3的不等式组是( )A 、⎩⎨⎧>>23x xB 、⎩⎨⎧<>23x xC 、⎩⎨⎧><23x xD 、⎩⎨⎧<<23x x 2、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( )A 、a <12B 、a <0C 、a >0D 、a <-123、(2007年湘潭市)不等式组10235x x +⎧⎨+<⎩≤,的解集在数轴上表示为( )4、不等式组31025x x +>⎧⎨<⎩的整数解的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个5、在平面直角坐标系内,P (2x -6,x -5)在第四象限,则x 的取值范围为( )A 、3<x <5B 、-3<x <5C 、-5<x <3D 、-5<x <-36、(2007年南昌市)已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( )A 、①与②B 、②与③C 、③与④D 、①与④7、如果不等式组x a x b >⎧⎨<⎩无解,那么不等式组的解集是( ) A.2-b <x <2-a B.b -2<x <a -2 C.2-a <x <2-b D.无解A B C D8、方程组43283x m x y m+=⎧⎨-=⎩的解x 、y 满足x >y ,则m 的取值范围是( ) A.910m > B. 109m > C. 1910m > D. 1019m > 二、填空题(每题4分,共32分)9、若y 同时满足y +1>0与y -2<0,则y 的取值范围是______________.10、(2007年遵义市)不等式组3010x x -<⎧⎨+⎩≥的解集是 . 11、不等式组20.53 2.52x x x -⎧⎨---⎩≥≥的解集是 . 12、若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是 .13、不等式组15x x x >-⎧⎪⎨⎪<⎩≥2的解集是_________________14、不等式组2x x a>⎧⎨>⎩的解集为x >2,则a 的取值范围是_____________.15、若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x <1,那么(a +1)(b -1)的值等于________. 16、若不等式组4050a x x a ->⎧⎨+->⎩无解,则a 的取值范围是_______________.三、解答题(每题9分,共36分)17、解下列不等式组(1)328212xx-<⎧⎨->⎩(2)572431(1)0.54x xx-≥-⎧⎪⎨--<⎪⎩(3)2x<1-x≤x+5 (4)3(1)2(9)3414 0.50.2x xx x-<+⎧⎪-+⎨-≤-⎪⎩18、(2007年滨州)解不等式组3(21)42132 1.2x xxx⎧--⎪⎪⎨+⎪>-⎪⎩≤,把解集表示在数轴上,并求出不等式组的整数解.19、求同时满足不等式6x-2≥3x-4和2112132x x+--<的整数x的值.20、若关于x、y的二元一次方程组533x y mx y m-=-⎧⎨+=+⎩中,x的值为负数,y的值为正数,求m的取值范围.参考答案1、C2、D3、C4、B5、A6、D7、A8、D9、1<y<2 10、-1≤x<311、-14≤x≤4 12、m>2 13、2≤x<5 14、a<2 15、-6 16、a≤117、(1)31023x<<(2)无解(3)-2<x<13(4)x>-3 18、2,1,0,-119、不等式组的解集是27310x≤<-,所以整数x为020、-2<m<0.5。
一元一次不等式组应用题及答案一元一次不等式应用题解决实际问题的步骤:1.审题,找出不等关系;2.设未知数;3.列出不等式;4.求出不等式的解集;5.找出符合题意的值;6.作答。
一.分配问题:1.一定数量的花生要分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?2.一定数量的书要分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?5.用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
1)如果有x间宿舍,那么可以列出关于x的不等式组:4x ≤ n - 196y。
n2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.XXX家到学校2.1千米,现在需要在18分钟内走完这段路。
已知XXX步行速度为90米/分,跑步速度为210米/分,问XXX至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2.用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
