列方程解应用题-和差倍问题
- 格式:doc
- 大小:46.00 KB
- 文档页数:10
人教版七年级下册数学二元一次方程组应用题(和差倍分问题)1.第一小组的同学分铅笔若干支,若每人各取5支,则还剩4支;若有1人只取2支,则其余每人恰好6支.问第一小组同学有多少人?铅笔有多少只?2.甲仓库存粮比乙仓库存粮少5吨,现从甲仓库运出存粮30吨,从乙仓库运出存粮的40%,这时乙仓库所余粮食是甲仓库所余粮食的2倍,问甲、乙两仓库原各存粮多少吨?3.用一根绳子环绕一棵大树.若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少了3尺.这根绳子有多长?环绕大树一周需要多少尺?4.某中学为了丰富学生的课外体育活动,准备购买一批新的篮球和足球总共160个.已知购买篮球的数量比足球的数量的2倍还多10个,求购买的篮球和足球的数量分别是多少个5.高台县为加快新农村建设,建设美丽乡村,对A、B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;巷道镇建设了2个A类村庄和5个B类村庄共投入资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)骆驼城镇改建3个A类美丽村庄和6个B类美丽村庄共需资金多少万元?6.学校开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品.若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.求甲、乙两种笔记本的单价各是多少元?7.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.求甲、乙两种办公桌每张各多少元?8.新冠肺炎疫情期间,佩戴口罩是做好个人防护的重要举措。
小明家先后两次在同一电商平台以相同的单价邮购买了A、B两种型号的口罩,第一次购买20个A型口罩,30个B型日单,共花费190元;第二次购买30个A型口罩,20个B型口罩,共花费160元,求A、B两种型号口罩的单价.9.李欣同学昨天在文具店买了2本笔记本和4支水笔,共花了14元;王凯以同样的价格买了1本笔记本和3支水笔,共花了9元;问笔记本和水笔的单价各是多少元?10.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?11.列一元一次方程解应用题:某仓库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个仓库中的57,问每个仓库各有多少吨粮食?12.养牛场原有的大牛和小牛一天约用饮料475kg;一周后购进一批大牛和小牛后,这时大牛数量增加为原来的3倍,小牛数量增加为原来的2倍,一天约用饮料1350kg,已知大牛一天的饮料需20kg,小牛一天的饮料需5kg,则养牛场原有大牛和小牛数量各是多少?13.我校去年有学生3100名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名?14.《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从树上飞下去一只,则树上、树下的鸽子就一样多了.”地上的鸽子对树上的鸽子说:“若从地上飞到树上一支鸽子,则树上鸽子是地上的3倍.”你知道树上,树下各有多少只鸽子吗?15.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍.如果我给你一袋,我们才恰好驮的一样多!”求驴子和骡子原来所驮货物分别为多少袋?16.体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元,求商店购进篮球,排球各多少个?17.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.18.在某超市小明买了1千克甲种糖果和2千克乙种糖果,共付38元;小强买了2千克甲种糖果和0.5千克乙种糖果,共付27元.(1)求该超市甲、乙两种糖果每千克各需多少元?(2)某顾客到该超市购买甲、乙两种糖果共20千克混合,欲使总价不超过240元,问该顾客混合的糖果中甲种糖果最少多少千克?19.南充某制衣厂现有22名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子配套,一件衬衫配两条裤子,则应各安排多少人分别制作衬衫和裤子?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,在(1)的条件下,求该厂每天制作衬衫和裤子所获得的利润?20.某农户原有15头大牛和5头小牛,每天约用饲料325kg;两周后,由于经济效益好,该农户决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg.问每头大牛和每头小牛1天各需多少饲料?。
一元一次方程的应用——和差倍分问题专题练习1、在一次美化校园活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和支援植树的分别有多少人?若设支援拔草的有x人,则下列方程中正确的是().A.32+x=2×18B.32+x=2(38-x)C.52-x=2(18+x)D.52-x=2×18答案:B解答:设支援拔草的有x人,则支援植树的有(20-x)人,由题意得:32+x=2(18+20-x)32+x=2(38-x).故符合题意的为B选项.2、某物流中心的A仓库有货物180吨,B仓库有货物120吨,现在需把B 仓库一部分货物运到A仓库,使B仓库货物占A仓库货物总量的30%.设把B仓库的货物运送x吨到A仓库,则可列方程().A.120-x=30%×180B.120-x=30%(180+x)C.120+x=30%×180D.180-x=30%(120+x)答案:B解答:设把B仓库的货物运送x吨到A仓库,根据题意得,120-x=30%(180+x).