旋转中的最大值或最小值
- 格式:doc
- 大小:265.50 KB
- 文档页数:5
中考数学利用旋转求线段和的最大最小值
旋转思想解决线段最值问题的本质用三角形三边关系解决问题。
如图,线段OA, OB为定长,则A, B, O三点共线时,AB取得最值:当点B位于处B1时,AB取得最小值OA-OB;当点B位于B2处时,AB取得最大值OA+OB.
常见的题型有:
1.如图,Rt△ABC大小固定,其中∠ABC=90°,点A,B分别在互相垂直的直线m, n上滑动;取AB中点D,连接OD, CD.当O, C, D三点共线时,OC取得最大值OD+CD.
2.如图,等边△ABC大小固定,点A, B分别在互相垂直的直线m, n上滑动;取AB中点D,连接OD, CD.当O, C, D三点共线时,OC取得最大值OD+CD.
3.如图,Rt△ABC大小固定,其中∠ABC=90°,点A,B分别在互相垂直的直线m, n上滑动;取AB中点D,连接OD, CD.当O, C, D三点共线时,OC取得最小值|CD –OD|.
【典型例题1】已知Rt△ABC中,∠ACB=90°,tan∠BAC=0.5,若BC=6,点D在边AC的三等分点处,将线段AD绕A点旋转,E 始终为BD的中点,求线段CE长度的最大值.
【典型例题2】以平面上一点O为直角顶点,分别画出两个直角
三角形,记作△AOB和△COD,其中∠ABO=30°.如图,若BO等于三倍根号三,点N在线段OD上,且NO=2,P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为________,最大值为________.。
专题08旋转中的最值问题考点一费马点问题求最值【方法点拨】费马点证明都長依据旋转思想.构造三角形全等.然后将三条线段之和转化到是否在一条直线上来决定最小值。
这个思路一走要掌握,因为它会应用在实际的考试题目中。
【典例剖析】1・(经典例题)已知:P是边长为1的正方形2ECD内的一点,求Rl+PB^PC的最小值.B ---------------------- C【点拨】顺时针旋转△EPC60度,可得为等边三角形,若R#PB-PC=AP+PE+EF要使最小只要AP, PE, EF在一条直线上,求岀.妒的值即可.【解析】解:顺时针旋转△BPC60度,可得恥为等边三角形.即得M+PB+PC=AP+PE+EF要使最小只要-IP, PE, M在一条直线上,即如下图:可得最小R1+PB-PC=.4F.此时ZEBC+ZCBP= ZFBE+ZEBC=6L = ZFBC.所以ZABF=90° +60° =150° ,ZMBF=3L ,/Q 1BW=BF・cos3(T =5C>cos30°=分MF=〒则务寺1在△zB/F中,勾股圧理得:3+仃=,护HF== J(坯2 + 2x 字x 尊+(坯 2 = J(学)2 =竿.2.(朝阳区二模)阅读下列材料:小华遇到这样一个问题,如图1,HABC中,ZACB=30° , BC=6, AC=5,在ZU5C内部有一点P,连接EL PB、PC,求R1+PB+PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为左点,这样依据“两点之间,线段最短”,就可以求岀这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将ZUPC绕点C顺时针旋转60°,得到连接PD、BE,则EE的长即为所求.(1)请你写出图2中,Ri+PB+PC的最小值为_质_;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,ZABC=60° ,在菱形.13CD内部有一点P,请在图3中画岀并指明长度等于R1+PB+PC最小值的线段(保留画图痕迹,画岀一条即可);②若①中菱形ABCD的边长为4,请直接写出当PA+PB+PC值最小时PB的长.图3【点拨】(1)先由旋转的性质得出△ APC^/XEDC.则ZACP=ZECD、AC=EC=5, ZPCD=60° , 再证明Z5CE=90° ,然后在RtABCF中,由勾股迫理求出恥的长度,即为PA+PB-rPC的最小值:(2)①将ZUPC绕点C顺时针旋转60。
椭圆旋转的x和y的最大值和最小值英文版The Maximum and Minimum Values of X and Y in Elliptical RotationEllipses, geometric shapes defined by the set of all points in a plane such that the sum of the distances from two fixed points, known as foci, is constant, play a pivotal role in mathematics and physics. When considering the rotation of an ellipse, it becomes crucial to understand the behavior of its coordinates, particularly the maximum and minimum values of x and y.In a standard ellipse equation, (\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1), where a and b are the semi-major and semi-minor axes respectively, the values of x and y are constrained by the shape of the ellipse. As the ellipse rotates, the coordinates of any point on its perimeter will vary, but they will always fall within certain limits.To determine the maximum and minimum values of x and y, we need to consider the ellipse's orientation. If the ellipse is aligned with the x-axis or y-axis, the maximum and minimum values of x and y are relatively straightforward to determine. For instance, if the ellipse is aligned with the x-axis, the maximum value of y will be 0, and the minimum value of y will also be 0. The maximum value of x will be a, and the minimum value of x will be -a.However, when the ellipse is rotated at an angle, the calculation becomes more complex. To find the maximum and minimum values of x and y, we need to consider the projection of the ellipse onto the x and y axes. This projection is known as the amplitude of the ellipse, and it represents the maximum deviation of the ellipse from the origin in a given direction.The amplitude in the x-direction, A_x, can be calculated using the formula (A_x = a \times \sqrt{1 - \sin^2(\theta)}), where (\theta) is the angle of rotation. Similarly, the amplitudein the y-direction, A_y, can be calculated using the formula (A_y = b \times \sqrt{1 - \cos^2(\theta)}).By taking into account the orientation of the ellipse and calculating the amplitudes in each direction, we can determine the maximum and minimum values of x and y for any given point on the ellipse. These values are crucial in understanding the dynamics of elliptical motion and in various applications, such as planetary orbits and the design of mechanical systems.In conclusion, understanding the maximum and minimum values of x and y in elliptical rotation is essential for comprehending the geometry and physics of this fundamental shape. By analyzing the ellipse's orientation and calculating the amplitudes in different directions, we can gain valuable insights into the behavior of points on its perimeter.中文版椭圆旋转的x和y的最大值和最小值椭圆是一种在平面内由所有从两个固定点(称为焦点)出发的距离之和为常数的点组成的几何形状,在数学和物理学中扮演着重要的角色。
