2017年全国研究生入学考试考研数学(一)真题及答案解析
- 格式:pdf
- 大小:346.83 KB
- 文档页数:11
2017年考研(数学一)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.若函数f(x)=在x=0处连续,则( )A.ab=1/2B.ab=-C.ab=0D.ab=2正确答案:A解析:=1/2a,∵f(x)在x=0处连续,1/2a=bab=1/2,选A.2.设函数f(x)可导,且f(x)f’(x)>0,则( )A.f(1)>f(-1)B.f(1)<f(-1)C.|f(1)|>|f(01)|D.|f(1)|<|f(-1)|正确答案:C解析:∵f(x)f’(x)>0,∴(2),只有C选项满足(1)且满足(2),所以选C.3.函数f(x,y,z)=x2+y2+z2在点(1,2,0)处沿向量n(1,2,2)的方向导数为( )A.12B.6C.4D.2正确答案:D解析:|(1,2,0)=0,cosα=1/3,cosβ=2/3,cosy=2/3,所求的方程导数为=2,应选D.4.甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,如下图中,实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为t0(单位:s),则( )A.t0=10B.15<t0<20C.t0=25D.t0>25正确答案:C解析:从0到t0这段时间内甲乙的位移分别为∫0t0v1(t)dt,∫0t0v2(t)dt,则乙要追上甲,则∫0t0v2(t)dt-v1(t)dt=10,当t0=25时满足,故选C.5.设a为n为单位列向量,E为n阶单位矩阵,则( )A.E-ααT不可逆B.E+ααT不可逆C.E+2ααT不可逆D.E-2ααT不可逆正确答案:A解析:选项A,由(E-ααT)α=α-α=0得(E-ααT)x=0有非零解,故|E-αT|=0,即E-ααT不可逆,选项B,由r(ααT)=1得ααT的特征值为n-1个0,1故E-ααT的特征值为n-1个1,2,故可逆.6.已知矩阵A=,则( )A.A与C相似,B与C相似B.A与C相似,B与C不相似C.A与C不相似,B与C相似D.A与C不相似,B与C不相似正确答案:B解析:由(λE-A)=0可知A的特征值为2,2,1因为3-r(2E-A)=1,∴A可相似对角化,且A~由|λE-B|=0可知B特征值为2,2,1因为3-r(2E-B)=2,∴B不可能相似对角化,显然C可相似对角化,∴A~C,且B不相似于C.7.设A,B为随机事件,若0<P(A)<1,0<P(B)<0,则P(A|B)>P(A|)的充分必要条件是( )A.B.C.D.正确答案:A解析:按照条件概率定义展开,则A选项符合题意.8.设X1,X1…Xn(n≥2)来自总体N(μ,1)的简单随机样本,记Xi,则下列结论中不正确的是( )A.(Xi-μ)2服从χ2分布B.2(Xn-X1)2服从χ2分布C.)服从χ2分布D.n(X-μ)2服从χ2分布正确答案:B解析:X~N(μ-1),Xi-μ~n(0,1)(Xi-μ)2~χ2(n),A正确(n-1)S2=)2~χ2(n-1),C正确,-μ)2~χ2(1),D正确,故B错误.填空题9.已知函数f(x)=,则f(3)(0)=_______.正确答案:0解析:f(x)=(-1)nx2n,f”‘(x)=(-1)n2n(2n-1)(2n-2)x2nf”‘(0)=0.10.微分方程y+2y+3y=0的通解为y=_______.正确答案:y=e-x(C1cosx)解析:齐次特征方程为λ2+2λ+3=0λ1.2=-1+故通解为y=e-x(C1cosx)11.若曲线积分∫在区域D={(x,y)|x2+y2<1}内与路径无关,则a=_______.正确答案:-1解析:,由积分与路径无关知,a=-1.12.幂数级(-1)n-1nxn-1在区间(-1,1)内的和函数S(x)=_______.正确答案:解析:(-1)n-1nxn-1=((-1)n-1nxn)=13.设矩阵A=,α1,α2,α3为线性无关的3维列向量组,则向量组A α1,Aα2,Aα3的秩为_______.正确答案:2解析:由a1,a1,a3线性无关,可知矩阵a1,a2,a3可逆,故r(Aa1,Aa2,Aa3)=r(A(a1,a2,a3))=r(A),再由r(A)=2得r(Aa1,Aa2,Aa3)=2.14.设随机变量X的分布函数为F(X)=0.5Φ(x)+0.5Φ(),其中Φ(x)为标准正态分布函数,则EX=_______.正确答案:2解析:F’(x)=0.5Φ(X)dx+∫-∞+∞xΦ()dx,∫-∞+∞xΦ(x)dx=EX=0.令=t,则f-∞+∞xΦ()dt=2∫-∞+∞(4+2t)Φdt=8.1+4∫-∞+∞tΦ(t)dt=8,因此E(X)=2.解答题解答应写出文字说明、证明过程或演算步骤。