选B.3、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是().A.2×1000(26-x)=800xB.1000(13-x)=800xC.1000(26-x)=2×800xD.1000(26-x)=800x答案:C解答:∵安排x名工人生产螺钉,∴安排(26-x)名工人生产螺母,则每天生产螺钉800x个,每天生产螺母1000(26-x)个,根据“螺母个数=2×螺钉个数”可列方程为1000(26-x)=2×800x.选C.4、已知三角形的三边长为连续整数,且周长为12c m,则它的最短边长为().A.2c mB.3c mC.4c mD.5c m答案:B解答:设大小处于中间的边长是x c m,则最大的边是(x+1)c m,最小的边长是(x-1)c m.则(x+1)+x+(x-1)=12,解得:x=4,则最短的边长是:4-1=3c m.选B.5、甲、乙、丙三种商品单价的比是6:5:4,已知甲商品比丙商品的单价多12元,则三种商品的单价之和为( ).A . 75元B . 90元C . 95元D . 100元答案:B解答:设甲、乙、丙三种商品的单价分别为6x ,5x ,4x , 则6x -4x =12,解得x =6,∴三种商品的单价之和为6×6+5×6+4×6=90.6、父亲现在32岁,儿子现在5岁,x 年前,父亲的年龄是儿子年龄的10倍,则x 应满足的方程是( ). A . 32-x =5x B . 32-x =10(5-x )C . 32-x =5×10D . 32+x =5×10答案:B解答:x 年前,父亲年龄是:32-x ,儿子年龄是5-x ,父亲的年龄=10×儿子的年龄,列式为:32-x =10(5-x ).7、我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ). A . 3x +3(100-x )=100 B . 3x -3(100-x )=100C . 3x +1003x-=100 D . 3x -1003x-=100 答案:C解答:设大和尚有x人,则小和尚有(100-x)人;根据大和尚1人分3个,小和尚3人分1个,正好分完100个馒头,∴3x+1003x=100,故答案为C.8、长沙是中国男足的福地,3月23日中国队1:0胜韩国队,赢得12强赛的首场胜利!已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负了5场,共得23分,那么这个队胜了().A.5场B.6场C.7场D.8场答案:C解答:设共胜了x场,则平了(14-5-x)场,由题意得:3x+(14-5-x)=23,解得:x=7,即这个队胜了7场.选C.9、我国明代著名数学家程大位的《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿长为x尺,根据题意列一元一次方程,正确的是().A.12x+5=x-5B.12x-5=x+5C.12(x-5)=x+5D.12(x+5)=x-5答案:D解答:绳索长为x+5或2(x-5),∴有x+5=2(x-5)即12(x+5)=x-5.二、填空题10、传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x表示珐琅书签的销量,则可列出一元一次方程______.答案:(2x-700)+x=5900解答:∵文创笔记本的销量比珐琅书签销量的2倍少700件,∴文创笔记本的销量为(2x-700)件,∵二者销量之和为5900件,∴可列方程为:(2x-700)+x=5900.故答案为:(2x-700)+x=5900.11、一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为______.答案:37解答:设个位数是a,十位数是b,则有①②410a ba b-=⎧⎨+=⎩①②,①+②得:2a=14,解得:a=7,将a=7代入①得:7-b=4解得:b=3,∴这个数是37.12、我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:一百慢头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是有100个和尚分100个馒头,正好分完,如果大和尚一人分3个,小和尚3人分一个.试间大小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为______.答案:1 31003100 xyx y⎧+=⎪⎨⎪+=⎩解答:131003100xyx y⎧+=⎪⎨⎪+=⎩.13、父亲和女儿的年龄之和是54,当父亲的年龄是女儿现在年龄的3倍时,女儿的年龄正好是父亲现在年龄的17,则女儿现在的年龄是______.答案:12解答:父亲与女儿年龄差恒定不变.设女现x岁,则父(54-x)岁,父女年龄差为(54-2x)岁,列3x-547x-=54-2x,解得x=12.14、清人徐子云《算法大成》中有一首名为“寺内僧多少”的诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧.诗的大意是:在巍巍的大山和茂密的森林之中,有一座千年古寺,寺中有364只碗,要是3个和尚共吃一碗饭,4个和尚共喝一碗粥,这些碗刚好用完,问寺内有多少和尚?设有和尚x 人,由题意可列方程为______. 答案:3x +4x =364 解答:∵有和尚x 人,∴需要3x 只碗装饭,4x 只碗装粥,根据寺中有364只碗,即可得出关于x 的一元一次方程为3x+4x =364. 三解答题15、某校购买了A ,B 两种教具共138件,共花了5400元,其中A 教具每件30元,B 教具每件50元,两种教具各买了多少件? 