第一章 一元一次不等式(组)基础练习一、填空题:(每小题2分,共20分)1. 用不等式表示:x 的2倍与1的和大于-1为__________,y 的13与t 的差的一半是负数为_________。
2. 有理数a 、b 在数轴上的对应点如图所示,根据图示,用“>”或“<”填空。
b 0 a(1)a +3______b +3;(2)b -a_______0(3)-a 3______-b 3;(4)a +b________03. 若0<a<1,则a aa 21,,按从小到大排列为________。
4. 在数轴上表示数x 的点与原点的距离不超过5,则x 满足的不等式(组)为_______ 5. 当x_______时,代数式3x +4的值为正数。
6. 要使方程52321x m x m -=-+()的解是负数,则m________7. 若||2112x x -=-,则x___________8. 已知a<b ,则不等式组x ax b><⎧⎨⎩的解集是____________9. 若不等式组2123x a x b -<->⎧⎨⎩的解集是-<<11x ,则()()a b +-11的值为___________10. 如果不等式20x m -≥的负整数解是-1,-2,则m 的取值范围是_________ 二、选择题(每小题3分,共24分)11. 若a>b ,则下列不等式中一定成立的是( )A.b a <1 B. a b>1 C. ->-a bD. a b ->012. 与不等式3251-≤-x 的解集相同的是( )A. 325-≥xB. 325-≤xC. 235x -≥D. x ≤413. 不等式x x --<-321313的负整数解的个数有( )A. 0个B. 2个C. 4个D. 6个14. 不等式组1241323-<-≤-⎧⎨⎪⎩⎪x x x 的整数解的和是( ) A. 1B. 0C. -1D. -215. 下列四个不等式:(1)ac>bc ;(2)-<-ma mb ;(3)ac bc 22>;(4)-≤-ac bc22中,能推出a>b 的有( ) A. 1个B. 2个C. 3个D. 4个16. 如果不等式()a x a +>+11的解集为x <1,那么a 满足的条件是( ) A. a>0B. a<-2C. a>-1D. a<-117. 若不等式组x x t-<->⎧⎨⎩10的解集是x <1,则t 的取值范围是( )A. t<1B. t>1C. t ≤-1D. t ≥118. 若方程组x y x y a -=+=-⎧⎨⎩323的解是负数,则a 的取值范围为( )A. -<<36aB. a <6C. a <-3D. 无解三、解下列不等式或不等式组(每4题6分,共24分) 19. x x 2131--≥ 20. -<-<1232x21.-+<-+-≥⎧⎨⎪⎩⎪21113121xxx22.31151235x xx x+>-≤-⎧⎨⎪⎪⎩⎪⎪四、解答题(23题7分,其余每题9分共52分)23. 若||()x x y m-+--=4502,求当y≥0时,m的取值范围。
一元一次不等式组的典型应用题分类类型一例1.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x,解得:79xx.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例 2.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x件,蔬菜有y件,依题意,得320,80, x yx y解得200,120.xy所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.2、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。
一元一次不等式(组)测试题(总分:150分 时间60分钟) 姓名 分数 一、选择题(每题4分,共40分)1.已知实数a b 、满足11a b +>+,则下列选项可能错误....的是( ) A .a b > B .22a b +>+ C .a b -<- D .23a b >2.下列不等式组中,解集是2<x <3的不等式组是( )A 、⎩⎨⎧>>23x xB 、⎩⎨⎧<>23x xC 、⎩⎨⎧><23x xD 、⎩⎨⎧<<23x x 3.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )A 、B 、C 、D 、 4.不等式组31025x x +>⎧⎨<⎩的整数解的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个5.