几何最值问题大一统追本溯源化繁为简目有千万而纲为一,枝叶繁多而本为一。
纲举则目张,执本而末从。
如果只在细枝末节上下功夫,费了力气却讨不了好。
学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。
关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。
一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形。
AD一定,所以D是定点,C是直线的最短路径,求得当CD⊥AC时最短为是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。
专题十几何动态探究题1. 如图,在菱形ABCD中,∠ABC=120°,点E,F分别是边AB,BC上的动点,在运动过程中,始终保持AE=BF,若AB=2,则EF的取值范围为________.第1题图2.如图,在三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F,若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为________.第2题图3. 如图,在Rt△ABC中,AB=AC=4 cm,∠BAC=90°,O为边BC上一点,OA=OB=OC,点M、N分别在边AB、AC上运动,且始终保持AN=BM.在运动过程中,四边形AMON的面积为________cm2.第3题图4. 如图,在正方形ABCD中,AB=4,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为________.第4题图5. 如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=42,则AB的长为________;若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于点F,当DE∥AC时,tan∠BCD的值为________.第5题图6.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4 cm,将△ABC绕点A顺时针旋转30°得到△AB′C′,直线BB′、CC′交于点D,则CD的长为________cm.第6题图7. 如图,四边形ABCD是正方形,且AB=2,将正方形ABCD绕点A顺时针旋转后得到正方形AEFG,在旋转过程中,当点A、G、C三点共线时,则点F到BC的距离为________.第7题图8.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一个动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是________.第8题图9. 如图,在边长为4的正方形ABCD中,将△ABD沿射线BD平移,得到△EGF,连接EC,GC.则EC+GC的最小值为________.第9题图10. 如图,在菱形ABCD 中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,BN CN的值为________.第10题图11.如图,在△ABC 中,已知AD 是BC 边上的中线,∠ADC =60°,BC =3AD.将△ABD 沿直线AD 翻折,点B 落在平面上的点B ′处,连接AB ′交BC 于点E ,那么CE ∶BE 的值为________.第11题图12.如图,在平行四边形ABCD 中,AB =2,∠ABC =45°,点E 为射线AD 上一动点,连接BE ,将BE 绕点B 逆时针旋转60°得到BF ,连接AF ,则AF 的最小值是________.第12题图13. 如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为________.第13题图14. 如图,在▱ABCD 中,AB =3,BC =5,AC ⊥AB ,△ACD 沿AC 的方向以每秒1个单位的速度平移得到△EFG (点E 在线段AC 上,运动到点C 停止运动,且不与点A 重合),同时,点H 从点C 出发以相同的速度沿CB 方向移动,当△EFG 停止平移时,点H 也停止移动,连接EH ,GH ,当EH ⊥GH 时,AE BH的值为________.第14题图15.如图,在正方形ABCD中,E是线段CD上一点,连接AE,将△ADE沿AE翻折至△AEF,连接BF并延长BF交AE延长线于点P,当PF=22BF时,DECD=________.第15题图16. 如图,在边长为6的菱形ABCD中,AC为其对角线,∠ABC=60°,点M、N分别是边BC、CD上的动点,且MB=NC.连接AM、AN、MN,MN交AC于点P,则点P到直线CD的距离的最大值为________.第16题图17. 如图,在边长为6的等边△ABC中,点D在边AC上,AD=1,线段PQ在边AB上运动,PQ=1,则四边形PCDQ面积的最大值为________;四边形PCDQ周长的最小值为________.第17题图18.如图,在矩形ABCD中,AB=9,BC=12,F是边AD上一点,连接BF,将△ABF沿BF折叠使点A落在G点,连接AG并延长交CD于点E,连接GD.若△DEG是以DG为腰的等腰三角形,则AF的长为________.第18题图19. 如图,Rt△ABC中,∠ACB=90°,AC=BC=8,F为AC中点,D是线段AB上一动点,连接CD,将线段CD绕点C沿逆时针方向旋转90°得到线段CE,连接EF,则点D在运动过程中,EF的最大值为________,最小值为________.第19题图20. 如图①,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图②,点C落在点C′处,最后按图③所示方式折叠,使点A落在DE的中点A′处,折痕是FG.若原正方形....纸片的边长为6 cm,则FG=________ cm.第20题图21. 如图,在△ABC中,AC=BC=4,∠ACB=120°,CD⊥AB,点P是直线CD上一点,连接P A,将线段P A绕点P逆时针旋转120°得到P A′,点M、N分别是线段AC、P A′的中点,连接MN,则线段MN的最小值为________.第21题图22. 如图,在矩形ABCD中,AB=6,BC=8,点E是AB边上一点,且AE=4,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为点G,连接AG、CG,则四边形AGCD面积的最小值为________,此时BF的长为________.第22题图专题十几何动态探究题1. 3≤EF≤2【解析】如解图,连接BD,过点D作DH⊥AB,垂足为点H,∵四边形ABCD为菱形,∠ABC=120°,∴∠A=∠DBA=∠C=60°,AB=BD=BC,∵AE=BF,∴BE=CF,∴△DBE≌△DCF(SAS).∴DE=DF,∠BDE=∠CDF,∵∠EDF=∠EDB+∠BDF=∠CDF+∠BDF=60°,∴△DEF 是等边三角形,∴EF=DE,当点E与点H重合时,DE的值最小,此时DE=AD·sin A=3,当点E与点A (或点B )重合时,DE 的长最大,此时DE =2,∴EF 的取值范围为3≤EF ≤2. 第1题解图 2. 255 【解析】∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4,由翻折的性质得△ADB ≌△ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°,∴12(AF +DF )·BF =4,即12(3+DF )×2=4,∴DF =1,∴DB =BF 2+DF 2=22+12=5,设点F 到BD 的距离为h ,则有12BD ·h =12BF ·DF ,即12×5·h =12×2×1,∴h =255.3. 4 【解析】∵AC =AB ,∠BAC =90°,∴∠B =∠C =45°,∵OA =OB =OC ,∴∠BAO =∠CAO =45°,∠AOB =∠AOC =90°,∴∠B =∠BAO =∠CAO ,在△AON 和△BOM 中,⎩⎪⎨⎪⎧OA =OB ∠CAO =∠B AN =BM,∴△AON ≌△BOM (SAS),∴S △AON =S △BOM ,∴S △AON +S △AOM =S △BOM +S △AOM ,即S 四边形AMON =S △AOB ,∴S 四边形AMON =12S △ABC =12×12×4×4=4 cm 2.4. 210-2 【解析】如解图,连接DO ,将线段DO 绕点D 逆时针旋转90°得到DM ,连接FM ,OM ,∵ ∠EDF = ∠ODM =90°,∴ ∠EDO =∠FDM ,在△EDO 与△FDM 中,⎩⎪⎨⎪⎧DE =DF ∠EDO =∠FDM DO =DM,∴ △EDO ≌△FDM (SAS) ,∴ FM =OE =2,∵在正方形ABCD 中,AB =4,O 是BC 边的中点,∴ OC =2,∴OD =42+22=2 5 ,∴OM =2OD =210,∵OF ≥OM -MF ,∴OF ≥210-2 ,∴线段OF 长的最小值为210-2.第4题解图5. 