答案:A 教具买了75件,B 教具买了63件.解答:设A 教具买了x 件,则B 教具买了(138-x )件,依题意有: 30x +50(138-x )=5400 解得x =75,则B 教具买了:138-75=63件,答:A 教具买了75件,B 教具买了63件.16、为发展校园足球运动,某校决定购买一批足球运动装备,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,求每套队服和每个足球的价格是多少.答案:队服150元,足球100元.解答:设每个足球的价格是x 元,则每套队服是(x +50)元, 根据题意得2(x +50)=3x , 解得x =100, x +50=150.答:每套队服150元,每个足球100元. 17、列方程解应用题:改革开放40年来,我国铁路发生了巨大变化,现在的铁路运营里程比1978年的铁路运营里程多了75000公里,其中高铁更是迅猛发展,其运营里程约占现在铁路运营里程的20%,只差600公里就达到了1978年的铁路运营里程的一半.问1978年的铁路运营里程是多少公里. 答案:52000公里.解答:设1978年铁路运营里程为x 公里, 由题意,得12x -600=20%(x +75000), 解得x =52000.∴1978年铁路运营里程为52000公里.18、机械厂加工车间有90名工人,平均每人每天加工大齿轮16个或小齿轮28个,已知大齿轮和小齿轮要按1:2配成一套,问需安排多少名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套?(用一元一次方程解答) 答案:42.解答:设安排x 人加工大齿轮,则(90-x )人加工小齿轮, 才能使每天加工的代销齿轮刚好配套,由题可得:()162890x x -=12,解得:x =42,∴需安排42名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套. 19、第十六届亚运会于2010年11月27日在中国广州举行,我国体育健儿发扬奋勇拼搏,敢于争先的奥运精神,在这次亚运会上共获得416枚奖牌,其中金牌数是铜牌数的2倍多3枚,而铜牌数比银牌数少21枚,请问:中国体育健儿共获得金牌、银牌、铜牌各多少枚?答案:共获得金牌199枚,银牌119枚,铜牌98枚.解答:设获得铜牌x枚,则金牌(2x+3)枚,银牌(x+21)枚,则2x+3+x+21+x=416,4x=392,x=98.∴2x+3=199,x+21=119.答:共获得金牌199枚,银牌119枚,铜牌98枚.20、列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子.答案:25个椅子,15个凳子.解答:设有x个椅子.根据题意列方程,得4x+3(40-x)=145.解方程,得:x=25.∴40-x=15.答:有25个椅子,15个凳子.21、某快递员预备送出一批美术用纸共25500包,其中包括素描纸、手工彩色卡纸和水粉纸三种美术用纸,它们的数量比为1:2:14,该快递员预备送出的这三种美术用纸各多包?答案:素描纸为1500包,手工彩色卡纸为3000包,水粉纸为21000包.解答:设素描纸包数为x,则手工彩色卡纸为2x,水粉纸为14x,∵美术用纸共25500包,∴x+2x+14x=25500,17x=25500,x=1500(包).∴2x=3000(包),14x=21000(包),答:素描纸为1500包,手工彩色卡纸为3000包,水粉纸为21000包.22、制作一张桌子要用1个桌面和4条腿,1立方米木材可制作20个桌面或者制作400条桌腿,现有24立方米木材,应分别计划用多少立方米木材制作桌面和桌腿?答案:计划用20立方米木材制作桌面,4立方米木材制作桌腿.解答:计划用x立方米木材制作桌面.则用(24-x)立方米木材制作桌腿.由题意,得20x×4=(24-x)×400.整理,得6x=120,解,得x=20.24-20=4.答:计划用20立方米木材制作桌面,4立方米木材制作桌腿.23、某工厂现有15m3木料,预备制作各种尺寸的圆桌和方桌,如果用部分木料制作桌面,其余木料制作桌腿.1、已知一张圆桌由一个桌面和一条桌腿组成,如果1m3木料可制作40个桌面,或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,直接写出制作桌面的木料为多少m3.2、已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题.(1)如果1m3木料可制作50个桌面,或制作300条桌腿,应怎样计划用料才能使做好的桌面和桌腿恰好配套.(2)如果3m3木料可制作20个桌面,或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子.答案:1、制作桌面的木料为5m3.2、(1)用9m3木料制作桌面,用6m3木料制作桌腿恰好配套.(2)用12m3木料制作桌面,用3m3木料制作桌腿能制作尽可能多的桌子.解答:1、设用x m3木料制作桌面,则用(15-x)立方米木料制作桌腿恰好配套,由题意得40x=20(15-x),解得:x=5.答:制作桌面的木料为5m3.2、(1)设用x m3木料制作桌面,则用(15-x)立方米木料制作桌腿恰好配套,由题意得4×50x=300(15-x),解得:x=9,∴制作桌腿的木料为:15-9=6(m3).答:用9m3木料制作桌面,用6m3木料制作桌腿恰好配套.(2)设用y m3木料制作桌面,则用(15-y)m3木料制作桌腿能制作尽可能多的桌子,由题意得4×20×3y =320×153y , 解得y =12,∴15-12=3m 3.。
2
1
/
6
/
8
1
三、和差倍分
()设未知数时,要注意单位,相等关系应时表示问题全部含义的关系;()对于方程的解必须检验是否符合实际,对于与现实生活不符的结果,要进行必要的取舍.
