余热余压利用相关技术介绍
- 格式:doc
- 大小:117.00 KB
- 文档页数:13
余热废热利用技术
余热废热是在一定经济技术条件下,在能源利用设备中没有被利用的能源,也就是多余、废弃的能源。
它包括高温废气余热、冷却介质余热、废汽废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余压等七种。
而对余热废热的利用技术就是把这些热量进行收集,用于加热生活热水,预热新风等。
例如对于有稳定热需求的公共建筑而言。
用自备锅炉房满足建筑蒸汽或生活热水,如天然气热水锅炉等,不仅对环境造成较大污染,而且从能源转换和利用的角度看也不符合“高质高用”的原则,不宜采用。
采用市政热网、热泵、空调余热、其他废热等节能方式供应生活热水,很好地实现了回收排水中的热量,利用如空调凝结水或其他余热废热作为预热,可降低能源的消耗,同样也能够提高生活热水系统的用能效率。
此外,在靠近工业生产厂房的建筑,可以利用工业生产中产生的废热,用于加热生活热水,冬季采暖等。
余热回收技术主要包括锅炉排烟余热回收技术、高温冷凝水余热回收技术,水冷机组冷凝热热量回收、以及其他一些带有热回收装置的热泵机组。
废热的回收利用主要指靠近工业生产厂房的建筑,利用其生产过程中的废热,满足建筑热需求。
热电联产热回收提供生活热水
空压机余热回收提供生活热水
新风机热回收系统-新风预热
余热回收的意义:
1、充分利用能够工业余热废热,空调设备废热,利用低品位热量,实现节约能源目的。
2、减少排放环境的废热,保护环境热平衡。
3、对于空调系统降低冷却塔的容量,减少冷却塔投资或减少冷却塔使用频率,降低噪音,有效地保护环境。
4、通过热回收降低空调机组冷凝压力,提高空调设备能将比,节省电力消耗。
科技成果——硝酸生产反应余热余压利用技术适用范围化工行业硝酸生产流程的能量回收行业现状2014年我国浓硝酸产量(折纯100%)为288.21万t。
在硝酸的生产过程中需要提供压力能,以通常装置的平均生产水平计,每万吨成品约需要消耗功率20万kW,能耗巨大。
该技术旨在对硝酸生产的余热余压进行利用,具有较好的节能效果。
成果简介1、技术原理将硝酸生产工艺流程中产生的反应余热、余压进行回收,转化的机械能直接补充在轴系上,用于驱动机组,可减少能量多次转换损耗,提高能量利用效率。
同时,向装置外供送蒸汽,使余热余压最大化利用。
该技术配合双加压法稀硝酸生产工艺,与采用综合法和中压法的硝酸生产相比,可显著降低生产电耗。
2、关键技术(1)系统与尾气能量回收及关联技术回收硝酸生产流程中的氨氧氧化反的反应热及氮氧化物吸收后的余压,驱动机组做功,并向装置界外输送副产蒸汽。
(2)多跨轴系转子动力学及转子可靠性分析技术多跨轴系能量回收机组的每个单机的弯振及整个轴系的扭振分析,以保证机组安全运行。
(3)多跨轴系能量回收机组自动控制及防喘振技术实现能量回收机组启动、运行、停机及防喘振自动控制,以及机组运行状况远程监测技术。
(4)高温及硝酸腐蚀性环境材料选用技术选择耐高温及硝酸的材料,防止有害物质泄漏和零部件的酸性腐蚀,延长机组使用寿命。
(5)能量回收机组与系统工艺匹配及轴流与离心压缩机性能匹配技术根据系统工艺合理选择压缩机设计参数;对空压机与NOx压缩机压力进行合理分配,达到优化能量回收机组性能,使之运行效率更高,更节能。
3、工艺流程图1 硝酸生产流程反应余热余压利用技术工艺示意图轴流压缩机将空气压缩至4.5-6bar,与气氨按照一定的比例混合,送入氧化炉进行氨氧化反应。
NOx压缩机将氮氧化物加压至11-13bar,用于NO2的吸收。
回收系统反应热,产生中温中压蒸汽;用于驱动汽轮机拖动机组,并外供至装置界外。
回收NOx吸收后的剩余能量,将余热、余压转换为机械能,与汽轮机共同驱动机组。
描述蒸汽锅炉压差发电节能技术全国的热电公司承担着对外供应蒸汽和热水的业务。
他们的运行方式一般是:1、由热电公司自己的换热站置换成热水或冷水供给用户,这一部分需要对蒸汽降压使用。
2、把蒸气直接供给用户用于生产需要或自行换热采暖。
有相当的一部分需要降压使用热力公司外供蒸气和换热站对蒸汽参数的要求是各有不同的。
在供热锅炉和热水\汽用户之间对蒸汽和热水的温度\压力要求不同。