2017全国研究生入学考试考研数学一真题本试卷满分150,考试时间180分钟一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)若函数1,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩,在0x =处连续,则( ) (A )12ab =(B )12ab =-(C )0ab =(D )2ab =(2)若函数()f x 可导,且()()0f x f x '>,则( ) (A )(1)(1)f f >-(B )(1)(1)f f <-(C )(1)(1)f f >-(D )(1)(1)f f <-(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量n =(1,2,2)的方向导数为() (A )12(B )6(C )4(D )2(4)甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:m/s ),虚线表示乙的速度2()v v t =,三块阴影部分面积的数值依次为10203、、,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )(A )010t =(B )01520t << (C )025t =(D )025t >(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则 (A )T E αα-不可逆 (B )T E αα+不可逆(C )2T E αα+不可逆(D )2T E αα-不可逆(6)设矩阵200021001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,210020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,100020002C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 (A )A 与C 相似,B 与C 相似(B )A 与C 相似,B 与C 不相似 (C )A 与C 不相似,B 与C 相似(D )A 与C 不相似,B 与C 不相似(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则()()P A B P A B >的充要条件是(A )()(B )P B A P A >(B )()(B )P B A P A <(C )()(B )P B A P A >(D )()(B )P B A P A <(8)设12,(2)n X X X n ≥为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论中不正确的是 (A )21()nii Xμ=-∑服从2χ分布(B )212()n X X -服从2χ分布(C )21()nii XX =-∑服从2χ分布(D )2()n X μ-服从2χ分布二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)已知函数21()1f x x=+,则(3)(0)f =_______。
2017年全国硕士研究生入学统一考试数学(一)真题及解析(江南博哥)1 [单选题]A.ab=B.ab=-C.ab=0D.ab=2正确答案:A参考解析:2 [单选题]设函数f(x)可导,且f(x)f’(x)>0,则().A.f(1)>f(-1)B.f(1)<f(-1)C.|f(1)|>|f(-1)|D.|f(1)|<|f(-1)|正确答案:C参考解析:3 [单选题]函数f(x,y,z)=x2y+z2在点(1,2,0)处沿向量u=(1,2,2)的方向导数为().A.12B.6C.4D.2正确答案:D参考解析:4 [单选题]甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,如下图所示,实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为t0(单位:S),则().A.t0=10B.15<t0<20C.t0=25D.t0>25正确答案:C参考解析:5 [单选题]设α为n维单位列向量,E为n阶单位矩阵,则().A.E-ααT不可逆B.E+ααT不可逆C.E+2ααT不可逆D.E-2ααT不可逆正确答案:A参考解析:A项,由(E-ααT)α=α-α=0得(E-ααT)x=0有非零解,故|E-ααT|=0.即E-ααT不可逆.6 [单选题]A.A与C相似,B与C相似B.A与C相似,B与C不相似C.A与C不相似,B与C相似D.A与C不相似,B与C不相似正确答案:B参考解析:由(λE-A)=0,可知A的特征值为2,2,1.7 [单选题]设A,B为随机事件,若0<P(A)<1,0<P(B)<1,则P(A|B)>P(A|)的充分必要条件是().A.P(B|A)>P(B|)B.P(B|A)<P(B|)C.P(|A)>P(B|)D.P(|A)<P(B|)正确答案:A参考解析:8 [单选题]设X1,X2,…,X n(n≥2)为来自总体N(μ,1)的简单随机样本,记,则下列结论中不正确的是().A.B.C.D.