7;34 【解析】如解图,过点A 作AM ⊥BC 于点M .在Rt △ABM 中,∵∠AMB =90°,∠B =45°,∴BM =AM ,AB =2AM ,设AM =BM =x ,在Rt △AMC 中,∵AC 2=AM 2+CM 2,∴52=x 2+(42-x )2,解得x=722或22(舍),∴AB =2x =7.过点F 作FN ⊥BC 于点N .∵DE ∥AC ,∴∠ACF =∠D =∠B ,∵∠CAF =∠CAB ,∴△ACF ∽△ABC ,∴AC AB =AF AC ,∴AC 2=AF ·AB ,∴AF =257,∴BF =AB -AF =7-257=247,∴BN =FN =1227,∴CN =BC -BN =42-1227=1627,∴tan ∠BCD =FN CN =12271627=34.第5题解图6. 2 6 cm 【解析】如解图,过点C 作CE ⊥BD 交DB 的延长线于点E ,由旋转的性质得∠B ′AB =∠C ′AC=30°,AB ′=AB ,AC ′=AC ,∴∠B ′BA =∠C ′CA =12×(180°-30°)=75°,∵∠ACB =90°,AC =BC =4cm ,∴∠ABC =∠BAC =45°,∠DCB =90°-∠C ′CA =15°,∴∠CDE =180°-∠B ′BA -∠ABC -∠DCB =180°-75°-45°-15°=45°,∴∠DCE =∠CDE =45°,DE =CE ,∴∠BCE =∠DCE -∠DCB =45°-15°=30°,在Rt △BCE 中,BC =4 cm ,∠BCE =30°,∴BE =12BC =2 cm ,∴CE =BC 2-BE 2=42-22=2 3 cm ,∴CD =CE cos45°=2322=2 6 cm.第6题解图7. 2-2或2+2 【解析】由旋转的性质可知AG =FG =AB =2,AF =2AG =2.分两种情况讨论:①如解图①,当点G 在线段AC 上时,连接AC ,BF ,可知点B 在线段AF 上,即点F 到BC 的距离为BF 的长,∴BF =AF -AB =2-2;②如解图②,当点G 在CA 的延长线上时,连接AC ,AF ,此时点F 在BA 的延长线上,即点F 到BC 的距离为BF 的长,∴BF =AB +AF =2+ 2.综上所述,点F 到BC 的距离为2-2或2+ 2.图①图②第7题解图8. 7-1 【解析】如解图①,以点M 为圆心,AM 长为半径作圆,过点M 作MH ⊥CD 交CD 的延长线于点H ,连接MC ,∵菱形ABCD 的边长为2,∠DAB =60°,M 是AD 的中点,∴MA =MA ′=MD =12AD =1,∴点A ′在⊙M 上运动,由解图①得,只有当A ′运动到与点M 、C 三点共线时,A ′C 的长度最小,∵CH ∥AB ,∴∠MDH =∠DAB =60°,在Rt △MDH 中,DH =MD ·cos ∠MDH =12,MH =MD ·sin ∠MDH =32,在Rt △MHC 中,HC =DH +DC =12+2=52,由勾股定理得MC =HC 2+MH 2=7,此时A ′C =MC -MA ′=7-1,即A ′C 长度的最小值为7-1.第8题解图①【一题多解】如解图②,连接MC ,过点M 作MH ⊥CD 交CD 的延长线于点H ,由题意可知,MA =MA ′=12AD ,在△ MA ′C 中,由三角形三边关系可知,一定存在MA ′+A ′C ≥MC ,∴当点M 、A ′、C 三点共线时,A ′C 的长度最小,此时A ′C =MC -MA ′,其余解法同上.第8题解图②9. 45 【解析】如解图,连接AE 并延长,作点D 关于AE 的对称点H ,连接EH ,ED ,过点H 作HM ⊥CD ,与CD 的延长线交于点M ,则DE =EH ,∵△ABD 沿射线BD 平移得△EGF ,∴AE ∥BD ,AB =EG ,AB ∥EG ,∵AB ∥CD ,AB =CD =4,∴EG ∥CD ,EG =CD =4,∴四边形CDEG 是平行四边形,∴CG =DE =EH ,∴当点C ,E ,H 三点共线时,EC +GC 取得最小值,最小值为CH 的长.∵AE ∥BD ,AB ∥CD ,∴四边形ABDM 为平行四边形,∴DM =AB =4,∠DAM =45°,∴∠ADH =45°,∴∠MDH =45°,∴DM =HM =4,∴CH =CM 2+HM 2=(4+4)2+42=45,∴EC +GC 的最小值为4 5.第9题解图10. 27 【解析】如解图,延长NF 与DC 交于点H .由折叠的性质得∠E =∠A ,∠EFN =∠B ,EM =AM ,EF =AB .∵EF ⊥AD ,∴∠MDE =90°.在Rt △MDE 中,tan E =DM DE =tan A =43,设DM =4k ,则DE =3k ,EM=5k .∴AM =5k ,AD =9k .∵四边形ABCD 是菱形,∴AB =CD =BC =AD =9k ,∠C =∠A ,AB ∥CD ,AD ∥BC .∴∠A +∠ADC =180°,∠A +∠B =180°.∵∠ADF =90°,∴∠A +∠FDH =90°.∵∠DFH +∠EFN =180°,∠A +∠B =180°,∠EFN =∠B ,∴∠A =∠DFH .∴∠DFH +∠FDH =90°.∴∠DHF =90°.∵EF =AB =9k ,DE =3k ,∴DF =6k .在Rt △DHF 中,tan ∠DFH =tan A =43,易得sin ∠DFH =45,∴DH =DF ·sin ∠DFH =245k .∴HC =9k -245k =215k .在Rt △CHN 中,tan C = tan A =43,易得cos C =35.∴NC =HC cos C =7k .∴BN =9k -7k =2k .∴BN CN =2k 7k =27.第10题解图11. 37 【解析】如解图,过点A 作AF ⊥BC 于点F ,过点B ′作B ′G ⊥BC 于点G ,∵∠ADC =60°,∴∠ADB =120°,由折叠的性质得,∠ADB ′=120°,∠CDB ′=60°,B ′D =BD ,∵BC =3AD ,AD 是BC 边上的中线,∴设AD =m ,则BC =3m ,BD =B ′D =32m ,在Rt △ADF 中,DF =AD ·cos60°=12m ,AF =AD ·sin60°=32m ,∴BF =BD +DF =2m ,CF =BC -BF =m ,在Rt △B ′DG 中,DG =B ′D ·cos60°=34m ,B ′G =B ′D ·sin60°=334m ,∴FG =DG -DF =14m ,∵AF ⊥BC ,B ′G ⊥BC ,∴AF ∥B ′G ,∴△AFE ∽△B ′GE ∴FE GE =AF B ′G =32m334m=23,∵FE +GE =FG =14m ,∴FE =110m ,∴BE =BF +FE =2110m ,CE =CF -FE =910m ,∴CE BE =910m 2110m =37.第11题解图12. 6+22 【解析】如解图,以AB 为边向下作等边△ABK ,连接EK ,在EK 上取一点T ,连接AT ,使得TA =TK .由旋转的性质得BE =BF ,∠EBF =60°,∵△ABK 为等边三角形,∴BK =BA ,∠EBF =∠ABK =60°,∴∠ABF =∠KBE ,∴△ABF ≌△KBE (SAS),∴AF =EK ,根据垂线段最短可知,当KE ⊥AD 时,KE 的值最小,即AF 最小.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BAD =180°-∠ABC =135°,∵∠BAK =60°,∴∠EAK =75°,∵∠AEK =90°,∴∠AKE =15°,∵TA =TK ,∴∠TAK =∠AKT =15°,∴∠ATE =∠TAK +∠AKT =30°,设AE =a ,则AT =TK =2a ,ET =3a ,在Rt △AEK 中,AE 2+EK 2=AK 2,∴a 2+(2a +3a )2=22,∴a =6-22,∴EK =2a +3a =6+22,∴AF 的最小值为6+22.第12题解图13. 133 【解析】如解图,连接CM ,在矩形ABCD 中,AB =3,BC =4,∴AD =BC =4,CD =AB =3,∠D =90°,由折叠的性质得,AM =PM ,∠MPN =∠A =90°,∠AMN =∠PMN ,∴∠CPM =90°,∵点M 为AD 的中点,∴AM =DM =12AD =2,∴PM =AM =DM =2,在Rt △CPM 与Rt △CDM 中,⎩⎪⎨⎪⎧PM =DM CM =CM,∴Rt △CPM ≌Rt △CDM (HL),∴CP =CD =3,∠CMP =∠CMD ,∴∠NMC =∠NMP +∠CMP =12(∠AMP +∠DMP )=90°,∴CM =DM 2+CD 2=22+32=13,∵∠CPM =∠CMN =90°,∠MCP =∠NCM ,∴△CMP ∽△CNM ,∴CM CN =CP CM ,即13CN =313,∴CN =133.第13题解图14. 37 【解析】如解图,过点E 作EM ⊥BC 的于点M ,过点G 作GN ⊥BC 交BC 的延长线于点N ,∴四边形EMNG 是矩形,∴EG =MN =5,EM =GN ,∵∠BAC =∠EMH =90°,∠ACB =∠MCE ,∴△ABC ∽△MEC ,∴AB ME =BC EC =AC MC ,∵AB =3,BC =5,在Rt △ABC 中,由勾股定理得AC =4,设运动时间为t (0<t ≤4),则AE =CH =t ,CE =4-t ,∴3ME =54-t =4MC ,∴EM =12-3t 5,CM =16-4t 5,∴HN =5-MH =5-(CM -CH )=5-(16-4t 5-t )=9+9t 5.