常常有0.8-1兆帕的压力差白白的浪费掉,可以利用它发电。
不影响用户用汽和热。
使用我们已经掌握的蒸汽锅炉压差发电节能技术,对锅炉供热系统进行技术改造,采用小型背压机组根据不同用户需要的蒸气压力差,进行热能-电能的转换以获取低成本的电能,实现了能源的梯级利用,减少厂用电,增加外供电量。
该项目具有投资小、收益大,具有节能增值,以较少的成本增加和较低煤耗情况下,增加单位的经济效益。
国家在《热电联产项目可行性研究技术规定》[2000]1268号文件规定:“单台锅炉额定蒸发量≥20t/h,参数为次中压及以上,热负荷年利用小时≥4000小时的较型集中供热锅炉房,经技术经济比较具有明显经济效益的,应改造成为热电厂”。
修订后的《中华人民共和国节约能源法》第三十二条规定:“电网企业应当按照国务院有关部门制定的节能发电调度管理的规定,安排清洁、高效和符合规定的热电联产、利用余热余压发电的机组以及其他符合资源综合利用规定的发电机组与电网并网运行,上网电价执行国家有关规定。
”对现有的锅炉房实施锅炉蒸气压差发电节能技术改造、热电联产后向用户供热供汽,此举既满足了用户的需要,又可使供热公司经济效益的提高。
同时也能够因此工程的建设具有明显的经济、社会和环境效益,改善产业区的投资环境,对促进产业区的经济发展起着十分重要的作用。
例如:一家供热企业有5×20t/h百吨锅炉,对它的运行负荷进行分析,5台20t/h工业蒸汽锅炉,其额定蒸汽压力为1.27MPa(g)而用户生产及空调所需蒸汽压力为0.70MPa (a),特别是采暖期所需汽水热交换器的用汽压力仅为0.2~0.5MPa(a),充分利用两者之间的压差发电,是本项取得节能的主要内容。
余热余压利用相关技术介绍一:概述1.1:概念:余热余压:是指企业生产过程中释放出来多余的副产热能、压差能,这些副产热能、压差能在一定的经济技术条件下可以回收利用。
余热余压回收利用主要来自高温气体、液体、固体的热能和化学反应产生的热能。
余热余压利用工程:主要是从生产工艺上来改进能源利用效率,通过改进工艺结构和增加节能装置以最大幅度的利用生产过程中产生的势能和余热。
这类工程除了一次性投资较高外,在余热余压利用过程中,使用的生产方法、生产工艺、生产设备以及原料、环境条件的不同,给余热余压利用带来较大困难。
1.2利用领域介绍:(与我公司有关)(1)在钢铁行业,逐步高炉炉顶压差发电技术、纯烧高炉煤气锅炉技术、低热值煤气燃气轮机技术、蓄热式轧钢加热炉技术。
建设高炉炉顶压差发电装置、纯烧高炉煤气锅炉发电装置、低热值高炉煤气发电-燃汽轮机装置、干法熄焦装置等。
(2)在有色金属行业,推广烟气废热锅炉及发电装置,窑炉烟气辐射预热器和废气热交换器,回收其他装置余热用于锅炉及发电,对有色企业实行节能改造,淘汰落后工艺和设备。
(3)在煤炭行业,推广瓦斯抽采技术和瓦斯利用技术,逐步建立煤层气和煤矿瓦斯开发利用产业体系。
(4)在化工行业,推广焦炉气化工、发电、民用燃气,独立焦化厂焦化炉干熄焦,节能型烧碱生产技术,纯碱余热利用,密闭式电石炉,硫酸余热发电等技术,对有条件的化工企业和焦化企业进行节能改造。
(5)在电力行业,推广热电联产,热电冷联供等技术,提高电厂综合效益。
(6)在其他行业中,玻璃生产企业也推广余热发电装置,吸附式制冷系统,低温余热发电-制冷设备;推广全保温富氧、全氧燃烧浮法玻璃熔窑,降低烟道散热损失;引进先进节能设备及材料,淘汰落后的高能耗设备。
在纺织、轻工等其他行业推广供热锅炉压差发电等余热、余压、余能的回收利用,鼓励集中建设公用工程以实现能量梯级利用。
1.3发展前景:(1)由于一次性投资较高,部分企业余热余热利用工程还未得到充分发展,尤其是中小型企业。
余热余压利用工艺和系统解决方案余热余压是指工业生产过程中产生的废热和废压。
这些废热和废压通常会被浪费掉,造成能源的浪费和环境的污染。
然而,通过合理的利用余热余压,可以实现能源的节约和环境的保护。
本文将介绍一些常见的余热余压利用工艺和系统解决方案。
一、余热利用工艺1. 蒸汽回收利用:在工业生产过程中,常常会产生大量的高温高压蒸汽。
通过安装蒸汽回收装置,可以将蒸汽中的热能回收利用,用于加热水或发电。
这样既可以提高能源利用效率,又可以降低生产成本。
2. 烟气余热利用:烟气中含有大量的热能,常常会被排放到大气中造成能源的浪费和环境的污染。