正确答案:B参考解析:9 [填空题]参考解析:【解析】10 [填空题]微分方程y”+2y'+3y=0的通解为y=______.参考解析:【解析】11 [填空题]内与路径无关,则a=______.参考解析:-1【解析】12 [填空题]______.参考解析:【解析】13 [填空题]为线性无关的三维列向量组,则向量组Aα1,Aα2,Aα3的秩为______.参考解析:2【解析】由α1,α2,α3线性无关可知矩阵(α1,α2,α3)可逆,故r(Aα1,Aα2,Aα3)=r(A(α1,α2,α3))=r(A),再由r(A)=2得r(Aα1,Aα2,Aα3)=2.14 [填空题]设随机变量X的分布函数为,其中(x)为标准正态分布函数,则E(X)=______.参考解析:2【解析】15 [简答题]参考解析:16 [简答题]参考解析:17 [简答题]已知函数y(x)由方程x3+y3—3x+3y-2=0所确定,求y(x)的极值.参考解析:解:两边求导得18 [简答题](I)方程f(x)=0在区间(0,1)内至少存在一个实根;(Ⅱ)方程f(x)f”(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根.参考解析:证明:(I)又由于f(x)在[δ,1]上连续,由f(δ)<0,f(1)>0,根据零点定理得至少存在一点ξ∈(δ,1),使f(ξ)=0,即得证.19 [简答题]设薄片形物体S是圆锥面被柱面z2=2x割下的有限部分,其上任一点的密度为u(x,y,z)=9,记圆锥面与柱面的交线为C.(I)求C在xOy面上的投影曲线的方程;(Ⅱ)求S的质量M.参考解析:(Ⅰ)(Ⅱ)20 [简答题]设三阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2.(I)证明:r(A)=2;(11)如果β=α1+α2+α3,求方程组Ax=β的通解.参考解析:解:(I)由α3=α1+2α2可得α1+2α2-α3=0,即α1,α2,α3线性相关,因此,|A|=0,即A的特征值必有0.又因为A有三个不同的特征值,则三个特征值中只有1个0,另外两个非0,21 [简答题]设二次型f(x1,x2,x3)=在正交变换x=Qy下的标准形为,求a的值及一个正交矩阵Q.参考解析:22 [简答题]设随机变量X,Y相互独立,且X的概率分布为P{X=0}=P{X=2}=,Y的概率密度为(I)求P{Y≤E(Y)};(II)求Z=X+Y的概率密度.参考解析:某工程师为了解一台天平的精度,用该天平对一物体的质量做n次测量,该物体的质量μ是已知的,设n次测量结果X1,X2,…,X n相互独立且均服从正态分布N(μ,σ2),该工程师记录的是n次测量的绝对误差Z i=|X i-μ|(i=1,2,…,n),利用Z1,Z2,…,Z n估计σ.(I)求Z i的概率密度;(Ⅱ)利用一阶矩求σ的矩估计量;(Ⅲ)求σ的最大似然估计量.参考解析:。
2017 年考研数学一真题一、选择题1— 8 小题.每题4 分,共 32 分.1.若函数 f (x)1 cos x, x 0在 x 0 处连续,则 axb, x 0( A ) ab1( B ) ab1( C ) ab0 ( D ) ab 222lim1cos x1 x1【详解 】 limf (x)lim2, lim f (x)bf (0) ,要使函数在 x0 处连续,x 0x 0axx 0ax2ax 0一定知足1bab 1 .因此应当选( A )2a22.设函数 f (x) 是可导函数,且知足f ( x) f ( x) 0 ,则( A ) f (1)f ( 1) (B ) f (1) f ( 1)( C ) f (1)f ( 1)( D ) f (1) f ( 1)【详解 】设 g (x)( f (x))2 ,则 g ( x)2 f ( x) f (x) 0 ,也就是2是单一增添函数.也就获得f ( x) 2f ( 1)2f (1)f ( 1) ,因此应当选( C )f (1)3.函数 f (x, y, z)x 2 y z 2 在点 (1,2,0) 处沿向量 n(1,2,2) 的方导游数为( A ) 12 (B ) 6(C ) 4( D ) 2【 详 解 】f2xy, fx 2 , f2z , 所 以 函 数 在 点 (1,2,0) 处 的 梯 度 为 gradf 4,1,0 , 所 以xyzf (x, y, z)x 2 y z 2 在点 (1,2,0) 处沿向量 n(1,2,2) 的方导游数为fr gradfuur1(1,2, 2) 2n4,1,0应当选( D )n34.