∵EH ⊥GH ,∴∠EHG =90°,∴∠EHM +∠GHN =90°,又∵EM ⊥BC ,∴∠EHM +∠MEH =90°,∴∠GHN =∠MEH ,又∵∠EMH =∠HNG =90°,∴△EMH ∽△HNG ,∴EM HN =MH NG ,即12-3t 59+9t 5=16-4t5-t 12-3t 5,整理得2t 2-3t =0,解得t =32或t =0(舍去),即AE =32,BH =5-CH =5-32=72,∴AE BH =3272=37.第14题解图15. 2-1 【解析】如解图,过点A 作AM ⊥BP 于点M ,过点E 作EN ⊥BP 于点N .∵四边形ABCD 是正方形,∴AD =AB ,∠BAD =90°,由翻折的性质得AD =AF ,∠DAE =∠EAF ,∴AB =AF ,∵AM ⊥BF ,∴BM =FM ,∠BAM =∠FAM ,∴∠PAM =∠PAF +∠FAM =12∠BAD =45°,∵∠AMP =90°,∴∠P =∠PAM=45°,∴AM =MP ,设BF =2a ,则BM =MF =a ,PF =22BF =2a ,∴AM =PM =FM +PF =a +2a ,∵∠AMF =∠AFE =∠ENF =90°,∴∠AFM +∠EFN =90°,∠EFN +∠FEN =90°,∴∠AFM =∠FEN ,∴△AMF ∽△FNE ,∴AM FM =FN EN =a +2aa =1+2,设EN =PN =x ,则FN =(1+2)x ,∴(1+2)x +x =2a ,∴x =(2-1)a ,∴EN =(2-1)a ,∴EF AF =EN FM =(2-1)a a=2-1,∵CD =AD =AF ,DE =EF ,∴DE CD =EFAF =2-1.第15题解图16. 334 【解析】如解图,过点P 作PE ⊥CD 于点E .∵∠ABC =60°,AB =BC ,∴△ABC 为等边三角形,∠ACB =∠ACD =60°,在△ABM 和△ACN 中,⎩⎪⎨⎪⎧AB =AC ∠ABM =∠ACN ,BM =CN∴△ABM ≌△ACN (SAS),∴AM =AN ,∠BAM =∠CAN ,∴∠MAN =∠BAM +∠MAC =60°,∴△AMN 为等边三角形,∵∠B =∠ACB =∠AMP =60°,∴∠BAM +∠BMA =∠BMA +∠CMP =180°-60°=120°,∴∠BAM =∠CMP ,∠BMA =∠CPM ,∴△BAM ∽△CMP ,∴BA BM =CM CP ,设BA 长为a ,BM 长为x ,则CM =a -x ,∴a x =a -xCP ,∴a ·CP =x (a -x )=-x 2+ax =-(x -a 2)+a 24,∴CP =-1a (x -a 2)+a 4,∴当x =a 2时,CP 最长,即当AM ⊥BC 时,△AMN 边长最小,此时CP 最长,满足条件,∵AB =AC ,AM ⊥BC ,∴BM =MC =3,∠CMP =30°,∠CPM =90°,∴PC =12MC =32,在Rt △PCE 中,∵∠ACD =60°,∴PE =PC ·sin60°=334.第16题解图17. 3134;6+39 【解析】设AQ =x ,则S 四边形PCDQ =S △ABC -S △ADQ -S △BCP =34×62-12·x ·32×1-12×(6-x -1)×32×6=332+534x ,∵x 的最大值为6-1=5,∴当x =5时,S 四边形PCDQ 最大,最大值为332+534×5=3134;如解图,作点D 关于AB 的对称点D ′,连接D ′Q ,以D ′Q 、PQ 为边作平行四边形PQD ′M ,则DQ =D ′Q =MP ,∴C 四边形PCDQ =PM +PC +PQ +DC ,DD ′=2AD ·sin60°=3,D ′M =PQ =1,过点C 作CH ⊥AB ,交AB 于点H ,交D ′M 的延长线于点N ,则∠N =90°,CH =BC ·sin60°=33,NH =12DD ′=32,∴MN =AH -D ′M -AD ·cos60°=AC ·cos60°-1-12=3-1-12=32,CN =NH +CH =32+33=732,当点M ,P ,C 在同一直线上时,MP +CP 的最小值等于CM 的长,即DQ +CP 的最小值等于CM 的长,此时,Rt △MNC 中,CM =MN 2+CN 2=(32)2+(732)2=39,又∵PQ =1,CD =6-1=5,∴四边形PCDQ 周长的最小值为CM +PQ +CD =6+39.第17题解图18. 27-952或92 【解析】分两种情况讨论,如解图①,当GD =GE 时,过点G 作GM ⊥AD 于点M ,GN ⊥CD 于点N .设AF =x .∵四边形ABCD 是矩形,∴AD =BC =12,∠BAF =∠ADE =90°,由翻折的性质得AF =FG ,BF ⊥AG ,∴∠DAE +∠BAE =90°,∠ABF +∠BAE =90°,∴∠ABF =∠DAE ,∴△BAF ∽△ADE ,∴AB DA =AF DE ,即912=x DE ,∴DE =43x ,∵GM ⊥AD ,GN ⊥CD ,∴∠GMD =∠GND =∠MDN =90°,∴四边形GMDN 是矩形,∴GM =DN =EN =23x ,∵GD =GE ,∴∠GDE =∠GED ,∵∠GDA +∠GDE =90°,∠GAD +∠GED =90°,∴∠GDA =∠GAD ,∴GA =GD =GE ,∵GM ⊥AD ,∴AM =MD =6,在Rt △FGM 中,由勾股定理得x 2=(6-x )2+(23x )2,解得x =27-952或27+952(舍),∴AF =27-952;如解图②,当DG =DE 时,由翻折的性质得,BA =BG ,∴∠BAG =∠BGA ,∵DG =DE ,∴∠DGE =∠DEG ,∵AB ∥CD ,∴∠BAE =∠DEG ,∴∠AGB =∠DGE ,∴B ,G ,D 三点共线,∵BD =AB 2+AD 2=92+122=15,BG =BA =9,∴DG =DE =6,由①知,△BAF ∽△ADE ,∴AF DE =AB DA ,即AF 6=912,∴AF =92.综上所述,AF 的值为27-952或92.图①图②第18题解图19. 45;22 【解析】如解图,取BC 的中点G ,连接DG ,由旋转的性质得DC =EC ,∠DCE =90°,∵∠ACB =90°,AC =BC =8,F 为AC 中点,∴CG =CF ,∠DCG +∠ACD =∠ECF +∠ACD =90°,∴∠DCG =∠ECF ,∴△DCG ≌△ECF (SAS),∴DG =EF .分两种情况讨论:如解图①,当GD ⊥AB 时,DG 最短,此时△BDG 是等腰直角三角形,∴DG =BG ·sin45°=4×22=22,∴EF 的最小值为22;当点D 与点B 重合时,DG =BG =4;如解图②,当点D 与点A 重合时,DG =CG 2+AC 2=42+82=45>4,∴EF 的最大值为45,最小值为2 2.图①图②第19题解图20. 10 【解析】如解图,过点A ′作A ′H ⊥AD 于点H ,延长FA ′与BE 的延长线交于点J ,过点F 作FI ⊥BE 于点I ,∵A ′是DE 的中点,∴A ′H 是△DC ′E 的中位线,∴A ′H =12C ′E =12×3=32 cm ,由折叠性质知∠A ′DH =45°,∴DH =A ′H =32 cm ,设AF =x cm ,则FH =6-x -32=(92-x ) cm ,由折叠的性质得A ′F =AF=x cm ,在Rt △A ′HF 中,由勾股定理得A ′F 2-FH 2=A ′H 2,即x 2-(92-x )2=(32)2,解得x =52,∴A ′F =AF =52 cm ,FH =92-52=2 cm ,∴EI =FC ′=FH +DH -C ′D =2+32-3=12 cm ,∵A ′是DE 的中点,易证△A ′DF ≌△A ′EJ ,∴EJ =DF =2+32=72 cm ,A ′F =A ′J =52 cm ,∴FJ =5 cm ,由折叠的性质得∠AFG =∠JFG ,∵AD ∥BJ ,∴∠JGF =∠AFG =∠JFG ,∴JG =JF =5 cm ,∴GI =JG -JE -EI =5-72-12=1 cm ,在Rt △FGI 中,FI =3 cm ,∴FG =32+12=10 cm.第20题解图21. 5217 【解析】如解图,点P 在直线CD 上运动时,当MN 垂直于点N 的运动轨迹(直线)时,MN 最短,当点P 和C 重合时,N 1 是CB 的中点,当PA ′和直线CD 重合时,N 2 是PA ′的中点,∵AC =CB =4,∠ACB =120°,CD ⊥AB ,∴CD =2,AD =23,∴AB =2AD =43,∵M 、N 1分别是AC 、BC 中点,∴MN 1∥AB ,MN 1=12AB =23,DE =1,∵PA ′是PA 绕点P 逆时针旋转120°得到的,当PA ′和直线CD 重合时,PA ′=PA ,∠APA ′=120°,∴∠APD =60°,∴AP =AD sin60°=2332=4,DP =AP ·cos60°=4×12=2,∵N 2是PA ′的中点,∴PN 2=2,EN 2=2+2+1=5,∵MN 1∥AB ,CD ⊥AB ,MN 1⊥CD ,在△MEN 2和△N 1EN 2中,⎩⎪⎨⎪⎧ME =N 1E ∠MEN 2=∠N 1EN 2EN 2=EN 2,∴△MEN 2≌△N 1EN 2(SAS),∴N 2M =N 2N 1,在Rt △MN 2E 中,N 2M =ME 2+EN 22=(3)2+52=27,∴S △MN 1N 2=12MN 1·EN 2=12×23×5=53,又∵S △MN 1N 2=12N 1N 2·MN ,∴12×27×MN =53,∴MN =5217.第21题解图22. 30;6 【解析】如解图①,连接AC ,分别过点E ,G 作AC 的垂线,垂足为M ,N ,易证△AEM ∽△ACB ,∴AE AC =EM CB ,∵AB =6,BC =8,∴AC =AB 2+BC 2=10,∴410=EM 8,∴EM =165.∵△BEF 沿EF 翻折后点B 的对应点为点G ,∴GE =BE =2,∴点G 在以点E 为圆心,2为半径的⊙E (在矩形ABCD 内的部分)上.连接EN ,则EG +GN ≥EN ≥EM ,∴GN ≥EM -EG =165-2=65.∵S 四边形AGCD =S △ACD +S △AGC =12AD ·CD +12AC ·GN =24+5GN ,如解图②,当点G 在EM 上,即点N 与点M 重合,此时GN 取得最小值65,S 四边形AGCD 取得最小值为24+5GN =24+5×65=30;如解图②,过点F 作FH ⊥AC 于点H ,∵EM ⊥FG ,EM ⊥AC ,∴四边形FGMH 是矩形,∴FH =GM =65,∵∠FCH =∠ACB ,∠CHF =∠CBA =90°,∴△CHF ∽△CBA ,∴CF CA =FH AB ,即CF 10=656,∴CF =2,∴BF =BC -CF =8-2=6.图①图②第22题解图。
