污染物在地下水系统中的迁移转化共140页
- 格式:ppt
- 大小:12.59 MB
- 文档页数:140
浅析地下水污染物的迁移与转化摘要:随着淡水资源日益紧缺,合理利用和保护地下水资源逐渐得到社会的广泛关注。
有机污染物对地下水资源的污染已成为当前地下水污染防治与保护的焦点问题。
随着工农业的发展,越来越多的有机化学污染物进入自然环境,这些有机污染物随着地表径流流入渗到地下水环境中,对地下水系统造成污染。
地下水是人类的主要饮用水来源之一,水中的有机污染直接或间接对人类健康造成严重危害。
研究有机污染物在地下水环境中迁移转化具有重要的理论和现实意义。
关键词:地下水有机污染物迁移与转化一、我国地下水污染源和污染物状况1. 地下水污染的主要表现1.1有机化合物(如合成染料,油类及有机农药)出现于地下水。
1.2极其微量的毒性金属元素(如汞、铬、铅、砷及其他放射性元素)出现于地下水中。
1.3各种细菌,病毒大量繁殖于地下水。
地下水硬度,矿化度,酸度和某些单项离子超过使用标准。
[1]2、我国地下水有机污染物的特点及危害目前,我国大部分地区的地下水物污染日趋严重,且具有种类多、含量低、危害大、治理难等特点。
在浅层地下水中有机污染物主要有三氯甲烷、PCE、TCE 等[2]。
许多有机污染物具有致癌、致畸、致突变效应,严重影响人体健康,且有机污染物在地下水环境中难以通过自然降解过程去除,可能长期存在并累积,有机污染物对我国地下水污染日趋严重。
3、地下水污染物的研究现状近年,国内外学者在地下水溶质迁移理论和试验研究方面取得了新的进展:对污染物迁移的弥散系数提出了与时空相关的表达式;大量的试验研究使得迁移方程中的衰减、离子交换、生物、化学反应的系数考虑更全,取值更合理,并考虑了污染物的固相和液相浓度的相互转化关系,吸附条件则由平衡等温模式发展到考虑非平衡吸附模式【3】。
二、地下水污染物的迁移转化研究1、迁移与转化概念分析所谓迁移,指污染物在环境中分配、溶解、挥发、吸附等物理过程,其间,污染物的结构不发生变化;所谓转化,即有机物的光降解、水解、氧化还原和生物降解、富集等生物化学过程,在此过程中,污染物的结构发生变化。
地下水污染物迁移与去除机理研究一、引言地下水是人类生活和经济发展的重要资源,然而,随着工农业生产的不断发展,地下水受到了日益严重的污染。
地下水污染物的迁移和去除机理研究对于地质环境工程和水资源管理具有重要意义。
本文将探讨地下水污染物的迁移规律和去除机理,以期为地下水污染防治提供科学依据。
二、地下水污染物的迁移规律地下水污染物的迁移规律主要受到地下水流动和物质迁移两个因素的综合影响。
1. 地下水流动对污染物迁移的影响地下水流动是指地下水由高处向低处流动的现象。
地下水污染物随着地下水的流动而迁移,其迁移速率受到许多因素的影响。
例如,地下水流速、流经的地层孔隙度和渗透率等。
此外,地下水流动还受到地表活动、天气条件和近地表地下水位的影响。
2. 物质迁移的影响因素物质迁移是指污染物在地下水中的扩散、吸附、降解和生物转化过程。
物质迁移的主要影响因素包括环境温度、pH值、地层孔隙度、溶解性和吸附性等。
当污染物进入地下水体系后,其化学性质会引发一系列的物质迁移过程,如吸附到固体颗粒表面、降解为无害物质、被微生物转化等。
三、地下水污染物去除机理地下水污染物去除机理是指通过一系列的处理过程将污染物从地下水中去除的过程。
常见的地下水污染物去除方法包括物理方法、化学方法和生物方法。
1. 物理方法物理方法是利用物理原理对地下水污染物进行去除的方法。
常用的物理方法包括吸附、离子交换、膜分离和超滤等。
吸附是利用材料的吸附性能去除地下水中的污染物,如活性炭吸附法和沙滤吸附法。
离子交换是一种通过树脂或其他吸附材料去除地下水中痕量离子的方法。
膜分离是利用膜的分离性能将溶剂和溶质分开的方法。
2. 化学方法化学方法是指利用化学反应去除地下水中的污染物。
常用的化学方法包括氧化还原法、pH调节法和沉淀法等。