通过安装烟气余热利用设备,可以将烟气中的热能回收利用,用于加热水或发电。
这样可以实现能源的节约和环境的保护。
3. 废水余热利用:在工业生产过程中,常常会产生大量的废水。
通过安装废水余热利用设备,可以将废水中的热能回收利用,用于加热水或发电。
这样不仅可以实现能源的节约,还可以解决废水处理的问题。
二、余压利用工艺1. 高压蒸汽回收利用:在工业生产过程中,常常会产生大量的高压蒸汽。
通过安装高压蒸汽回收装置,可以将蒸汽中的压力能回收利用,用于驱动涡轮发电机或其他设备。
这样既可以提高能源利用效率,又可以降低生产成本。
2. 燃气余压利用:在工业生产过程中,常常会产生大量的燃气余压。
通过安装燃气余压利用设备,可以将燃气中的压力能回收利用,用于驱动涡轮发电机或其他设备。
这样可以实现能源的节约和环境的保护。
3. 液体余压利用:在工业生产过程中,常常会产生大量的液体余压。
通过安装液体余压利用设备,可以将液体中的压力能回收利用,用于驱动涡轮发电机或其他设备。
这样不仅可以实现能源的节约,还可以解决液体的排放问题。
三、系统解决方案1. 废热余压综合利用系统:通过将余热和余压综合利用,可以实现能源的最大化利用效果。
该系统包括废热回收装置、废压回收装置、能量转换装置等。
通过合理的设计和配置,实现余热余压的综合利用,可以大幅度提高能源利用效率和经济效益。
余热利用技术的应用及特点:余热是在一定经济技术条件下,在能源利用设备中没有被利用的能源。
也就是多余、废弃的能源。
它包括高温废气余热、冷却介质余热、废汽废水余热、高温产品和炉渣余热、化学反应余热等。
根据调查,各行业的余热总资源约占其燃料消耗总量的17%~67%,可回收利用的余热资源约为余热总资源的60%。
随着我国经济的发展以及环保要求的提高,越来越多的燃油燃气锅炉投入使用。
国家新出台的节能政策和标准对节能提出了新的要求。
由于油气资源的日趋紧缺,提高锅炉的效率日趋迫切。
其中利用锅炉排烟余热是最有效的途径之一。
多数锅炉的排烟温度在200℃左右,通过回收排烟的余热降低排烟温度,甚至回收烟气中水蒸气的气化潜热,可以提高锅炉效率5~15%,节约效益相当显著,同时也改变了大气环境。
柴油机的余热利用工程:在发电机组工作时,柴油机会产生大量热能,这些热能主要是指柴油机的冷却液余热和排气余热两部分。
一般情况下,用户并没有利用这两部分热能而白白浪费掉。
本公司根据柴油发电机组的各种运行参数,研究.开发.生产出各种不同型号的余热利用设备,能充分利用柴油的这两部分热能,同时又不会影响发电机组的正常运行。
该系统有如下特点:1.同一发电机组上,冷却液余热和排气可分开利用也可同时利用。
2.该余热利用系统对水温水位实行代电子自动控制。
3.主用控制系统与控制系统可自动转换,不会影响柴油发电机组的正常运行,确保全天候供应生活热水。
4.利用冷却液优缺点:1)以去掉冷水箱风扇,节约能量5-10%,降低噪音10分贝左右。
2)能有效地控制发电机冷却液温度在75-85摄氏度之间的最佳水温范围,降低发电机组运行成本,延长发电机组的使用寿命。
3)缺点是一次性投资较大。
5.利用排气余热优缺点:1)不仅可以生产热水,还可以生产开水。
2)一次性投资较少。
3)缺点是由于时间过长,有可能发生循环热水渗漏到排烟管中进入发动机内部,严重损坏发动机。
燃气发电余热利用目前燃料的能量只有约35%被发电机组转化为电能,约有30%随废气排出,25%被发动机冷却水带走,通过机身散发等其它损失约占10%左右,废气和换热器损失的功率比有用功还多。
中国钢铁行业余热余压回收利用途径分析北极星节能环保网2014/5/30 11:51:22 我要投稿关键词:余热回收设备烟气余热余热余压北极星节能环保网讯:现阶段,钢铁工业各生产工序已回收余热余压资源情况及利用途径分析如下:焦化工序。
焦化工序现阶段已回收利用的余热余压资源包括焦炭显热、焦炉煤气潜热、烟道气显热和初冷水显热。
焦炭显热主要是采用干熄焦技术回收利用产生蒸汽用于发电,目前干熄焦发电技术在国内钢铁联合企业的应用普及率已很高。
焦炉煤气热值高,是一种优质燃料,目前已得到充分利用,放散率很低,主要利用途径是供各生产用户使用,富余资源用于驱动锅炉发电。