几何模型:阿氏圆最值模型【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.A BPO【模型建立】如图 1 所示,⊙O 的半径为R,点 A、B 都在⊙O 外,P为⊙O上一动点,已知R=25OB,连接 PA、PB,则当“PA+25PB”的值最小时,P 点的位置如何确定解决办法:如图2,在线段 OB 上截取OC使 OC=25R,则可说明△BPO与△PCO相似,则有25PB=PC。
故本题求“PA+25PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当 A、P、C 三点共线时,“PA+PC”值最小。
【技巧总结】计算PA k PB+的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P使得PA k PB+的值最小,解决步骤具体如下:1. 如图,将系数不为1的线段两端点与圆心相连即OP ,OB2. 计算出这两条线段的长度比OPk OB= 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM∽△BOP,则PCk PB=,PC k PB = 4.则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值典题探究 启迪思维 探究重点例题1. 如图,在Rt△ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.EABC DPMPDCBA【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB ≥BM 最小值,故当B ,P ,M 三点共线时得最小值,直接连BM 即可得13. 变式练习>>>1.如图1,在RT △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 的半径为2,点P 为圆上一动点,连接AP,BP , 求①BP AP 21+,②BP AP +2,③BP AP +31,④BP AP 3+的最小值.[答案]:①=37,②=237,③=3372,④=237.例题2. 如图,点C 坐标为(2,5),点A 的坐标为(7,0),⊙C 的半径为10,点B 在⊙C 上一动点,AB OB 55的最小值为________.[答案]:5.变式练习>>>2.如图,在平面直角坐标系xoy 中,A(6,-1),M(4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO+2PA 的最小值为________.[答案]:10.例题3. 如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD 的最小值.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠PAB=∠PBA=45°,∴PA=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+PC的最小值为 5 ;PD+4PC的最小值为10.【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBE,∴△PBE∽△CBE,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB ,PB ,在BD 上取一点E ,使得BE =,连接EC ,作EF ⊥BC 于F .∵PB 2=4,BE •BD =×4=4,∴BP 2=BE •BD ,∴=,∵∠PBE =∠PBD ,∴△PBE ∽△DBP , ∴==,∴PE =PD ,∴PD +4PC =4(PD +PC )=4(PE +PC ),∵PE +PC ≥EC ,在Rt△EFC 中,EF =,FC =,∴EC =,∴PD +4PC 的最小值为10.故答案为5,10.例题4. 如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC的最大值为_______.AB CDP【分析】当P 点运动到BC 边上时,此时PC=3,根据题意要求构造12PC ,在BC 上取M 使得此时PM=32,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值152. A BCD P MMPDCBA ABCDPMMPDCBA变式练习>>>4.(1)如图1,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD +的最小值为,PD﹣的最大值为.(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1 图2【解答】解:(1)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(2)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.例题5. 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣1 2 x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求12AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣12x﹣6,∴F(a,﹣12a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣12x﹣6,∴AB⊥AC,∴EF为对角线,∴12(﹣4+0)=12(a+a),12(﹣4+p)=12(2a+4﹣12a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=5,AE=25,设AE交⊙E于G,取EG的中点P ,∴PE=52,连接PC交⊙E于M,连接EM,∴EM=EH=,∴525 PEME==12,∵525MEAE==12,∴PE MEME AE==12,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴PE MEME AE==12,∴PM=12AM,∴12AM+CM的最小值=PC,设点P(p ,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=52,∴5(p+2)2=54,∴p=52-或p=﹣32(由于E(﹣2,0),所以舍去),∴P(52-,﹣1),∵C(0,﹣6),∴PC==552,即:12AM+CM=552.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a =﹣.∵A (4,0),B (0,3), 设直线AB 解析式为y =kx +b ,则,解得,∴直线AB 解析式为y =﹣x +3.(2)如图1中,∵PM ⊥AB ,PE ⊥OA ,∴∠PMN =∠AEN ,∵∠PNM =∠ANE ,∴△PNM ∽△ANE ,∴=,∵NE ∥OB ,∴=,∴AN =(4﹣m ),∵抛物线解析式为y =﹣x 2+x +3,∴PN =﹣m 2+m +3﹣(﹣m +3)=﹣m 2+3m ,∴=,解得m =2.(3)如图2中,在y 轴上 取一点M ′使得OM ′=,连接AM ′,在AM ′上取一点E ′使得OE ′=OE .∵OE ′=2,OM ′•OB =×3=4, ∴OE ′2=OM ′•OB , ∴=,∵∠BOE ′=∠M ′OE ′,∴△M ′OE ′∽△E ′OB , ∴==,∴M ′E ′=BE ′,∴AE ′+BE ′=AE ′+E ′M ′=AM ′,此时AE ′+BE ′最小 (两点间线段最短,A 、M ′、E ′共线时), 最小值=AM ′==.达标检测 领悟提升 强化落实1. 如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C 的半径为2,点P 为圆B 上的一动点,求PC AP 22的最小值.[答案]:5.2. 如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则2PA+PB的最小值为________.[答案]:25.3. 如图,等边△ABC的边长为6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为________.[答案]:37.4. 如图,在Rt△ABC中,∠C=90°,CA=3,CB=4,C的半径为2,点P是C上的一动点,则12 AP PB的最小值为5. 如图,在平面直角坐标系中,()2,0A ,()0,2B ,()4,0C ,()3,2D ,P 是△AOB 外部第一象限内的一动点,且∠BPA=135°,则2PD PC +的最小值是多少[答案]426. 