列方程解和倍、差倍问题
- 格式:ppt
- 大小:1.98 MB
- 文档页数:6
《两个未知数额和倍问题、差倍问题》说课稿各位老师大家好!今天,我说课的课题是《含有两个未知数的和倍、差倍问题》,它是义务教育教科书人教版六年级上册第三单元的内容。
下面,我将从说教材、说教法学法、说教学流程三个方面进行说课。
一、说教材:1、地位与作用:《和倍差倍问题》是人教版小学数学六年级上册《分数除法》这一单元中的解决问题例6,这类问题在五年级上学期列方程解应用题中出现过,它包含两个未知量,题中给出了这两个未知量之间的两种关系,要求学生根据这样的关系列方程解答。
由于这两种关系中,一种是两个量之间的倍数关系,另一种是两个量之间的和或差的关系,因此,这样的问题称为“和倍问题”或“差倍问题”。
通过本节课的学习,可以让学生体会数学知识方法的内在联系,为解决有关的分数问题提供更多的支持,同时也为后面的百分数问题打下坚实的基础。
2、学情分析:知识:学生在五年级已初步掌握了和倍差倍问题的解决方法,能识用方程解答此类问题,为本课时的学习奠定了知识基础。
能力:通过前五年的学习,学生已有一定的合作、交流的能力,为本课时的学习提供了经验支持。
3、说教学目标(1)知识与技能:会根据关键句弄清数量关系设未知数,能列方程解答和倍差倍的实际问题,理解解答思路,掌握解题方法。
(2)过程与方法:培养学生的主体意识、创新意识、合作意识,以及分析、观察能力和表达能力。
(3)情感态度与价值观:让学生体验到生活中处处是数学,体验数学的应用价值和数学学习的乐趣及成就感。
4、说重点难点:基于以上认识,我把本课的教学目标确定为:教学重点:列方程解答“和倍、差倍”的实际问题,理解解题思路,掌握解题方法。
教学难点:正确分析题目中的数量关系,会设未知数。
二、说教法学法:《新课标》指出:“数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验,感受数学的力量”并且要“学会与人合作,并能与他人交流思维的过程和结果。
”因此,本课的教学中力求做到:1、针对问题、自主探索。
和倍问题差倍问题和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。
求出倍数和之后,再求出标准的数量是多少。
根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解答和倍应用题的最好助手是,采用画线段图的方法来表示两种量间的数量关系,以便找到解题的途径;理解和倍问题中各个量之间的关系。
和倍问题和+(倍数-1)=小数小数X倍数=大数差倍问题差。
(倍数-1)=小数小数X倍数=大数一、和倍问题例题例1:甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?集体讨论:甲班和已班各占多少分,你能不能画出倍数图线?分析与解答:设乙班的图书本数为1份,则甲班图书为乙班的3倍,那么甲班和乙班图书本数的和相当于乙班图书本数的4倍.还可以理解为4份的数量是160本,求出1份的数量也就求出了乙班的图书本数,然后再求甲班的图书本数.用下图表示它们的关系:乙班〕本位3倍口本甲班( -- ,.. •,1T本解:乙班:160+(3+1)=40 (本)甲班:40X3=120 (本)或160-40=120(本)答:甲班有图书120本,乙班有图书40本。
这道应用题解答完了,怎样验算呢?可把求出的甲班本数和乙班本数相加,看和是不是160本;再把甲班的本数除以乙班本数,看是不是等于3倍.如果与条件相符,表明这题作对了.注意验算决不是把原式再算一遍。
验算:120+40=160(本)120 + 40=3 (倍)。
例2:汽车运输场有大小货车115辆,大货车比小货车的5倍多7 辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的 5 倍还多7辆,这7 辆也在总数115辆内,为了使总数与(5+1)倍对应,总车辆数应(115-7)辆。
列式为(115-7 ) + (5+1 )=18 (辆)18 X 5+7=97 (辆)例3:甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍?集体讨论:你能画出图线来表示题中甲班和已班的倍数的关系吗?工班二p题本_________________:_ 、甲班(12 0本分析与解答:解这题的关键是找出哪个量是变量,哪个量是不变量从已知条件中得出,不管甲班给乙班多少本书,还是乙班从甲班得到多少本书,甲、乙两班图书总和是不变的量.最后要求甲班图书是乙班图书的2倍,那么甲、乙两班图书总和相当于乙班现有图书的3倍.依据解和倍问题的方法,先求出乙班现有图书多少本,再与原有图书本数相比较,可以求出甲班给乙班多少本书(见上图)。
小学三年级数学:和差、和倍与差倍问题详解(附例题)和差问题已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
其实,解和差问题,还有一段顺口溜:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