同时,由于焦炉煤气富含氢气和甲烷,提升利用品位,将其作为化工原料生产甲醇、合成氨等化工产品和天然气资源的利用方式近年来得到了更多的关注。
烟道气显热的温度一般是250 C ~300 C,目前主要采用余热回收设备回收蒸汽供生产、生活用户或作为煤调湿热源。
焦化初冷水显热温度一般是60 C ~70 C ,主要采用换热器回收热量用于北方地区冬季采暖。
烧结工序。
烧结工序现阶段已回收利用的余热余压资源包括烧结矿显热和烧结烟气显热。
烧结矿显热的回收主要在环冷机部分,按烟气温度分高、中、低三部分,目前高温段烟气余热回收利用较为充分,主要采用余热锅炉产生蒸汽用于发电或者供生产用户冲、低温烟气余热一般采用直接利用方式,用于预热混料或热风烧结等。
精选文库对于烧结烟气显热的回收利用近几年开始起步,在部分企业已有应用,主要集中在烧结大烟道高温区(300 C 〜400 C )的回收,采用余热锅炉或热管换热器回收产生蒸汽。
球团工序。
球团工序现阶段已回收利用的余热余压资源包括球团矿显热、 却水显热。
球团矿显热主要通过获取热风回用于生产 ,作为烘干、预热等热源。
烟气显热温度较低(约120 C ),少数企业采用热管换热器回收热量用于职工洗浴等生活 用户。
竖炉大水梁冷却水显热通常采用汽化冷却方式替代水冷方式 回收产生蒸汽。
中国钢铁行业余热余压回收利用途径分析北极星节能环保网2014/5/30 11:51:22 我要投稿关键词:余热回收设备烟气余热余热余压北极星节能环保网讯:现阶段,钢铁工业各生产工序已回收余热余压资源情况及利用途径分析如下:焦化工序。
焦化工序现阶段已回收利用的余热余压资源包括焦炭显热、焦炉煤气潜热、烟道气显热和初冷水显热。
焦炭显热主要是采用干熄焦技术回收利用产生蒸汽用于发电,目前干熄焦发电技术在国内钢铁联合企业的应用普及率已很高。
焦炉煤气热值高,是一种优质燃料,目前已得到充分利用,放散率很低,主要利用途径是供各生产用户使用,富余资源用于驱动锅炉发电。
同时,由于焦炉煤气富含氢气和甲烷,提升利用品位,将其作为化工原料生产甲醇、合成氨等化工产品和天然气资源的利用方式近年来得到了更多的关注。
烟道气显热的温度一般是250 C ~300 C,目前主要采用余热回收设备回收蒸汽供生产、生活用户或作为煤调湿热源。
焦化初冷水显热温度一般是60 C ~70 C,主要采用换热器回收热量用于北方地区冬季采暖。
烧结工序。
烧结工序现阶段已回收利用的余热余压资源包括烧结矿显热和烧结烟气显热。
烧结矿显热的回收主要在环冷机部分,按烟气温度分高、中、低三部分,目前高温段烟气余热回收利用较为充分,主要采用余热锅炉产生蒸汽用于发电或者供生产用户;中、低温烟气余热一般采用直接利用方式,用于预热混料或热风烧结等。
对于烧结烟气显热的回收利用近几年开始起步,在部分企业已有应用,主要集中在烧结大烟道高温区(300 C ~400 C )的回收,采用余热锅炉或热管换热器回收产生蒸汽。
球团工序。
球团工序现阶段已回收利用的余热余压资源包括球团矿显热、烟气显热和冷却水显热。
球团矿显热主要通过获取热风回用于生产,作为烘干、预热等热源。
烟气显热温度较低(约120 C ),少数企业采用热管换热器回收热量用于职工洗浴等生活用户。
竖炉大水梁冷却水显热通常采用汽化冷却方式替代水冷方式,避免循环冷却水消耗,并回收产生蒸汽。
余热余压发电项目简介1、水泥余热发电水泥生产工业是高能耗行业。
采用新型干法工艺,其可回收利用热量占总热耗的48%左右,具有极高的“变废为宝”的价值。
中国循环能源公司通过对水泥厂的生产状况和全厂热平衡进行严谨、全面的分析,采用水泥余热回收专利技术,可以依照生产工艺和厂区布置的具体特点,为客户量身设计配套的余热发电系统。
水泥窑纯低温余热发电系统水泥窑余热发电系统具有如下特点:◎采用专利技术,双进汽热力系统,实现能量梯级利用◎通过建立废气参数数据库,优化取热方式和系统参数设定,保证系统稳定、可靠。
◎投资少,效益高,投资回收快。
以5000t/d生产线为例,其配套余热发电的投资回收期平均为2到3年。
◎社会效益显著。
10MW余热电站每年节约标煤2.2万吨,减少CO2排放6.6万吨。
2、玻璃窑余热发电玻璃熔窑是浮法玻璃生产工艺中发生能量交换的主要场所,燃料的燃烧、玻璃液的形成、澄清及均化都在窑内完成,从熔窑排出的烟气温度为400~550℃,携带的热量约占生产总热耗30~45%,具有很大的回收价值。