如图,Rt△ABC ,∠ACB =90°,AC =BC =2,以C 为顶点的正方形CDEF (C 、D 、E 、F 四个顶点按逆时针方向排列)可以绕点C 自由转动,且CD =,连接AF ,BD(1)求证:△BDC ≌△AFC ; (2)当正方形CDEF 有顶点在线段AB 上时,直接写出BD +AD 的值; (3)直接写出正方形CDEF 旋转过程中,BD +AD 的最小值.【解答】(1)证明:如图1中,∵四边形CDEF 是正方形,∴CF =CD ,∠DCF =∠ACB =90°,∴∠ACF =∠DCB ,∵AC =CB ,∴△FCA ≌△DCB (SAS ).(2)解:①如图2中,当点D ,E 在AB 边上时,∵AC =BC =2,∠ACB =90°,∴AB=2,∵CD⊥AB,∴AD=BD=,∴BD+AD=+1.②如图3中,当点E,F在边AB上时.BD=CF=,AD==,∴BD+AD=+.(3)如图4中.取AC的中点M.连接DM,BM.∵CD=,CM=1,CA=2,∴CD2=CM•CA,∴=,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴BD+AD=BD+DM,∴当B,D,M共线时,BD+AD的值最小,最小值==.7. (1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,PA=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD最小时,画出点M的位置,并求出MC+MD的最小值.【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=.∵PA2=9,AE•AD=×6=9,∴PA2=AE•AD,∴=,∵∠PAE=∠DAP,∴△PAE∽△DAP,∴==,∴PE=PD,∴PC+PD=PC+PE,∵PC+PE≥EC,∴PC+PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=,∴EC==,∴PC+PD的最小值为.(3)如图3中,如图2中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴=,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴===,∴ME=MD,∴MC+MD=MC+ME,∵MC+ME≥EC,∴MC+MD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=18,DE=16,∴EC==2,∴MC+MD的最小值为2.。
旋转中的最值问题方法一、三角形旋转中的最值问题。
题目1:在等腰直角三角形ABC中,∠ ACB = 90^∘,AC = BC=√(2),将ABC绕点C逆时针旋转角α(0^∘<α<90^∘)得到A'B'C,连接A'B。
求A'B的最小值。
解析:1. 因为ABC绕点C旋转得到A'B'C,所以CA = CA'=√(2)。
2. 在A'CB中,根据余弦定理:A'B^2=A'C^2+BC^2- 2A'C· BC·cos(∠ A'CB)。
3. 由于∠ A'CB=∠ ACB+α = 90^∘+α,A'C = AC=√(2),BC=√(2)。
4. 则A'B^2=2 + 2-2×√(2)×√(2)cos(90^∘+α)=4 + 4sinα。
5. 因为0^∘<α<90^∘,当sinα = 0(即α = 0^∘)时,A'B^2取得最小值4,所以A'B的最小值为2。
题目2:已知等边三角形ABC的边长为2,点D是边BC的中点,将ABD绕点A逆时针旋转得到ACE。
求线段DE的最大值。
解析:1. 因为ABD绕点A逆时针旋转得到ACE,所以AD = AE,∠ DAE=∠ BAC = 60^∘,所以ADE是等边三角形。
2. 点D是边BC的中点,在等边三角形ABC中,AD⊥ BC,根据勾股定理可得AD=√(3)。
3. 因为ADE是等边三角形,所以DE = AD=√(3),DE的最大值就是√(3)。
题目3:在ABC中,AB = 3,AC = 4,∠ BAC = 60^∘,将ABC绕点A旋转,得到AB'C'。
求BC'的最大值。
解析:1. 由余弦定理可得BC=√(AB^2)+AC^{2-2AB· AC·cos∠ BAC}- 把AB = 3,AC = 4,∠ BAC = 60^∘代入可得:BC=√(9 + 16-2×3×4×frac{1){2}}=√(13)。
利用旋转法解几何最值问题应用举例一、利用旋转转化为点到直线的距离垂线段最短求最值例1、在平面直角坐标系中,已知点A(4,0),点B为y轴正半轴上一个动点,连接AB,以AB为一边向下作等边△ABC,连结OC,则OC 的最小值为.MN解析:如图,将△ABO绕点A逆时针旋转60°得△AACM,并延长MC交x轴于点N.则点C在直线MN 上运动,当OC⊥MN时,OC最小,∴OC=AM=2,则OC的最小值为2.例2、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为.解析:将线段AE绕点E逆时针旋转120°得到EH,连接HG,过点H作HM⊥AD,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∴∠A=120°,∵将线段AE绕点E逆时针旋转120°得到EH,将线段EF绕点E逆时针旋转120°得到EG,∴EF=EG=4,AE=EH,∠AEH=∠FEG=120°,∴∠DEH=60°,∠AEF=∠HEG,且EF=EG,AE=EH,∴△AEF≌△HEG(SAS)∴∠A=∠EHG=120°=∠AEH,∴AD∥HG,∴点G的轨迹是过点H且平行于AD的直线,∴当DG⊥HG时,线段GD长度有最小值,∵∠HEM=60°,EH=4,HM⊥AD,∴EM=2,MH=EM=2,∴线段GD长度的最小值为2,例3、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.解析:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=,故答案为.二、利用旋转转化为三点共线求最值例4、如图,PA=2,PB=4,将线段PA绕P点旋转一周,以AB为边作正方形ABCD,则PD的最大值为.解析:将△PAD绕点A顺时针旋转90°得到△P'AB,PD的最大值即为P'B的最大值,∴PA=PA',∠PAP'=90°∴PP'=PA=2∵△P'PB中,P'B<PP'+PB,PP′=PA=2,PB=4,且P、D两点落在直线AB的两侧,∴当P'、P、B三点共线时,P'B取得最大值,此时P'B=PP'+PB=2+4,即P'B的最大值为2+4.例5、如图,在四边形ABCD中,AB=6,BC=4,若AC=AD,且∠ACD=60°,则对角线BD的长的最大值为.解析:将AB绕点A顺时针旋转60°得到线段AK,连接BK、DK.则AK=AB=BK=6,∠KAB=60°,∴∠DAC=∠KAB,∴∠DAK=∠CAB,在△DAK和△CAB中,,∴△DAK≌△CAB(SAS)∴DK=BC=4,∵DK+KB≥BD,DK=4,KB=AB=6∴当D、K、B共线时,BD的值最大,最大值为DK+KB=10.例6、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF 绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为()A.3B.2C.4D.2+2解析:如图,取AB的中点N.连接EN,EC,GN,作EH⊥CD交CD的延长线于H.∵四边形ABCD是菱形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等边三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°﹣60°﹣60°=60°,∴点G的运动轨迹是射线NG,易知B,E关于射线NG对称,∴GB=GE,∴GB+GC=GE+GC≥EC,在Rt△DEH中,∵∠H=90°,DE=2,∠EDH=60°,∴DH =DE=1,EH =,在Rt△ECH中,EC ==2,∴GB+GC ≥2,∴GB+GC的最小值为2.故选:B.例7、如图,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,则线段AN的最大值为.NA BM解析:如图,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴PA=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.三、利用旋转转化为四点共线求最值例8、如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为.解析:如图,将△ABP绕着点B逆时针旋转60°,得到△DBE,连接EP,CD,∴△ABP≌△DBE∴∠ABP=∠DBE,BD=AB=4,∠PBE=60°,BE=PE,AP=DE,∴△BPE是等边三角形∴EP=BP∴AP+BP+PC=PC+EP+DE,∴当点D,点E,点P,点C共线时,PA+PB+PC有最小值CD∵∠ABC=30°=∠ABP+∠PBC,∴∠DBE+∠PBC=30°,∴∠DBC=90°,∴CD==,例9、如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC 的最小值是()A.4+3B.2C.2+6D.4解:由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB==,∴∠ACB=30°,AC=2AB=4,∵∠BCE=60°,∴∠ACE=90°,∴AE==2,故选:B.四、利用旋转转化为圆外一定点与圆上的动点的关系求最值。