()一般情况下,题中多给条件在列方程时不能重复使用,也不能漏掉不用.重复使用,会得到一个恒等式,无法求得方程的解;而漏掉不用,说明所列方程可能有误.
解决此类问题,首先找到题目中表示相等关系的关键词语,如“和、差、积、商、大小、多少、几倍、几分之几”等.
设未知数可以直接设元,也可以间接设元,一般设单位“
”为未知数,方便表示.
爱智康 20
18/06/121231为了支援青海玉树地震灾区人民重建家园,初一年级某班名学生先后两次自愿捐款,共捐款元,已知第二次平均每人捐款数额比第一次平均每人捐款数额多元,问第一次和第二次平均每人捐款各多少元?40520030。
列方程解决问题之和差倍问题【教学目标】1.能够找出题中的未知量和已知量之间的等量关系2.能够根据这个等量关系列出相应的方程3.能熟练地解方程找出问题的答案【教学重点】1.能够找出题中的未知量和已知量之间的等量关系2.能够根据这个等量关系列出相应的方程【教学难点】1.能够找出题中的未知量和已知量之间的等量关系【教学过程】1.知识点的回顾:列方程解应用题的步骤。
2.引导学生如何找等量关系,列出方程并求解。
3.具体运用:和差倍的运用。
【知识精要】知识点1 列方程解应用题步骤认真审题;(需要画线段图的画出线段图)正确找出等量关系;列出式子或方程;解题并仔细检查或验算,写出答句。
知识点2 和差倍和倍问题和差倍问题,一般先找到问题中两者之间的关系,然后设较小的量为未知量,通过题目中所给的条件,列方程【例题解析】【例1】 一个长方形周长是122米,长比宽多11米,长和宽各是多少米?它的面积是多少? 解:设宽为x 米,则长为(11+x )米 (x+11+x )×2=122 2x+11=61 x=25宽为25米,长为36米,S=36×25=900m 2【例2】已知梯形的面积是78平方米,上底是下底的一半,上底长10.4米,高是多少米?解:设高为x 米, (10.4+10.4×2)x÷2=78 x=5【例3】广场上要做一个星形形状的花园,由四个相同的三角形组成,中间是正方形。
已知每个三角形的高为5米,面积为9平方米。
那么正方形周长为多少米?解:设三角形的底为x 米5x÷2=9 x=3.6正方形的周长为3.6×4=14.4米【例4】如图,已知AB=25cm ,CD=36cm ,BE=22.5cm ,求AC 的长.解:设AC 的长为xcm22.5x÷2=25×36÷2x=40【例5】甲、乙两个化肥厂共生产化肥640吨,甲厂的产量比乙厂的3倍多10吨,两厂各生产化肥多少吨?解:设乙厂生产化肥x 吨 3x+10+x=640 X=157.5 3×157.5+10=482.5(吨)答:甲、乙两厂各生产化肥482.5吨、157.5吨。
列方程解应用题(三)【知识要点梳理】和差倍分问题:【典型例题探究】例1.(2008海南中考)根据北京奥运票务网站公布的女子双人3米跳板跳水决赛的门票价格(如表1),小明预定了B等级、C等级门票共7张,他发现这7张门票的费用恰好可以预订3张A等级门票.问小明预定了B等级、C等级门票各多少张?表1:例2.有一只船,载重800吨,容积是795m3,现在装运铁和棉花两种物质,铁每吨体积是0.3m3,棉花每吨体积4m3,钢铁和棉花各装多少吨才能充分利用船舱的载重量和容积?例3.一个三角形三条边长的比是2:4:5,最长的一条边比最短的一条边长6厘米,求这个三角形的周长.例4.(2010北京)2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?例5. 某校组织初一师生春游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加春游的人数.(2)已知租用45座的客车日租金为每辆车250元,60座的客车日租金为每辆300元,问租用哪种客车更合算?例6. 某地抗洪救灾中,在甲处有146名战士,在乙处有78名战士,现从别处调来160名战士支援救灾,要使甲处的人数是乙处人数的3倍,则应调往甲、乙两处各多少名战士?例7. 为鼓励节约用水,某地按以下规定收取每月水费,如果每月每户用水不超过20吨,那么每吨水费按1.2元收费,如果每月每户用水超过20吨,那么超过部分按每吨2元收费,若某用户五月份的水费平均每吨1.5元,问该用户应交水费多少元?【基础达标演练】1.(2007绵阳中考)学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,共计用了112元,已知每张甲票比每张乙票贵2元,则甲乙票的票价分别是多少?2.(2009湖北恩施)手牵着手,心连着心.2008年5月12日发生在四川汶川的特大地震灾害,牵动着全中国人民的心.