甲、乙两人赛跑, 计时开始时, 甲在乙前面 10(单位:米)处,如图中,实线表示甲的速度曲线 v v 1 (t )(单位:米 /秒),虚线表示乙的速度曲线 v v 2 (t ) (单位:米 /秒),三块暗影部分的面积分别为10,20,3 ,计时开始后乙追上甲的时辰为t 0 ,则()( A ) t 0 10( B ) 15 t 0 20( C ) t 025( D ) t 025【详解 】由定积分的物理意义:当曲线表示变速直线S(t)T2S1 ,S2 , S3分别运动的速度函数时,v(t )dt 表示时辰 T1 ,T2内所走的行程.此题中的暗影面积T1表示在时间段0,10, 10,25 , 25,30内甲、乙两人所走行程之差,明显应当在t25时乙追上甲,应当选( C).E5为 n 阶单位矩阵,则.设为 n 单位列向量,( A)E T 不行逆( B)E T 不行逆( C)E2T 不行逆( D )E 2T 不行逆【详解】矩阵T的特点值为 1和 n 1个 0 ,进而E T , E T , E2T , E2T 的特点值分别为 0,1,1,L1; 2,1,1,L,1 ;1,1,1,L,1 ; 3,1,1,L,1 .明显只有 E T 存在零特点值,因此不行逆,应当选( A ).2002101006.已知矩阵A021, B020, C020,则001001002( A)A,C相像,B,C相像( B)A,C相像,B,C不相像( C)A,C不相像,B,C相像( D)A,C不相像,B, C不相像【详解】矩阵 A, B 的特点值都是122,31.能否可对解化,只要要关怀 2 的状况.000关于矩阵 A ,2E A00 1 ,秩等于1,也就是矩阵 A 属于特点值2存在两个线性没关的特001征向量,也就是能够对角化,也就是 A ~ C .010关于矩阵 B ,2E B000,秩等于 2,也就是矩阵 A 属于特点值2只有一个线性没关的特001征向量,也就是不能够对角化,自然B,C不相像应选择(B).7A, B是两个随机事件,若0P( A)1,0 P( B)1,则 P( A / B)P( A / B) 的充足必需条件是.设( A)P(B / A) P( B / A)( B)P( B / A) P(B / A)( C)P(B / A)P( B / A)( D)P(B / A) P( B / A)【详解】由乘法公式:P( AB) P( B) P(A / B), P( AB )P(B)( P( A / B) 可得下边结论:P( A / B)P( A / B)P( AB)P( AB) P( A)P( AB)P( AB) P( A)P( B) P( B)P(B)1P( B)近似,由 P( AB ) P( A) P(B / A), P( AB) P( A)P( B / A) 可得P(B / A)P(B / A)P( AB)P( AB) P( B)P( AB)P( AB)P( A)P( B) P( A)P( A)1P( A)因此可知选择( A ).8.设X1, X2,L , X n(n 2)为来自正态整体N (,1) 的简单随机样本,若1 nX i,则以下结论中不Xn i 1正确的是()n) 2听从 2 散布(B )2 X n 22 散布( X i( A)X1听从i 1nX ) 2听从 2 散布)2听从 2 散布( C)( X i( D)n( Xi1)2 ~2 (1),i n解:( 1)明显( X i) ~ N (0,1)( X i1,2,L n 且互相独立,因此( X i)2听从i 12( n) 散布,也就是(A)结论是正确的;n22(n1)S 22( 2)( X i X )(n1)S~( n1),因此( C)结论也是正确的;2i1( 3)注意X ~ N (, 1)n ( X) ~ N (0,1)n( X) 2 ~2 (1) ,因此(D)结论也是正确的;n( 4)关于选项( B ):( X n X1 ) ~ N (0, 2)X n X1~ N (0,1)1( X n X1) 2 ~2 (1) ,因此(B)结22论是错误的,应当选择(B)二、填空题(此题共 6 小题,每题 4 分,满分24 分 . 把答案填在题中横线上)9.已知函数 f ( x)1,则 f (3) (0).1 x2解:由函数的马克劳林级数公式: f (x) f( n) (0) x n,知f( n)(0)n! a n,此中 a n为睁开式中 x n的系n0n!数.因为f ( x)11x2x4L( 1)n x2 n L, x1,1 ,因此 f (3) (0)0 .1 x210.微分方程y 2 y3y0的通解为.【详解】这是一个二阶常系数线性齐次微分方程,特征方程 r 22r 30 有一对共共轭的根r12i ,因此通解为y e x (C1 cos2x C2 sin2x)11.若曲线积分xdxaydy在地区 D( x, y) | x 2 y 21 内与路径没关,则 a .Lx 2y 2 1【详解 】设P( x, y)x,Q( x, y)ay ,明显 P( x, y), Q (x, y) 在地区内拥有连续的偏 x 2 y 2x 2y 21 1导数,因为与路径没关,因此有Q Pa1xy12.