若6556x x -=-,则x 的取值范围是( )A.56x > B.56x < C.56x ≤ D.56x ≥ 6.在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( ) A 、a <12 B 、a <0 C 、a >0 D 、a <-127. 方程|4x -8|+2(x-y-m )=0,当y >0时,m 的取值范围是( ) A .O <m <1 B .m≥2 C .m <2 D .m≤28.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( )A 、①与②B 、②与③C 、③与④D 、①与④ 9.如果不等式组x a x b ≥⎧⎨≤⎩无解,那么不等式组⎩⎨⎧-<->b x a x 22的解集是( ) A.2-b <x <2-a B.b -2<x <a -2 C.2-a <x <2-b D.无解 10.关于x 的方程211x a x +=-的解是正数,则以的取值范围是( )A .a >-1B .a >-1且a≠0C .a <-1D .a <-1且a≠-2二、填空题(每题4分,共32分)11.不等式1732x ->的正整数解是 .12.已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是 .13.不等式组20.53 2.52x x x -⎧⎨---⎩≥≥的解集是 . 14.不等式组15x x x >-⎧⎪⎨⎪<⎩≥2的解集是_________________15.已知不等式03≤-a x 的正整数解恰好是1、2、3,则a 的取值范围是___________。
一元一次不等式组
(总分:100分 时间45分钟) 姓名 分数
一、选择题(每题4分,共32分)
1、下列不等式组中,解集是2<x <3的不等式组是( )
A 、⎩⎨⎧>>23x x
B 、⎩⎨⎧<>23x x
C 、⎩⎨⎧><23x x
D 、⎩
⎨⎧<<23x x 2、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( )
A 、a <12
B 、a <0
C 、a >0
D 、a <-12
3、(2007年湘潭市)不等式组10235x x +⎧⎨+<⎩
≤,的解集在数轴上表示为( ) 4、不等式组31025x x +>⎧⎨<⎩
的整数解的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个
5、在平面直角坐标系内,P (2x -6,x -5)在第四象限,则x 的取值范围为( )
A 、3<x <5
B 、-3<x <5
C 、-5<x <3
D 、-5<x <-3
6、(2007年南昌市)已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( )
A 、①与②
B 、②与③
C 、③与④
D 、①与④
7、如果不等式组x a x b >⎧⎨<⎩
无解,那么不等式组的解集是( ) A.2-b <x <2-a B.b -2<x <a -2 C.2-a <x <2-b D.无解
A B C D
hhhhhhh。
1.6 一元一次不等式组A卷:基础题一、选择题1.下列不等式组中,是一元一次不等式组的是()A.2,3 xx>⎧⎨<-⎩B.10,20xy+>⎧⎨-<⎩C.320,(2)(3)0xx x->⎧⎨-+>⎩D.320,11xxx->⎧⎪⎨+>⎪⎩2.下列说法正确的是()A.不等式组3,5xx>⎧⎨>⎩的解集是5<x<3 B.2,3xx>-⎧⎨<-⎩的解集是-3<x<-2C.2,2xx≥⎧⎨≤⎩的解集是x=2 D.3,3xx<-⎧⎨>-⎩的解集是x≠33.不等式组2,3482xx x⎧>-⎪⎨⎪-≤-⎩的最小整数解为()A.-1 B.0 C.1 D.44.在平面直角坐标系中,点P(2x-6,x-5)在第四象限,则x的取值范围是()A.3<x<5 B.-3<x<5 C.-5<x<3 D.-5<x<-35.不等式组20,30xx->⎧⎨-<⎩的解集是()A.x>2 B.x<3 C.2<x<3 D.无解二、填空题6.若不等式组2,xx m<⎧⎨>⎩有解,则m的取值范围是______.7.已知三角形三边的长分别为2,3和a,则a的取值范围是_____.8.将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;•如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有_____个儿童,分_____个橘子.9.若不等式组2,20x ab x->⎧⎨->⎩的解集是-1<x<1,则(a+b)2006=______.三、解答题10.