配套余热发电系统后,可提供玻璃生产用电的40~80%,大幅提高燃料利用率,降低玻璃的生产电耗。
3、硫酸余热发电硫酸生产过程中产生大量热能,余热的利用主要可以分为三部分:沸腾焙烧炉沸腾层内的余热回收、SO2炉气余热回收以及沸腾焙烧炉矿渣余热回收。
其最佳的利用方式是发电,可大大降低生产成本。
沸腾焙烧炉沸腾层内的余热回收:为维持沸腾床内沸腾层的温度在800~900℃之间,必须从床层中导走大量多余的热量。
每生产1吨硫酸(100%浓度)从沸腾层中导出的热量可达1.5MJ,折合蒸汽约为0.55吨。
年产10万吨硫铁矿制酸的生产线,可从沸腾炉中回收的蒸汽量约为5.50万吨/年。
SO2炉气余热回收:从沸腾炉出来的高温炉气温度约为750~850℃,在进接触室前须降至400℃左右,因而通过余热回收装置吸热降温,每生产1吨硫酸可回收热量1.3MJ。
余热利用技术简介一、热管技术简介1.热管简介热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
热管技术目前已广泛应用于宇航、军工、钢铁、机械等行业。
2. 工作原理热管是一种新型高效的传热元件,按较精确的定义应称之为“封闭的两相传热系统”,即在一个抽成真空的封闭的体系内,依赖装入内部的流体的相态变化(液态变为汽态和汽态变为液态)来传递热量的装置。
热管放在热源部分的称之为蒸发段(热端),放在冷却部分的称之为冷凝段(冷端)。
当蒸发段吸热把热量传递给工质后,工质吸热由液体变成汽体,发生相变,吸收汽化潜热。
在管内压差作用下,汽体携带潜热由蒸发段流到冷凝段,把热量传递给管外的冷流体,放出凝结潜热,管内工质又由汽体凝为液体,在重力作用下,又回到蒸发段,继续吸热汽化。
如此周而复始,将热量不断地由热流体传给冷流体。
3. 热管优点①金属、非金属材料本身的导热速率取决于材料的导热系数、温度梯度,正交于温度梯度的截面面积。
以金属银为例,其值为415W/m2٠K 左右,经测定,热管的导热系数是银的几百倍到上千倍,故热管有热超导体之称。
②由于热管内的传热过程是相变过程,而且工质的纯度很高,因此热管内蒸汽温度基本上保持恒温,经测定:热管两端的温差不超过5℃,与其它传热元件相比,热管具有良好的等温性能。
③热管能适应的温度范围与热管的具体结构、采用的工作流体及热管的环境工作温度有关。
目前,热管能适应的温度范围一般为-200℃~2000℃,这也是其它传热元件所难以达到的。
4、热管式余热回收装置1)原理热管式余热回收装置的核心部件是热管。
热管式余热回收装置原理图基本结构:热管蒸汽发生器是由若干根特殊的热管元件组合而成。
其基本结构如图所示。
热管的受热段置于热流体风道内, 热风横掠热管受热段,热管元件的放热段插在水—汽系统内。
余能再利用技术在钢铁企业中远期规划中的应用宗燕兵苍大强白皓金翼刘治国刘建(北京科技大学生态与循环冶金教育部重点实验室,北京100083)钢铁生产过程中余热余压能的回收利用对降低生产的总能耗有十分重要的意义。
钢铁生产过程的发展,一方面要采用先进技术降低余热余能的产生量,例如连铸坯的直接轧制就基本上消除了钢坯余热损失。
另一方面则要通过综合优化充分回收利用已产生的余热余能。
余热余能资源属于二次能源,确切来讲余能资源主要包括余热能和余压能(高炉余压),大部分以热能形式存在。
在钢铁生产过程中的余热资源包括烟气余热、蒸汽余热、冷却水余热及固体显热(如烧结矿显热、焦炭显热),余压能主要指高炉余压。
作者所在的生态与循环冶金教育部重点实验室针对我国北方某钢铁集团公司进行了循环经济的发展规划,本文将就其中的烟气余热以及蒸汽余热等余热余能的回收利用规划情况作一介绍。
1烟气余热回收规划余热利用的原则是,根据余热资源的数量和品位及用户的需求,尽量做到能级的匹配,在符合技术经济原则的条件下,选择适宜的系统和设备,使余热发挥最大的效果。
简单来讲可使用如下原则:对于高温烟气余热:可直接回收利用,如用于预热助燃空气、预热煤气、预热或干燥原料或工件(电炉烟气可预热废钢)、以及生产蒸汽;也可以采用动力回收余热发电系统更符合能级匹配的原则,余热发电有以下三种方式:1)利用余热锅炉产生蒸汽,再通过汽轮机组发电;2)高温余热作为燃气轮机工质的热源,经加压加热的工质推动气轮机做功,带动发电机发电。