和差问题的解题公式:大数=(和+差)÷2小数=(和-差)÷2例1、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
例2、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米。
和倍问题已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数为了帮助我们理解题意,弄清两种量彼此间的关系,常采纳画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。
例1、果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵?248÷(3+1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:杏树有62棵,桃树有186棵。
例2、东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解(1)西库存粮数=480÷(1.4+1)=200(吨)(2)东库存粮数=480-200=280(吨)答:东库存粮280吨,西库存粮200吨。
例3、甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?解:160÷(3+1)=40本乙40×3=120本甲答:甲班120本,已班40本。
六年级奥数和倍、差倍、和差问题师友教育六年级奥数第二十三讲:和倍问题和倍问题是指已知两个数的和与它们之间的倍数关系,求这两个数各是多少的应用题。
解决这类问题的最好方法是根据题意画出线段图,使数量关系一目了然,从而正确列式计算。
解答和倍问题的关键是找出两数的和以及与其对应的倍数和。
基本数量关系公式有两种:1.和÷(倍数+1)=小数;小数×倍数=大数(几倍数)2.两数和-小数=大数如果遇到三个或三个以上的数的倍数关系,也可用这个公式。
(首先找最小的一个数,再找出另几个数是最小数的倍数即可)例1.幼儿园的老师和小朋友共有81人在做游戏,小朋友们总是跟着自己的老师转,每位老师身边都有8个小朋友,问:小朋友有多少个?老师有多少人?练1:1.学校有科技书和故事书共480本,科技书的本数是故事书的3倍,两种书各多少本?2.这个养鸡场有公鸡、母鸡各多少只?3.学校将360本图书分给二、三年级,已知三年级所得的本书比二年级的2倍还多60本,二、三年级各得图书多少本?4.得的邮票XXX比妹妹的4倍少10张,弟弟和妹妹各分得邮票多少张?例2.甲、乙、丙3数和是183,乙比丙的2倍少4,甲比丙的3倍多7,求甲、乙、丙三数各是多少?解析:乙数加上4就是丙数的2倍,甲数减少7就是丙数的3倍。
而总数也就应该加上4,再减去7.丙数1倍数,乙是2倍数。
甲是3倍数,先求丙。
丙数=(183+4-7)÷(1+2+3)=30,乙数=30×2-4=56,甲数=30×3+7=97.练2:1.三堆糖果共有105颗,其中第一堆糖果的数量是第二堆的3倍,而第三堆糖果的数量又比第二堆的2倍少3颗。
第三堆糖果有多少颗?2.甲、乙、丙三个粮仓一共存有109吨粮食,其中甲粮仓的粮食总量比乙粮仓的3倍多1吨,而乙粮仓的粮食总量则是丙粮仓的2倍。
问:甲粮仓比丙粮仓多存粮多少吨?3.得的邮票XXX比妹妹的4倍少10张,弟弟和妹妹各分得邮票多少张?4.学校将360本图书分给二、三年级,已知三年级所得的本书比二年级的2倍还多60本,二、三年级各得图书多少本?5.果园里有桃树、梨树、苹果树共552棵。
小学数学和倍、差倍、和差问题详解,解题思路、方法题目:班里有男生、女生共45人。
男生的人数是女生的4倍。
男生和女生各有多少人?其实这就是最简单的和倍问题。
已知两个数的和及这两个数的倍数关系,求这两个数分别是多少,就是和倍问题。
低年级的和倍问题解题思路:分析: 1.先找出1份(1倍数)——女生的人数。
则男生就是4份(4倍数)。
2.再看男生女生的和是45 ,相对应的份数是4+1=5份。
3.最后用45÷(4+1)=9(人),算出1份的(1倍数)是多少,然后就可以根据倍数关系4×9=36(人)。
高年级方程方法反而理解起来更简单。
方程法:设女生的人数为人。
那么男生的人数就是4x人。
x+4x=45进行解答就可以了。
x=9(人)——女生人数‘男生4x=36(人)和倍问题的数量关系:和÷(倍数+1)=1倍数。
2 几倍数=和-1倍数或者1倍数×倍数。
二、差倍问题已知两个数的差及这两个数的倍数关系,求这两个数分别是多少的问题就是差倍的问题。
题目:王奶奶家养的鸡比鸭多60只,鸡的只数是鸭的7倍。
鸡和鸭个有多少只?低年级的一般思路:分析:1. 先找出1份(1倍数)——鸭,那么鸡就是7份(7倍数)2.再看鸡和鸭的只数差是60,相对应的鸡和鸭的份数差是(7-1)=6份(6倍数)3.最后用60÷(7-1)算出的1份(1倍数)是10也就是鸭的只数。
鸡的只数就是7×10=70(只)或者10+60=70(只)方程法:设鸭有x只,那么鸡就是7x只。
方程为7x-x=60 则x=10(只)鸭为70只。
差倍是数量关系:1.差÷(倍数-1)=1 倍数。