幂级数( 1)n 1 nx n 1 在区间 ( 1,1)内的和函数为n 1【详解 】( 1)n 1 nx n 1( 1)n 1( x n )( 1)n 1 x nx 1 n 1n 1n 11 x(1 x)2因此 s(x)12 , x( 1,1)(1 x)1 0 113 . 设 矩 阵 A1 12 , 1,2 ,3 为 线 性 无 关 的 三 维 列 向 量 , 则 向量 组 A 1, A 2 , A 3 的 秩0 1 1为.1 0 1 1 0 1 1 0 1【详解 】对矩阵进行初等变换 A1 12 0 1 1 0 1 1 ,知矩阵 A的秩为 2,因为0 1 11 10 01, 2 , 3 为线性没关,因此向量组 A 1, A 2 , A 3 的秩为 2.14.设随机变量X 的散布函数F (x)( x)x4 ,此中( x) 为标准正态散布函数,则2EX.【详解 】随机变量 X 的概率密度为f ( x) F (x)(x)(x4) ,因此2E(X ) xf ( x)dxx ( x)dxx x 4)dx(2x (x42(2t 4) (t) dt22(t) dt2三、解答题15.(此题满分 10 分)设函数 f (u, v) 拥有二阶连续偏导数,yf ( x,cos )dy, d 2 y.ex ,求|x 0dx 2 |x 0dx【详解 】dyxxx, dy;f 1 (e ,cos x)ef 2 ( e ,cos x)( sin x)|x 0dxf 1 (1,1)dxd 2 ye xf 1 x,cos x) xxxsin xf 12xx,cos x)dx 2(ee (f 11 (e ,cos x)e(e ,cos x))cos xf 2 (esin xe x f 21 (e x ,cos x) sin 2 xf 22 (e x ,cos x)d 2 2y|x 0 f 1 (1,1) f 11(1,1)f 2 (1,1).dx16.(此题满分 10 分)求 limn k2 ln 1k nk 1nn【详解 】由定积分的定义nk 2k lim1nklnk1lim ln 11 x ln(1 x)dxn1 nnnn k 1 nn 0k1 1 x)dx 212 ln(1 417.(此题满分 10 分)已知函数 y( x) 是由方程 x 3 y 33x 3y 20 .【详解 】在方程两边同时对x 求导,得3x 2 3 y 2 y 3 3 y 0( 1)在( 1)两边同时对 x 求导,得2x 2 y( y ) 2 y 2 yy也就是 y2( x y( y ) 2 )1 y2令 y 0 ,得 x1 .当 x 11时, y 1 1 ;当 x 21时, y 2 0 当 x 1 1 时, y 0 , y 1 0 ,函数 y y( x) 取极大值 y 11 ;当 x 21时, y 0 , y1 0 函数 yy( x) 取极小值 y 2 0 .18.(此题满分 10 分)设函数 f ( x) 在区间 0,1 上拥有二阶导数,且f (1) 0f (x), lim0 ,证明:x 0x( 1)方程 f (x)0 在区间 0,1 起码存在一个实根;( 2)方程 f (x) f (x)( f ( x))20 在区间 0,1 内起码存在两个不一样实根.证明:( 1)依据的局部保号性的结论,由条件limf ( x)1,及 x 1(0, ) ,使得0 可知,存在x 0 xf (x 1) 0 ,因为 f ( x) 在 x 1,1 上连续,且 f ( x 1 ) f (1) 0,由零点定理,存在 ( x 1 ,1) (0,1) ,使得f ( )0 ,也就是方程 f (x)0 在区间 0,1 起码存在一个实根;( 2)由条件 limf (x)0 可知 f (0)0 ,由( 1)可知 f ( )0 ,由洛尔定理,存在(0, ) ,使得xxf ( )0 ;设 F ( x) f (x) f (x) ,由条件可知 F ( x) 在区间 0,1 上可导, 且 F (0)0, F ( ) 0, F ( ) 0 ,分别在区间 0,, , 上 对 函 数 F (x) 使 用 尔 定 理 , 则 存 在 1(0, )(0,1), 2 ( , ) (0,1), 使 得12 , F ( 1 )F ( 2 )0 ,也就是方程 f (x) f ( x) ( f ( x))20 在区间 0,1 内起码存在两个不一样实根.19.(此题满分 10 分)设 薄 片 型 S 是 圆 锥 面 zx 2 y 2 被 柱 面 z 2 2 x 所 割 下 的 有 限 部 分 , 其 上 任 一 点 的 密 度 为9 x 2 y 2 z 2 ,记圆锥面与柱面的交线为 C .( 1)求 C 在 xOy 布上的投影曲线的方程;( 2)求 S 的质量 M .【详解 】( 1)交线 C 的方程为z x 2 y 2 ,消去变量 z ,获得 x 2 y 22x .z 2 2x因此 C 在 xOy 布上的投影曲线的方程为x 2 y 22xz 0.