中温烟气余热:通过空气预热器后约300~500℃的中温烟气可以通过余热锅炉产生蒸汽方式回收热量。
余热锅炉产生的蒸汽可并入蒸汽管网,代替供热锅炉,节约锅炉燃料消耗。
蒸汽回收的热量虽然不能直接返回到炉内,但是,就提高整个企业的能源利用率、节约燃料和促进企业内部的动力平衡来说,仍起着十分重要的作用。
并且余热锅炉的设备简单、耐用,当车间需要蒸汽时可以就地取材,多余的蒸汽可以并入蒸汽管网。
余热余压梯级利用技术原理
余热余压梯级利用技术是一种能源利用技术,其原理基于能量
的转化和传递。
在工业生产过程中,许多设备会产生余热和余压,
如果这些能量不加以利用就会浪费。
因此,余热余压梯级利用技术
就是利用这些废热和废压能够提高能源利用率,减少能源消耗,从
而实现节能减排的目的。
首先,余热余压梯级利用技术利用了热力学上的热力循环原理。
在一个闭合的热力循环系统中,余热和余压能够被转化为机械能或
者其他形式的能量。
这种能量转化的过程遵循热力学定律,通过合
理设计循环系统,可以实现能量的高效转化。
其次,余热余压梯级利用技术还涉及到传热和传质的原理。
通
过换热器、蒸汽轮机、发电机等设备,余热和余压可以被传递和利用。
在这个过程中,热量和压力的传递是根据热力学和流体力学的
原理进行的,需要考虑传热介质的特性、流体的运动规律等因素。
此外,余热余压梯级利用技术还涉及到工程技术和系统集成的
原理。
在实际应用中,需要考虑设备的选型、系统的设计、运行参
数的调节等工程技术问题,同时还需要考虑不同设备之间的协调配
合,以及与整个生产系统的集成。
总的来说,余热余压梯级利用技术的原理是基于热力学、传热传质和工程技术的原理,通过合理设计和运行系统,实现废热和废压的高效利用,从而达到节能减排的目的。
这项技术对于工业生产和能源利用具有重要意义,也是未来能源可持续利用的重要方向之一。
余热余压利用相关技术介绍一:概述1.1:概念:余热余压:是指企业生产过程中释放出来多余的副产热能、压差能,这些副产热能、压差能在一定的经济技术条件下可以回收利用。
余热余压回收利用主要来自高温气体、液体、固体的热能和化学反应产生的热能。
余热余压利用工程:主要是从生产工艺上来改进能源利用效率,通过改进工艺结构和增加节能装置以最大幅度的利用生产过程中产生的势能和余热。
这类工程除了一次性投资较高外,在余热余压利用过程中,使用的生产方法、生产工艺、生产设备以及原料、环境条件的不同,给余热余压利用带来较大困难。
1.2利用领域介绍:(与我公司有关)(1)在钢铁行业,逐步高炉炉顶压差发电技术、纯烧高炉煤气锅炉技术、低热值煤气燃气轮机技术、蓄热式轧钢加热炉技术。
建设高炉炉顶压差发电装置、纯烧高炉煤气锅炉发电装置、低热值高炉煤气发电-燃汽轮机装置、干法熄焦装置等。
(2)在有色金属行业,推广烟气废热锅炉及发电装置,窑炉烟气辐射预热器和废气热交换器,回收其他装置余热用于锅炉及发电,对有色企业实行节能改造,淘汰落后工艺和设备。
(3)在煤炭行业,推广瓦斯抽采技术和瓦斯利用技术,逐步建立煤层气和煤矿瓦斯开发利用产业体系。
(4)在化工行业,推广焦炉气化工、发电、民用燃气,独立焦化厂焦化炉干熄焦,节能型烧碱生产技术,纯碱余热利用,密闭式电石炉,硫酸余热发电等技术,对有条件的化工企业和焦化企业进行节能改造。
(5)在电力行业,推广热电联产,热电冷联供等技术,提高电厂综合效益。
(6)在其他行业中,玻璃生产企业也推广余热发电装置,吸附式制冷系统,低温余热发电-制冷设备;推广全保温富氧、全氧燃烧浮法玻璃熔窑,降低烟道散热损失;引进先进节能设备及材料,淘汰落后的高能耗设备。
在纺织、轻工等其他行业推广供热锅炉压差发电等余热、余压、余能的回收利用,鼓励集中建设公用工程以实现能量梯级利用。
1.3发展前景:(1)由于一次性投资较高,部分企业余热余热利用工程还未得到充分发展,尤其是中小型企业。
(2)余热余压利用不仅节能,还有利用环境保护,是企业实现循环经济的新尝试,随着余热余压利用新技术的推广,余热余压利用必将有着广阔的应用前景。
二:工业余热2.1资源特点(1)余热资源属于二次能源,是一次能源或可燃物料转换后的产物,或是燃料燃烧过程中释放的热量在完成某一工艺过程后剩下的热量。
