5向量与矩阵的范数
- 格式:ppt
- 大小:688.51 KB
- 文档页数:73
第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p×q, B q×p, 则|I p+AB|=|I q+BA|证明一:参照课本194页,例4.3.证明二:利用AB和BA有相同的非零特征值的性质;从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:n nii ii1i1tr(A)a====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2. Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4. 1tr(P AP)tr(A)-=;5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnk ki i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p x q, B q x p,则|l p+AB| = |l q + BA|证明一:参照课本194 页,例4.3.证明二:利用AB 和BA 有相同的非零特征值的性质;从而l p+AB ,l q+BA 中不等于1 的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
nn定义:tr(A) a ii i ,etrA=exp(trA)i 1 i 1性质:1. tr( A B) tr(A) tr(B) ,线性性质;2. tr(A T ) tr(A) ;3. tr(AB) tr(BA) ;14. tr(P 1AP) tr(A) ;5. tr(x H Ax) tr(Axx H),x 为向量;nn6. tr(A) i ,tr(A k) i k;i 1 i 1从Schur 定理(或Jordan 标准形) 和(4)证明;7. A 0,则tr(A) 0 ,且等号成立的充要条件是A=0;8. A B(即A B 0),则tr(A) tr(B),且等号成立的充要条件是A=B( A B i(A) i(B) );9. 对于n阶方阵A,若存在正整数k,使得A k=0, 则tr(A)=0 (从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m x n复矩阵A和B, tr(A H B)是m x n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式2[x,y] w [x,x]. [y,y]得定理:对任意两个m x n 复矩阵A 和B|tr(A H B)|2w tr(冲A) • tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
第五专题 矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例.证明二:利用AB 和BA 有相同的非零特征值的性质;从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:nnii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2.Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4.1tr(P AP)tr(A)-=; 5.H H tr(x Ax)tr(Axx ),x =为向量; 6. nnkk i i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A HB)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c 为一常数。
一、向量的范数定义1 设x=(x1 ,x2,…,x n )n ,y=(y1 ,y2,…,y n )n∈R n (或C n )。
将实数(或复数),称为向量x,y的数量积。
将非负实数或称为向量x的欧氏范数。
对向量x,y的数量积有:1. (αx,y)=α(x,y).α为实数(或(x,αy)=(x,y),α为复数);2. (x,y)=(y,x)[(x,y)=(,)];3. (x1 +x2 ,y)=(x1 ,y)+(x2 ,y);4. (Cauchy-Schwarz不等式)(5.1)等式当且仅当x与y线形相关时成立。
对向量x的欧氏范数有:1. ‖x‖2≥0, ‖x‖2 =0当且仅当x=0时成立;2. ‖αx‖2=|α|‖x‖2,任意的α∈R(或α∈C),3. ‖x+y‖2≤‖x‖2 +‖y‖2 (三角不等式),(5.2)注(5.1)和(5.2)有下面的事实得到(x+ty,x+ty)=(x,x)+2(x,y)t+(y,y)t2≥0由一元二次方程根的判别定理可知(5.1)成立;取t=1,再利用(5.1)得即得(5.2)。
定义2(向量的范数) 如果向量x∈R n (或C n )的某个实值函数N(x)=‖x‖, 满足条件:(1) ‖x‖≥0(‖x‖=0当且仅当x=0)(正定条件),(2) ‖αx‖=|α|·‖x‖,任意的α∈R(或α∈C),(3) ‖x+y‖≤‖x‖+‖y‖(三角不等式),则称N(x)是R n (或C n )上的一个向量范数(或模)。
下面我们给出几种常用的向量范数。
1. 向量的∞-范数(最大范数):(5.3)2. 向量的1-范数:3. 向量的2-范数:(5.4)4. 向量的p-范数:(5.5)例6 计算向量x=(1,-2,3)T的各种范数。
解:定理6(N(x)的连续性) 设非负函数N(x)=‖x‖为R n上任一向量范数,则N(x)是x的分量x1 ,x2,…,x n的连续函数。
证明设其中e i=(0,…,1,0,…,0)T, . 只须证明当x→y时N(x)→N(y)即成。
矩阵与向量相乘的范数矩阵与向量相乘的范数是线性代数中的重要概念。
在矩阵与向量的乘法中,范数指的是向量的大小或量级。
范数的概念被广泛应用于机器学习、优化等领域。
一、向量的范数在介绍矩阵与向量相乘的范数之前,我们需要先了解向量的范数。
向量的范数表示向量的大小或长度,常用的向量范数有L1范数、L2范数和L∞范数。
1. L1范数:L1范数是向量中各个元素的绝对值之和。
表示为:||x||1= ∑|xi|。
2. L2范数:L2范数是向量中各个元素的平方和的平方根。
表示为:||x||2=√(∑xi^2)。
3. L∞范数:L∞范数是向量中绝对值最大的元素。
表示为:||x||∞=max|xi|。
以上三种范数是最常用的向量范数,它们的应用场景不同。
二、矩阵与向量相乘的范数矩阵与向量相乘的范数同样有L1范数、L2范数和L∞范数等几种常用的范数。
下面我们来详细了解一下这些范数。
1. L1范数对于一个矩阵A与一个向量x相乘,其L1范数表示为||Ax||1=∑|Ai·x|,其中|·|表示求绝对值。
L1范数的应用很广泛,比如用于稀疏矩阵的正则化、Lasso回归等。
2. L2范数对于一个矩阵A与一个向量x相乘,其L2范数表示为||Ax||2=√(∑(Ai·x)^2),其中|·|表示求绝对值。
可以看到,L2范数是矩阵与向量之间内积的平方根。
L2范数常常被用在最小二乘问题中。
3. L∞范数对于一个矩阵A与一个向量x相乘,其L∞范数表示为||Ax||∞= max|Ai·x|。
L∞范数表示的是矩阵与向量之间内积的最大值,也称为Chebyshev范数或无穷范数。
在矩阵论中,L∞范数通常用于矩阵的幂级数。
三、总结本文主要介绍了矩阵与向量相乘的范数,分别介绍了L1范数、L2范数和L∞范数。
这些范数广泛应用于机器学习、优化等领域。
了解这些范数的应用场景,有助于我们更好地理解矩阵与向量相乘的结果。