( 2)利用第一类曲面积分,得M(x, y, z)dS9 x 2 y 2 z 2 dSSS9 x 2 y 2 x 2y 21x 2 y 2 y 2 dxdy x 2y 22xx 2 y 2x 218x 2y 2 dxdy 64x 2y 22x20.(此题满分 11 分)设三阶矩阵 A 1, 2 , 3 有三个不一样的特点值,且312 2 .( 1)证明: r ( A)2 ;( 2)若12 ,3 ,求方程组 Ax的通解.【详解 】( 1)证明:因为矩阵有三个不一样的特点值,因此A 是非零矩阵,也就是 r ( A) 1.假 若 r ( A) 1 时 , 则 r0 是 矩 阵 的 二 重 特 征 值 , 与 条 件 不 符 合 , 所 以 有 r ( A) 2 , 又 因 为312 20,也就是1 ,2 ,3 线性有关, r ( A) 3 ,也就只有 r ( A) 2 .( 2)因为 r ( A)2 ,因此 Ax 0 的基础解系中只有一个线性没关的解向量.因为312 2 0 ,所1 以基础解系为 x2 ;11 又由12,3 ,得非齐次方程组Ax的特解可取为 1 ;11 1方程组 Ax的通解为 xk 21 ,此中 k 为随意常数.1121.(此题满分 11 分)设 二 次 型 f (x 1, x 2 , x 3 ) 2x 12 x 22 ax 32 2x 1x 28x 1 x 3 2x 2 x 3 在 正 交 变 换 x Qy 下 的 标 准 形 为1 y 122 y 22,求 a 的值及一个正交矩阵Q .2 1 4 【详解 】二次型矩阵 A11 14 1a因为二次型的标准形为1 y 12 2 y 22 .也就说明矩阵A 有零特点值,因此A 0 ,故 a 2.1 1 4E A1 11(3)(6)412令E A 0 得矩阵的特点值为13,26,30 .1 1经过分别解方程组( i EA) x 0 得矩阵的属于特点值13 的特点向量 11 ,属于特点值特311 112 6 的特点向量, 30 的特点向量1征值 2232,1611 1 13 2 6因此 Q1 ,2 ,31 02为所求正交矩阵.3 611 132622.(此题满分 11 分)设 随 机 变 量 X ,Y 相 互 独 立 , 且 X 的 概 率 分 布 为 P X 0 P{ X 2}1 , Y 的 概 率 密 度 为22 y,0 y1f ( y)0,其余.( 1)求概率 P ( Y EY ); ( 2)求 ZX Y 的概率密度.12 . 【详解 】( 1) EYyf Y ( y)dy2 y 2 dy0 32 24.因此 P YEYP Y32ydy39( 2) ZX Y 的散布函数为F Z (z) P Z z P X Y z P X Y z, X 0 P X Y z, X 2P X0,Y z P X2,Y z 21P{ Yz}1P Yz2221F Y( z) F Y( z 2)2故 Z X Y 的概率密度为f Z ( z) F Z ( z)1 f (z)f ( z 2)2z, 0 z 1 z 2,2 z 30,其余23.(此题满分 11 分)n 次丈量,该物体的质量某工程师为认识一台天平的精度,用该天平对一物体的质量做了是已知的,设n 次丈量结果 X 1, X 2 ,L , X n 互相独立且均听从正态散布N ( ,2). 该工程师记录的是 n 次丈量的绝对误差Z i X i,( i 1,2, L , ) ,利用 Z 1 , Z 2 ,L , Z n 预计参数.n( 1)求 Z i 的概率密度; ( 2)利用一阶矩求的矩预计量;( 3)求参数最大似然预计量.【详解】( 1)先求Z i的散布函数为F Z ( z) P Z i z P X iX i z z P当 z0时,明显 F Z (z)0 ;当 z0时, F ( z) P Z z P X X i z2z1;i i z PZ2因此 Z i的概率密度为 f Z (z) F Z ( z)e20,z222,z 0 .z 02z22( 2)数学希望EZ i zf (z) dz ze 22dz,0022令 EZ Z 1 n Z i,解得的矩预计量2Z2n Z i.n i 122n i 1( 3)设Z1, Z2,L, Z n的观察值为 z1, z2,L , z n.当 z i0, i1,2,L n 时1nn2n z i2似然函数为 L( ) f ( z i ,))n e22 i 1,i 1(2nln(21n取对数得: ln L ()n ln 2)n ln2z i222i 1令d ln L( )n1n20 ,得参数最大似然预计量为1 n2.d3z in i 1z ii 1。