按照温度品位,工业余热一般分为600℃以上的高温余热,300~600℃的中温余热和300℃以下的低温余热三种;按照来源,工业余热又可分为:烟气余热,冷却介质余热,废汽废水余热,化学反应热,高温产品和炉渣余热,以及可燃废气、废料余热。
(2)余热资源来源广泛、温度范围广、存在形式多样,从利用角度看,余热资源一般具有以下共同点:由于工艺生产过程中存在周期性、间断性或生产波动,导致余热量不稳定;余热介质性质恶劣,如烟气中含尘量大或含有腐蚀性物质;余热利用装置受场地等固有条件限制。
因此工业余热资源利用系统或设备运行环境相对恶劣,要求有稳定的运行范围,能适应多变的工艺要求,设备部件可靠性高,初期投入成本高。
从经济性出发,需要结合工艺生产进行系统整体的设计布置,以提高余热利用系统设备的效率。
2.2 工业余热利用技术余热温度范围广,能量载体形式多样,又由于所处环境和工艺流程不同及场地固有条件的限制,设备型式多样,如有空气预热器,窑炉蓄热室,余热锅炉,低温汽轮机等。
工业余热回收利用有多种分类方式,根据余热资源在利用过程中能量的传递或转换特点,可以将国内目前的工业余热利用技术分为热交换技术、热功转换技术、余热制冷制热技术。
2.2.1. 热交换技术余热回收应优先用于本系统设备或本工艺流程,尽量减少能量转换次数。
对余热的利用不改变余热能量的形式,只是通过换热设备将余热能量直接传递给自身工艺的耗能流程,降低一次能源消耗的技术设备,可统称为热交换技术,这是回收工业余热最直接、效率较高的经济方法,相对应的设备是各种换热器,既有传统的各种结构的换热器、热管换热器,也有余热蒸汽发生器(余热锅炉)等。
(1)间壁式换热器工业用的换热器按照换热原理基本分为间壁式换热器、混合式换热器和蓄热式换热器。
其中间壁式和蓄热式是工业余热回收的常用设备,混合式换热器是依靠冷热流体直接接触或混合来实现传递热量,如工业生产中的冷却塔、洗涤塔、气压冷凝器等,在余热回收中并不常见。
间壁式换热器主要有管式、板式及同流换热器等几类,管式换热器虽然热效率较低,平均仅26%~30%,紧凑性和金属耗材等方面也逊色于其他类型换热器,但它具有结构坚固、适用弹性大和材料范围广的特点,是工业余热回收中应用最广泛的热交换设备。
冶金企业40%的换热器设备为管式换热器,允许入口烟气温度达1 000℃以上,出口烟温约600℃,平均温差约300℃。
板式换热器有翅片板式、螺旋板式、板壳式换热器等,与管式换热器相比,其传热系数约为管壳式的二倍,传热效率高,结构紧凑,节省材料。
冶金行业的联合、中小企业多采用板式换热器预热助燃空气,热回收率平均为28%~35%,入口烟气温度700℃左右,出口温度达360℃。
但由于板式换热器的使用温度、压力比管式换热器的限制大,应用范围受到限制。
对于各种工业炉窑的高温烟气回收,还常采用同流热交换器,主要有辐射式和对流式两类,应用较为广泛,多用在均热炉、加热炉等设备上回收烟气余热,预热助燃空气或燃料,降低排烟量和烟气排放温度。
常见的辐射同流换热器入口烟气温度可达1 100℃以上,出口烟气温度亦高达600℃,可将助燃空气加热到400℃,助燃效果好;温度效率可达40%以上,但热回收率较低,平均在26%~35%。
(2)蓄热式热交换器蓄热式热交换设备原理是冷热流体交替流过蓄热元件进行热量交换,属于间歇操作的换热设备,适宜回收间歇排放的余热资源,多用于高温气体介质间的热交换,如加热空气或物料等。
根据蓄热介质和热能储存形式的不同,蓄热式热交换系统可分为显热储能和相变潜热储能。
显热储能应用已久,简单换热设备如常见的回转式换热器,复杂设备如炼铁高炉的蓄热式热风炉。
由于显热储能热交换设备储能密度低、体积庞大、蓄热不能恒温等缺点,在工业余热回收中有局限性。
相变潜热储能换热设备利用蓄热材料固有热容和相变潜热储存传递能量,高出显热储能设备至少一个数量级的储能密度,因此在储存相同热量的情况下,相变潜热储能换热设备比传统蓄热设备体积减少30%~50%。
此外,热量输出稳定,换热介质温度基本恒定,换热系统运行状态稳定是相变潜热储能换热设备的另一优点。