2.几倍数=差+1倍数或者几倍数=1倍数×倍数。
三和差的问题已知两个数的和及这两个数的差,求这两个数的各是多少,就是和差问题。
题目:王奶奶家养了鸡和鸭共80只,鸡比鸭多60只。
鸡和鸭分别有多少只?分析思路:1.假设鸭和鸡同样多,则鸡和假设的鸭的总数就是80+60=140(只)140÷2=70(只)就是鸡的只数。
和倍、差倍、和差问题及答案数学特长生试题(1)1、两个数的和是682,其中一个加数的个位是X,若把X去掉,则与另一个加数相同,这两个数各是多少?解题思路:设其中一个加数为a,另一个加数为b,根据题意可得:a +b = 682a - X +b = b + b化简可得:a = 2b - X将a代入第一个等式中,得到:3b - X = 682因为X是个位数,所以X只能是2或7,代入方程可得:b = 228,a = 454 或 b = 227,a = 455所以答案为:454和228,或者455和227.2、甲、乙两个车间共生产机床664台,甲车间的产量是乙车间的3倍,两个车间各生产机床多少台?解题思路:设乙车间生产的机床数为x,则甲车间生产的机床数为3x。
根据题意可得:3x + x = 664化简可得:x = 166,所以乙车间生产的机床数为166,甲车间生产的机床数为498.3、某印刷厂第一季度共印书册,二月份印的册数是一月份的2倍,三月份印的册数是一月份的3倍,一、二、三月份各印书多少册?解题思路:设一月份印的书数为x,则二月份印的书数为2x,三月份印的书数为3x。
根据题意可得:x + 2x + 3x =化简可得:x = ,所以一月份印的书数为,二月份印的书数为,三月份印的书数为.4、___一、二月份共生产电机400台,二月份生产的台数比一月份生产的台数的5倍还少68台,两个月各生产多少台?解题思路:设一月份生产的电机数为x,则二月份生产的电机数为5x - 68.根据题意可得:x + 5x - 68 = 400化简可得:x = 94,所以一月份生产的电机数为94,二月份生产的电机数为462.5、甲库存粮108吨,乙库存粮140吨,要使甲库存粮是乙库的3倍,必须从乙库运出多少吨放入甲库?解题思路:设从乙库运出的粮食重量为x,则甲库存粮为3乙库存粮。
根据题意可得:3乙 - 108 = 乙 + x - x化简可得:x = 224,所以从乙库运出224吨放入甲库。
小学数学“和差问题、和倍问题、差倍问题、倍比问题”总结+解题思路+例题整理一、和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解:甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米。
例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
解:甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。
由此可知甲袋化肥重量=(22+2)÷2=12(千克)丙袋化肥重量=(22-2)÷2=10(千克)乙袋化肥重量=32-12=20(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此甲车筐数=(97+14×2+3)÷2=64(筐)乙车筐数=97-64=33(筐)答:甲车原来装苹果64筐,乙车原来装苹果33筐。
二、和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
和差问题已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
其实,解和差问题,还有一段顺口溜:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
和差问题的解题公式:大数=(和+差)÷2小数=(和-差)÷2例1、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
例2、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米。
和倍问题已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。
例1、果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵?248÷(3+1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:杏树有62棵,桃树有186棵。
例2、东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解(1)西库存粮数=480÷(1.4+1)=200(吨)(2)东库存粮数=480-200=280(吨)答:东库存粮280吨,西库存粮200吨。
例3、甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?解:160÷(3+1)=40本乙40×3=120本甲答:甲班120本,已班40本。