2017年考研数学一真题及答案解析一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在 .答题纸..指定位置上. (1)若函数1,0(),0x f x axb x ì->ï=íï£î在0x =处连续,则( )()()11()22()02A abB abC abD ab ==-==【答案】A【解析】001112lim lim ,()2x x x f x ax ax a++®®-==!在0x =处连续11.22b ab a \=Þ=选A. (2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C【解析】'()0()()0,(1)'()0f x f x f x f x >ì>\í>î!或()0(2)'()0f x f x <ìí<î,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D 【答案】D【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradf gradf u ¶=Þ=Þ=×=×=¶选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s 0000()10()1520()25()25A tB tC tD t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt òò则乙要追上甲,则210(t)v (t)10t v dt -=ò,当025t =时满足,故选C.(5)设a 是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T T T A E B E C E D E aa aa aa aa -++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0aa a a a -=-=T E 得()0aa -=T E x 有非零解,故0aa -=T E 。
2017年全国硕士研究生入学统一考试数学一真题及答案解析一、选择题(1~8小题,每小题4分,共32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)设函数)(x f 可导,且0)()(>'⋅x f x f ,则( ))(A )1()1(->f f 。
)(B )1()1(-<f f 。
)(C |)1(||)1(|->f f 。
)(D |)1(||)1(|-<f f 。
【答案】)(C【解】若0)(>x f ,则0)(>'x f ,从而0)1()1(>->f f ;若0)(<x f ,则0)(<'x f ,从而0)1()1(<-<f f ,故|)1(||)1(|->f f ,应选)(C 。
(3)函数22),,(z y x z y x f +=在点)0,2,1(处沿向量}2,2,1{=的方向导数为( ))(A 12。
)(B 6。
)(C 4。
)(D 2。
【答案】)(D【解】xy x f 2=∂∂,2x y f=∂∂,z zf 2=∂∂, 4|)0,2,1(=∂∂x f ,1|)0,2,1(=∂∂y f,0|)0,2,1(=∂∂zf , 32cos ,32cos ,31cos ===γβα,所求的方向导数为2321314|)0,2,1(=⨯+⨯=∂n,应选)(D 。
(4)甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中,实线表示甲的速度曲线)(1t v v =(单位:s m /),虚线表示乙的速度曲线)(2t v v=,三块阴影部分面积的数值依次为3,20,10,计时开始后乙追甲的时刻为0t (单位:s ),则( ))(A 100=t 。
2017年考研数学一真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==【答案】A【解析】00112lim lim ,()2x x x f x ax a++→→== 在0x =处连续11.22b ab a ∴=⇒=选A.(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C【解析】'()0()()0,(1)'()0f x f x f x f x >⎧>∴⎨>⎩ 或()0(2)'()0f x f x <⎧⎨<⎩,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D【答案】D 【解析】2(1,1{2,,|uf u gradf xy x z gradf gradf u ∂=⇒=⇒=⋅=⋅=∂选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s0000()10()1520()25()25A t B t C t D t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0ααααα-=-=T E 得()0αα-=TE x 有非零解,故0αα-=T E 。