解不等式组2(2)4,(1) 10(2) 32x xx x-≤-⎧⎪+⎨-<⎪⎩11.若不等式组1,21x mx m<+⎧⎨>-⎩无解,求m的取值范围.12.为节约用电,某学校于本学期初制定了详细的用电计划.•如果实际每天比计划多用2度电,那么本学期用电量将会超过2530度;如果实际每天比计划节约了2度电,那么本学期用电量将会不超过2200度.若本学期的在校时间按110天计算,那么学校每天计划用电量在什么范围内?B卷:提高题一、七彩题1.(一题多变题)如果关于x的不等式(a-1)x<a+5和2x<4的解集相同,则a•的值为______.(1)一变:如果(1)5,24a x ax-<+⎧⎨<⎩的解集是x<2,则a的取值范围是_____;(2)二变:如果24,1,51xxaxa⎧⎪<⎪≥⎨⎪+⎪<-⎩的解集是1≤x<2,则a的取值范围是____二、知识交叉题2.(科内交叉题)在关于x1,x2,x3的方程组121232133,,x x ax x ax x a+=⎧⎪+=⎨⎪+=⎩中,已知a1>a2>a3,请将x1,x2,x3按从大到小的顺序排列起来.3.(科外交叉题)设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图1-6-1所示,那么每个“○”、“□”、 “△”这样的物体,按质量从小到大的顺序排列为()A.○□△B.○△□ C.□○△D.△□○三、实际应用题4.某宾馆底层客房比二楼少5间,某旅游团有48人,若全安排在底层,每间4人,则房间不够;若每间5人,则有房间没有住满5人;若全安排在二楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人,求该宾馆底层有客房多少间?四、经典中考题5.(2007,厦门,3分)小宝和爸爸,妈妈三人在操场上玩跷跷板,爸爸体重为69•千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,•这时爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,•加在他和妈妈坐的一端,结果爸爸被跷起,那么小宝的体重可能是()A.23.2千克B.23千克C.21.1千克D.19.9千克6.(2008,天津,3分)不等式组322(1),841x xx x+>-⎧⎨+>-⎩的解集为______.7.(2007,青岛,8分),某饮料厂开发了A,B两种新型饮料,主要原料均为甲和乙,•每瓶饮料中甲,乙的含量如下表所示,现用甲原料和乙原料各2800克进行试生产,•计划生产A,B两种饮料共100瓶.设生产A种饮料x瓶,解答下列问题.(1)有几种符合题意的生产方案?写出解答过程;(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,•这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低.C卷:课标新型题1.(结论开放题)有甲,乙,丙三个人在一起讨论一个一元一次不等式组,•他们各说出该不等式组的一个性质.甲:它的所有解为非负数.乙:其中一个不等式的解集为x≤8.丙:其中一个不等式在解的过程中需改变不等号的方向.请试着写出符合上述条件的一个不等式组,并解答.2.(阅读理解题)先阅读不等式x2+5x-6<0的解题过程,然后完成练习.解:因为x2+5x-6<0,所以(x-1)(x+6)<0.因为两式相乘,异号得负.所以10,60xx->⎧⎨+<⎩或10,60xx-<⎧⎨+>⎩即1,6xx>⎧⎨<-⎩(舍去)或1,6xx<⎧⎨>-⎩所以不等式x2+5x-6<0的解集为-6<x<1.练习:利用上面的信息解不等式228xx-+<0.3.(方案设计题)为了保护环境,某企业决定购买10台污水处理设备,现有A,B•两种型号的设备,其中每台的价格,月处理污水量如下表:经预算,•该企业购买设备的资金不高于105•万元,•若企业每月产生的污水量为2040t,为了节约资金,请你为企业设计购买方案.3.把若干个糖果分给几只猴子,若每只猴子分3个,则余8个;若每只猴子分5个,•则最后一个猴子分得的糖果数不足3个,问共有多少只猴子,多少个糖果?参考答案A卷一、1.A 点拨:B中含有两个未知数x,y.C中x的最高次数是2,D中分母中含有未知数.2.C 点拨:A中不等式组的解集是x>5,B,D中不等式组的解集是空集.3.B 点拨:不等式组的解集为-23<x≤4,所以最小整数解为0.4.A 点拨:由题意得260,50,xx->⎧⎨-<⎩,解得3<x<5.5.C二、6.m<27.1<a<5 点拨:由题意知3-2<a<3+2,即1<a<5.本题考查三角形三边之间的关系.8.7;37 点拨:设有x个儿童,则橘子的个数为4x+9,依题意得0<4x+9-6(x-1)<3,解之得6<x<7.5,因为x为正整数,所以x=7,所以4x+9=4×7+9=37(个).9.1三、10.