专题瓜豆原理中动点轨迹直线型最值问题【专题说明】动点轨迹问题是中考的重要压轴点.受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的一个黑洞.掌握该压轴点的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本文就动点轨迹问题的基本图形作一详述.动点轨迹基本类型为直线型和圆弧型.【知识精讲】动点轨迹为一条直线时,利用“垂线段最短”求最值。
(1)当动点轨迹确定时可直接运用垂线段最短求最值(2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线。
②当某动点到某条直线的距离不变时,该动点的轨迹为直线。
③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线。
如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?P QAB C【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.N C B AQP M【引例】如图,△APQ 是等腰直角三角形,∠P AQ =90°且AP =AQ ,当点P 在直线BC 上运动时,求Q 点轨迹?CB AQ P【分析】当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q 点轨迹线段.Q 2Q 1ABC【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值);主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角) M N ααP QAB CP 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN ) M NααAB C【精典例题】1、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GA B CDE F2、如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A .24πB .22πC .1D .23、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.4、如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______.5、如图,等边三角形ABC 的边长为4,点D 是直线AB 上一点.将线段CD 绕点D 顺时针旋转60°得到线段DE ,连结BE .(1)若点D 在AB 边上(不与A ,B 重合)请依题意补全图并证明AD=BE ;(2)连接AE ,当AE 的长最小时,求CD 的长.【精典例题】1、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GA B C DE F【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2G 1E DCB ACG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =, 所以CH =52,因此CG 的最小值为52. F HG 2G 1E DCB A 2、如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A .24B .22C .1D .2【答案】C【详解】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC=BC=222,∠A=∠B=45°,∵O 为AB 的中点,∴OC ⊥AB ,OC 平分∠ACB ,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ ,在Rt △AOP 和△COQ 中A OCQ AO COAOP COQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴Rt △AOP ≌△COQ ,∴AP=CQ ,易得△APE 和△BFQ 都为等腰直角三角形,∴PE=22AP=22CQ ,QF=22BQ , ∴PE+QF=22(CQ+BQ )=22BC=222, ∵M 点为PQ 的中点,∴MH 为梯形PEFQ 的中位线,∴MH=12(PE+QF )=12, 即点M 到AB 的距离为12, 而CO=1,∴点M 的运动路线为△ABC 的中位线,∴当点P 从点A 运动到点C 时,点M 所经过的路线长=12AB=1, 故选C .3、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.【答案】213【详解】ABCD 为矩形,AB DC ∴=又=PAB PCD S S∴点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上, 连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +==22224652213AB BC +=+==故答案为:2134、如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______.【答案】62 【详解】解:如图,由题意可知点C 运动的路径为线段AC ′,点E 运动的路径为EE ′,由平移的性质可知AC ′=EE ′,在Rt △ABC ′中,易知AB =BC ′=6,∠ABC ′=90°,∴EE ′=AC 2266+2故答案为:625、如图,等边三角形ABC 的边长为4,点D 是直线AB 上一点.将线段CD 绕点D 顺时针旋转60°得到线段DE ,连结BE .(1)若点D 在AB 边上(不与A ,B 重合)请依题意补全图并证明AD=BE ;(2)连接AE ,当AE 的长最小时,求CD 的长.【答案】(1)见解析;(2)27【详解】解:(1)补全图形如图1所示,AD=BE,理由如下:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=60°,由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE.(2)如图2,过点A作AF⊥EB交EB延长线于点F.∵△ACD≌△BCE,∴∠CBE=∠A=60°,∴点E的运动轨迹是直线BE,根据垂线段最短可知:当点E与F重合时,AE的值最小,此时CD=CE=CF,∵∠ACB=∠CBE=60°,∴AC∥EF,∵AF⊥BE,∴AF⊥AC,在Rt △ACF 中, ∴CF=22AC AF +=()22423+=27,∴CD=CF=27.专题 瓜豆原理中动点轨迹圆或圆弧型最值问题【专题说明】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。
初三旋转中的最值问题全文共四篇示例,供读者参考第一篇示例:初三旋转中的最值问题是中学数学中的一个重要知识点,通常涉及到函数的最值求解和图形的旋转等内容。
在初三阶段,学生常常会遇到类似于“求解函数f(x)=x^2在区间[a,b]上的最大值”或“求解旋转体的体积最大值”等问题。
本文将重点介绍初三阶段学生在旋转中的最值问题中常见的几种情形,并给出详细的解题方法和实例。
一、函数的最值问题在数学中,函数f(x)在区间[a,b]上的最值通常包括最大值和最小值两种情况。
最大值是函数在该区间上取得的最大函数值,而最小值是函数在该区间上取得的最小函数值。
初三阶段学生通常会被要求求解给定函数在给定区间上的最值,其中最常见的情形是二次函数在闭区间上的最值问题。
以函数f(x)=x^2为例,求解其在区间[-1,1]上的最大值。
我们需要求出函数f(x)=x^2在该区间端点和驻点处的函数值,即f(-1)=1,f(0)=0,f(1)=1。
然后,对函数f(x)=x^2求导得到f'(x)=2x,再令f'(x)=0解得驻点x=0。
比较端点和驻点处的函数值,即f(-1)=1,f(0)=0,f(1)=1,得知函数f(x)=x^2在区间[-1,1]上的最大值为1。
对于初三阶段的学生来说,很多函数的最值问题可以通过几何意义进行解释。
函数f(x)=x^2表示一个抛物线,函数在单调递增区间上取得最小值,而在单调递减区间上取得最大值。
初三阶段学生可以通过画出函数图像或利用函数基本性质进行推断,帮助他们更好地理解函数的最值问题。
二、图形的旋转中的最值问题在初三阶段,学生通常会遇到圆的旋转体体积最值问题。
圆的旋转体是指将一个形状为圆的二维图形绕某一条轴旋转一周所形成的立体图形。
求解圆的旋转体体积最值问题就是要找出使得旋转体体积最大或最小的情形。
以一个直径为2r的圆的旋转体体积为例,求解其体积最大值。
我们知道圆的周长为2πr,将其围绕直径旋转一周即可得到一个球体的体积。
旋转中的最大值或最小值
1.(2008•徐州)着图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
探究一:在旋转过程中,
(1)看图2,当CE
EA=1时,EP与EQ满足怎样的数量关系?并给出证明;
(2)看图3,当CE
EA=2时,EP与EQ满足怎样的数量关系?并说明理由;
(3)根据对(1)、(2)的探究结果,试写出当CE
EA=m时,EP与EQ满足的数量关系式为,
其中m的取值范围是.(直接写出结论,不必证明)
探究二:若CE
EA=2且AC=30cm,连接PQ,设△EPQ的面积为S(cm2),在旋转过程中:
(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化,求出相应S的值或取值范围.