氧化还原法是通过氧化还原反应将污染物转化为无害物质,如高级氧化技术(HOT)和还原剂还原法。
pH调节法是通过调节地下水的pH值来加速污染物的降解。
水体污染物的迁移转化摘要:水是人类生存所必须,因而水体遭到污染则人类生存的环境品质就会大大的受损。
本文探讨了水体污染物的概念,总结了一下目前世界上所发现的水体污染物的主要种类,并且总结了水体污染物迁移转化的过程和方法,从中得出对水体污染物处理的一些解决方法。
关键词:迁移转化水体污染物1.水体污染物的概念水体污染物是指造成水体水质、水中生物群落以及水体底泥质量恶化的各种有害物质(或能量)。
水体污染物从化学角度可分为无机有害物、无机有毒物、有机有害物、有机有毒物4类。
2.水体污染物的分类和介绍2.1 耗氧污染物在生活污水、食品加工和造纸等工业废水中,含有碳水化合物、蛋白质、油脂、木质素等有机物质。
这些物质以悬浮或溶解状态存在于污水中,可通过微生物的生物化学作用而分解。
在其分解过程中需要消耗氧气,因而被称为耗氧污染物。
这种污染物可造成水中溶解氧减少,影响鱼类和其他水生生物的生长。
水中溶解氧耗尽后,有机物进行厌氧分解,产生硫化氢、氨和硫醇等难闻气味,使水质进一步恶化。
2.2 植物营养物植物营养物主要指氮、磷等能刺激藻类及水草生长、干扰水质净化,使BOD5升高的物质。
水体中营养物质过量所造成的"富营养化"对于湖泊及流动缓慢的水体所造成的危害已成为水源保护的严重问题。
富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。
在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。
这种自然过程非常缓慢,常需几千年甚至上万年。
而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。
植物营养物质的来源广、数量大,有生活污水(有机质、洗涤剂)、农业(化肥、农家肥)、工业废水、垃圾等。
污染物迁移及地下水污染防治技术研究一、污染物迁移的影响地下水是人类的重要水源之一,但是地下水质的污染已成为当今社会的重大环境问题之一。
当地下水中存在有害的化学物质时,这些化学物质可能会通过地层孔隙或裂缝逐渐向周围的区域扩散,导致了严重的污染。
污染物在地下水中的扩散不仅对水质造成影响,还可能危及附近的环境和人们的健康。
二、污染物迁移的机理污染物的迁移通常会受到许多因素的影响,包括水力、物理、化学等。
然而这些因素之间却有着复杂的相互作用关系。
1.水力因素:水力因素主要是由地下水的流动引起的。
地下水的流动可以使污染物向下游扩散至更远的区域。
地下水的流动速度以及地层的孔隙度和渗透率都会影响水力因素的影响。
2.物理因素:物理因素主要包括孔隙度和渗透度。
孔隙度指的是地层中孔隙的比例。
渗透度指的是地层中流体或气体穿过孔隙的难易程度。
高孔隙度和高渗透率使得地下水在地层裂缝或孔隙中的移动更容易。
3.化学因素:化学因素主要是由污染物与地下水的相互作用引起的。
当污染物与地下水相互作用时,它们的溶解度和吸附能力都会受到影响。
当地下水中存在一定量的有机物质时,它们会吸附在地层之中,导致化学反应,从而影响了污染物的稳定性。
三、地下水污染防治技术为了防止地下水的污染扩散,我们需要开发出不同的防治技术。
如下:1.生物技术:这种技术利用了自然或人工生态系统来去除水中的污染物。
通常是利用植物、微生物及其作用,使污染物的浓度逐渐降低。
例如,湿地生态系统被广泛应用于处理各类废水,并被证明是高效的技术研究手段之一。
2.化学技术:化学技术通过物理化学反应的形式,将有害的化学物质转化为无害的物质,或者将其吸附、分解、去除。
例如,活性炭用作吸附剂,可去除水中的挥发性有机物质。
3.物理技术:物理技术通过物理机制去除水中的污染物,可以模拟从地表到地下水的水力过程、保证良好的水流动条件。
例如,反渗透技术可通过半透膜分离去除有害物质及其他复杂的离子物质。