解:不等式(1)的解集为x≤0.不等式(2)的解集为x>-3.所以原不等式组的解集为-3<x≤0.点拨:先求每一个不等式的解集,然后找出它们的公共部分.11.错解:由不等式组无解可知2m-1>m+1,所以m>2.正确解法:由题意得2m-1≥m+1时,因为原不等式组无解,所以m≥2.点拨:此题错误原因在于忽略了m+1与2m-1可以相等,即类似,x ax a>⎧⎨<⎩的形式也是无解的.12.解:设学校每天计划用电量为x度,依题意,得110(2)2530,110(2)2200.xx+>⎧⎨-≤⎩,解得21<x≤22,•即学校每天计划用电量在21度(不包括21度)到22度(包括22度)范围内.B卷一、1.7 (1)1<a≤7 (2)1<a≤7点拨:由题意得(a-1)x<a+5的解集为x<2,所以52110.aaa+⎧=⎪-⎨⎪->⎩,所以a=7.(1)由题意得a-1>0,即a>1时,512axax+⎧<⎪-⎨⎪<⎩的解集为x<2.所以51aa+-≥2,所以a≤7,所以1<a≤7.(2)由一变可知51aa+-≥2,当a-1>0,即a>1时,1<a≤7;当a-1<0,即a<1时,a+5≤2(a-1),所以a≥7,此时a的值不存在.综上所述,1<a≤7.去分母时,要根据分母是正是负两种情况进行讨论.二、2.解:将方程组的三式相加得2(x1+x2+x3)=a1+a2+a3.所以x1+x2+x3=12(a1+a2+a3),因为x1+x2=a1,所以a1+x3=12(a1+a2+a3),所以x3=12(a2+a3-a1).同理x1=12(a1+a3-a2),x2=12(a1+a2-a3).因为a1>a2>a3.所以x1-x2=12(a1+a3-a2)-12(a1+a2-a3)=a3-a2<0,所以x1<x2,同理x1>x3,所以x3<x1<x2.3.D 点拨:由第一个天平知○>□,由第二个天平知□=2△,即□>△,所以○>□>△.本题主要考查了数形结合的数学思想和观察识别图形的能力.三、4.解:设该宾馆底层有客房x间,则二楼有客房(x+5)间,根据题意得4848,5448485,43xx⎧<<⎪⎪⎨⎪<+<⎪⎩,•解得485<x<11,因为x为整数,所以x=10.答:宾馆底层有客房10间.四、5.C 点拨:设小宝的体重为x千克,根据题意,得269,2669. x xx x+<⎧⎨++>⎩解这个不等式组得21<•x<23,故选C.6.-4<x<3 点拨:由①得:x>-4;由②得:x<3,分别解完不等式后可以利用数轴或口诀“比大的小,比小的大,中间找”得到最终结果.此题考查利用数形结合解不等式组,是对学生基本运算方法、运算法则、基本性质的动用能力的考查.7.解:(1)设生产A种饮料x瓶,根据题意,得2030(100)2800, 4020(100)2800.x xx x+-≤⎧⎨+-≤⎩解这个不等式组,得20≤x≤40,因为其中正整数解共有21个,所以符合题意的生产方案有21种.(2)根据题意,得y=2.6x+2.8(100-x),整理,得y=-0.2x+280.因为k=-0.2<0,所以y随x的增大而减小,所以当x=40时成本总额最低.C卷1.解:可以写出不同的不等式组,如3325(1), 221(2). x xx x-≤+⎧⎨-<-⎩,不等式(1)的解集为x≤8,•不等式(2)的解集为x>1,所以原不等式组的解集为1<x≤8.点拨:此题为结论开放性试题,答案不唯一,只要符合题意即可.2.解:因为两式相除,异号得负,由228xx-+<0,得220,80xx->⎧⎨+<⎩或220,80xx-<⎧⎨+>⎩,即1,8xx>⎧⎨<-⎩(舍去)或1,8xx<⎧⎨>-⎩所以不等式228xx-+<0的解集是-8<x<1.点拨:认真阅读所给材料,从中获取相关信息,由两式相乘,异号得负,•得到两式相除,异号得负,由此解不等式228xx-+<0.3.解:设购买污水处理设备A型号x台,则购买B型号(10-x)台,根据题意,得1210(10)105,240200(10)2040.x xx x+-≤⎧⎨+-≥⎩,解这个不等式组,得1≤x≤2.5.因为x是整数,所以x=1或2.当x=1时,购买资金为12×1+10×9=102(万元),当x=2时,购买资金为12×2+10×8=104(万元).因此,为了节约资金,应购污水处理设备A型号1台,B型号9台.点拨:本题是“方案设计”问题,•一般可把它转化为求不等式组的整数解问题.通过表格获取相关信息,在实际问题中抽象出不等式组是解决这类问题的关键.3.解:设共有x只猴子,则有糖果(3x+8)个,由题意,得1≤3x+8-5(x-1)<3,即385(1)3, 385(1) 1.x xx x+--<⎧⎨+--≥⎩,•解这个不等式组,得5<x≤6,因为x是整数,所以x=6,则3x+8=26.答:共有6只猴子,26个糖果.。