某校团支部发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款 4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?3.(2009北京)北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日至2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1 696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?4. 某套书分上、中、下三册,印上册用了全部印刷时间的40%,印中册用了全部印刷时间的36%,印下册用了24天.印完全套书共用了多少天?5. 甲、乙、丙、丁四位同学共集邮370枚.如果给甲补充10枚,给乙减少20枚,给丙的张数扩大到原来的2倍,给丁的张数缩小到原来的21,四个人的邮票数正好相等,那么甲原来有多少枚?6.初一年级甲、乙两个班共有100人,其中参加数学活动小组的有42人,已知甲班学生有31参加数学活动小组,乙班学生有21参加数学活动小组,求各班学生的人数.7. 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只?8. 用库存化肥给麦田追肥,如果每亩施肥6千克,库存缺少200千克,如果每亩施肥5千克,库存还剩下300千克,问:有多少亩麦田?库存化肥有多少千克?9. 针对居民用水浪费现象,某市制定居民用水标准规定三口之家楼房,每月标准用水量,超标部分加价收费,假设不超标部分每立方米水费1.3元,超标部分每立方米水费2.9元,某住楼房的三口之家某月用水12立方米,交水费22元,请你通过列方程求出该市三口之家楼房的标准用水量为多少立方米?10.2009年4月深圳出租车(红的一类车)白天的收费标准调整为为:起步价12.5元(即行驶距离不超过3千米都需付12.5元),行驶超过3千米以后,每增加1千米加收2.4元(不足1千米时按1千米计算).张明和王晨乘坐这种出租车去博物馆参观,下车时他们交付了24.5元车费,那么他们搭乘出租车最多走了多少千米(不计等候时间)?【能力提升训练】1.光明中学初中一年级一、二、三班,向希望学校共捐书385本,一班与二班捐书的本数之比为4:3,一班与三班捐书的本数之比为6:7,那么二班捐书多少本?2. 将一批梧桐树苗栽在马路的两旁,若每隔3米栽一棵,则剩下6棵树苗;若每隔2.5米栽一棵,则还缺154棵树苗.求这条马路的长及这批树苗的棵数.3. 黄帝故里的门票价格规定如下表:都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少元钱?(2)两班各有多少名学生?4.(2009湖南省株洲市)初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分....每份可得0.2元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.(2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.* 5.(甘肃中考)某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的32,若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票数的53;零售票每张16元,共售出零售票数一半,如果在六月份内,团体票每张16元出售,共计划在六月份内售出全部剩余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?。
、列方程组解应用题的常见题型.(1)和差倍分问题:解这类问题的基本等量关系式是:较大量=较小量+多余量,总量=倍数×1倍量.例;第一个容器有49L水,第二个容器有56L水,如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水是这个容器容量的二分之一;如果将第一个容器的水倒满第二个容器,那么第一个容器剩下的水是这个容器容量的三分之一,求这两个容器的容量.(2)产品配套问题:解这类问题的基本等量关系式是:加工总量成比例.例:某车间有28名工人参加生产某种特制的螺丝和螺母,已知平均每人每天只能生产螺丝12个或螺母18个,一个螺丝装配两个螺母,问应怎样安排生产螺丝和螺母的工人,才能使每天的产品正好配套?(3)速度问题:解这类问题的基本关系式是:路程=速度×时间.路程差=速度差×时间。