2.已知:如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=6,BC=8,AD=14.E为AB上一点,BE=2,点F在BC边上运动,以FE为一边作菱形FEHG,使点H落在AD边上,点G落在梯形ABCD内或其边上.若BF=x,△FCG的面积
为y.
(1)当x= 时,四边形FEHG为正方形;
(2)求y与x的函数关系式;(不要求写出自变量的取值范围)
(3)在备用图中分别画出△FCG的面积取得最大值和最小值时相
应的图形(不要求尺规作图,不要求写画法),并求△FCG面积的最大值和最小值;(计算过程可简要书写)
(4)△FOG的面积由最大值变到最小值时,点G运动的路线长
为.
3. 如图,在平面直角坐标系中,点A(8,2),B点在第一象限,
BO=BA=5,若M、N是OB和OA中点,(1)直线MN的解析式
为(2)△ABN面积=
(3)将图(1)中的△4MO绕点O旋转一周,在旋转过程中,△AB4面积是否存在最大值、最小值?若不存在,请说明理由;若存在请在备用图中画出相应位置的图形,并直接写出最大值、最小值;
(4)将图(1)中的△NMO绕点O旋转,当点N在第二象限时,如图(2),设N(x,y),△ABN的面积为S,求S与x之间的函数关系式.
(第4题)
4. 如图,在平面直角坐标系中,A(4,0),B(4,4),C(0,4),点F、D分别在x轴、y轴上,正方形DEFO$\\ ODEF$的边长为a(a<2),连接AC、AE、CF.
(1)求图中△AEC的面积,请直接写出计算结果;
(2)将图中正方形ODEF绕点O旋转一周,在旋转的过程中,S△AEC是否存在最大值、最小值?如果不存在,请说明理由;如果存在,在备用图中画出相应位置的图形,并直接写出最大值、最小值;
(3)将图1中正方形ODEF绕点O旋转,当点E在第二象限时,设E(x,y),△AEC的面积为S,求S关于x的函数关系式.
5. (2006•徐州)将两张宽度相等的矩形纸片叠放在一起得到如图所示的四边形ABCD.(1)求证:四边形ABCD是菱形;
(2)如果两张矩形纸片的长都是8,宽都是2.那么菱形ABCD
的周长是否存在最大值或最小值?如果存在,请求出来;如果
不存在,请简要说明理由.
6. 阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是
一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的
下方作等边△PBC,求AP的最大值.
小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转66°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).
请你回答:AP的最大值是.
参考小伟同学思考问题的方法,解决下列问题:
如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)
7.如图1,矩形CEFG 的一边落在矩形ABCD 的一边上,并且矩形CEFG ~CDAB ,其相似比为k ,连接BG 、DE .
(1)试探究BG 、DE 的位置关系,并说明理由;
(2)将矩形CEFG 绕着点C 按顺时针(或逆时针)旋转任意角度α,得到图形2、图形3,请你通过观察、分析、判断(1)中得到的结论是否能成立,并选取图2证明你的判断;
(3)在(2)中,矩形CEFG 绕着点C 旋转过程中,连接BD 、BF 、DF ,且k=1
4,AB=8,BC=4,△BDF 的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由.
8. (2008•大庆)如图①,四边形AEFG 和ABCD 都是正方形,它们的边长分别为a ,b (b ≥2a ),且点F 在AD 上(以下问题的结果均可用a ,b 的代数式表示).
(1)求S △DBF ;
(2)把正方形AEFG 绕点A 按逆时
针方向旋转45°得图②,求图②中
的S △DBF ;
(3)把正方形AEFG 绕点A 旋转一
周,在旋转的过程中,S △DBF 是否
存在最大值、最小值?如果存在,
直接写出最大值、最小值;如果不存在,请说明理由.
9.已知:如图①,正方形ABCD 的边长是a ,正方形AEFG 的边长是b ,且点F 在AD 上,连接DB ,BF ,(以下问题的结果可用a ,b 表示).
(1)观察计算:△DBF 的面积S=
(2)图形变式:
将图①中的正方形AEFG 绕点A 顺时针方向旋转45°得到图②,其他条件不变,请你求出图②中△DBF 的面积S ;
(3)探究发现:
当a >2b 时,若把图①中的正方形AEFG 绕点A 旋转任意角度,在旋转过程中,△DBF
的
面积S是否能达到最大值、最小值?如果能达到,请画出图形,并求出最大值、最小值;如果达不到,请说明理由.(图③可用来画图).
10. 如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
(1)试说明:BP=DP;
(2)如图2,若正方形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请画图用反例加以说明;
(3)试选取正方形ABCD的两个顶点,分别与正方形PECF的两个顶点连接,使得到的两条线段在正方形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论;(4)旋转的过程中AP和DF的长度是否相等?若不等,直接写出AP:DF= ;(5)若正方形ABCD的边长是4,正方形PECF的边长是1.把正方形PECF绕点C按逆时针方向旋转的过程中,△PBD的面积是否存在最大值、最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由.
如图,在平面直角坐标系中,点A(8,2),B点在第一象限,BO=BA=5,若M、N是OB 和OA中点,
(1)直线MN的解析式为
.
(2)△ABN面积=
.
(3)将图(1)中的△4MO绕点O旋转一周,在旋转过程中,△AB4面积是否存在最大值、最小值?若不存在,请说明理由;若存在请在备用图中画出相应位置的图形,并直接写出最大值、最小值;
(4)将图(1)中的△NMO绕点O旋转,当点N在第二象限时,如图(2),设N(x,y),△ABN的面积为S,求S与x之间的函数关系式.
(2013潍坊)22.如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.
(1)当点D′恰好落在EF边上时,求旋转角a的值;
(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;
(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.
24.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;
(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).。