相变储能材料根据其相变温度大致分为高温相变材料和中低温相变材料,前者相变温度高、相变潜热大,主要是由一些无机盐及其混合物、碱、金属及合金等和陶瓷基体或金属基体复合制成,适合于450~1 100℃及以上的高温余热回收,应用较为广泛;后者主要是结晶水合盐或有机物,适合用于低温余热回收。
(3)基于热管的换热设备热管是一种高效的导热元件,通过全封闭真空管内工质的蒸发和凝结的相变过程以及二次间壁换热来传递热量,属于将储热和换热装置合二为一的相变储能换热装置。
热管导热性优良,传热系数比传统金属换热器高近一个量级,还具有良好的等温性、可控制温度、热量输送能力强、冷热两侧的传热面积可任意改变、可远距离传热、无外加辅助动力设备等一系列优点。
热管工作需要根据不同的使用温度选定相应的管材和工质。
其中碳钢—水重力热管的结构简单、价格低廉、制造方便、易于推广,使得此类热管得到了广泛的应用。
实际应用中热管使用温度在50~400℃之间,用于干燥炉、同化炉和烘炉等的热回收或废蒸汽的回收,以及锅炉或炉窑的空气预热器。
(4)余热锅炉采用蒸汽发生器,即余热锅炉回收余热是提高能源利用率的重要手段,冶金行业近80%的烟气余热是通过余热锅炉回收,节能效果显著。
余热锅炉中不发生燃烧过程,而是利用高温烟气余热、化学反应余热、可燃气体余热以及高温产品余热等,生产蒸汽或热水,用于工艺流程或进入管网供热。
同时,余热锅炉是低温汽轮机发电系统中的重要设备,为汽轮机等动力机械提供做功蒸汽工质。
实际应用中,利用350~1 000℃高温烟气的余热锅炉居多,和燃煤锅炉的运行温度相比,属于低温炉,效率较低。
由于余热烟气含尘量大,含有较多腐蚀性物质,更易造成锅炉积灰、腐蚀、磨损等问题,因此防积灰、磨损是设计余热锅炉的关键。
直通式炉型、大容积的空腔辐射冷却室、设置的密封炉墙、除尘室、大量振打吹灰装置都是余热锅炉为解决积灰、磨损问题在结构上的考虑。
另外由于受生产场地空间限制,余热锅炉把换热部件分散安装在工艺流程各部位,而不是像普通锅炉一样组装成一体。
近十年随着节能减排工作的推进,国内主要余热锅炉设计制造企业加速发展,余热锅炉正朝着大型化、高参数方向发展,如有色冶金行业每小时蒸发量50 吨、工作压力4.2兆帕的余热锅炉,钢铁冶金行业每小时蒸发量100吨、工作压力12.5 兆帕的干熄焦余热锅炉等。
此外,进一步提高锅炉传热效果、热利用率,减轻积灰、磨损等问题,在锅炉循环方式、受热面结构、锅炉内烟气流道及清灰方式等方面进行改造、革新是余热锅炉技术进步的主要内容。
2.2.2. 热功转换技术热交换技术通过降低温度品位仍以热能的形式回收余热资源,是一种降级利用,不能满足工艺流程或企业内外电力消耗的需求。
此外,大量存在的中低温余热资源采用热交换技术回收,效益并不显著。
因此,利用热功转换技术提高余热的品位是回收工业余热的又一重要技术。
按照工质分类,热功转换技术可分为传统的以水为工质的蒸汽透平发电技术和低沸点有机工质发电技术。
由于工质特性显著不同,相应的余热回收系统及设备组成也各具特点。
目前主要的应用是以水为工质,以余热锅炉+蒸汽透平或者膨胀机组成低温汽轮机发电系统。
低温汽轮机发电可利用的余热资源主要是高于350℃的中高温烟气,如玻璃、水泥等建材行业炉窑烟气或经一次利用后降温到400~600℃的烟气,单机功率在几兆瓦到几十兆瓦,包括钢铁行业氧气转炉余热发电、烧结余热发电,焦化行业干熄焦余热发电,水泥行业低温余热发电等多种余热发电形式。
但从余热资源的温度范围来看,该技术属于中高温余热发电技术。
此外,通过余热锅炉或换热器从工艺流程中回收的大量蒸汽,其中1兆帕左右的低压饱和蒸汽或热水占很大比例,大量剩余常被放散。
目前这类低压饱和蒸汽发电利用,主要是采用螺杆膨胀动力机技术。
该技术具有以下特点:可用多种热源工质作为动力源,适用于过热蒸汽、饱和蒸汽、汽液两相混合物,也适用于烟气、含污热水、热液体等;结构简单紧凑,可自动调节转速,寿命长,振动小;机内流速低,除泄露损失外,其他能量损失少,效率高;双转子非接触式的特性,运转时形成剪切效应具有自清洁功能、自除垢能力。
螺杆膨胀动力机属于容积式膨胀机,受膨胀能力限制,直接驱动螺杆膨胀动力机的热源应用范围为压力0.15~3.0兆帕、温度低于300℃的蒸汽或压力0.8兆帕以上、温度高于170℃的热水等,由于结构特点,螺杆膨胀动力机单机功率有限,多数在1 000千瓦以下,主要用于余热规模较小的场合。