路程和=速度和一般又分为相遇问题、追及问题及环形道路问题例:某人从甲地骑车出发,先以12km/h的速度下山坡,后以9km/h的速度过公路到达乙地,共用55min;返回时,按原路先以8km /h的速度过公路,后以4km/h的速度上山坡回到甲地,共用1h30min,问甲地到乙地共多少千米?例:一列快车长70m,一列慢车长80m,若两车同向而行,快车从追上慢车开始到离开慢车,需要1min;若两车相向而行,快车从与慢车相遇到离开慢车,只需要12s,问快车和慢车的速度各是多少?例:甲、乙两人在200m的环形跑道上练习竞走,乙的速度比甲快,当他们都从某地同时背向行走时,每隔30s种相遇一次;同向行走时,每隔4分钟相遇一次,求甲、乙两人的竞走速度.(4)航速问题:此类问题分水中航行和风中航行两类,基本关系式为:顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速例:甲轮从A码头顺流而下,乙轮从B码头逆流而上,两轮同时相向而行,相遇于中点,而乙轮顺流航行的速度是甲轮逆水航行的速度的2倍,已知水流速度是4km/h,求两轮在静水中的速度.(5)工程问题:解这类问题的基本关系式是:工作量=工作效率×工作时间.一般分为两类,一类是一般的工程问题,一类是工作总量为1的工程问题.例:一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?例:.一项工程,甲队单独做要12天完成,乙队单独做要15天完成,丙队单独做要20天完成.按原定计划,这项工程要求在7天内完成,现在甲、乙两队先合做若干天,以后为加快速度,丙队也同时加入这项工作,这样比原定时间提前一天完成任务.问甲、乙两队合做了多少天?丙队加入后又做了多少天?(6)增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量.例:某中学校办工厂今年总收入比总支出多30000元,计划明年总收入比总支出多69600元,已知计划明年总收入比今年增加20%,总支出比今年减少8%,求今年的总收入和总支出.(7)盈亏问题:解这类问题关键是从盈(过剩)、亏(不足)两个角度来把握事物的总量.例:为了迎接新学期开学,某服装厂赶制一批校服,要求必须在规定时间内完成,在生产过程中,如果每天生产50套,这将还差100套不能如期完成任务;如果每天生产56套,就可以超额完成80套,问原计划生产校服的套数及原计划规定多少天完成?(8)数字问题:解这类问题,首先要正确掌握自然数、奇数、偶数等有关数的概念、特征及其表示.如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等.有关两位数的基本等量关系式为:两位数=十位数字×10+个位数字.例:一个两位数的个位数字比十位数字大5,如果把个位数字与十位数字对换,所得的新两位数与原两位数相加的和为143,求这个两位数.(9)几何问题:解这类问题的基本关系是有关几何图形的性质、周长、面积等计算公式.例:有两个长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.(10)年龄问题:解这类问题的关键是抓住两人年龄的增长数相等,两人的年龄差是永远不会变的.例:师傅对徒弟说:“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的老人了”.问这位师傅与徒弟现在的年龄各是多少岁?1一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?2 有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?3.种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。
沪教版五年级下册《列方程解应用题——和倍、差倍问题(第二课时)》数学教案教学目标1.了解和倍、差倍问题的概念和应用场景;2.掌握列方程解和倍、差倍问题的方法;3.进一步培养学生数学思维和解决问题的能力;4.提高课堂互动和合作能力。
教学重点1.理解和应用和倍、差倍问题的解题方法;2.掌握列方程解和倍、差倍问题的方法。
教学难点1.解决和倍、差倍问题时,需要通过列方程求解;2.解决问题时需要综合运用所学知识。
教学过程导入(5分钟)1.引导学生思考日常生活中的和倍、差倍问题;2.提问不同的应用场景,如购物、建筑等。
演示(10分钟)1.讲解和倍、差倍问题的概念,如:若甲数是乙数的倍数,则称甲数是乙数的倍数;2.配合具体例子模拟解题过程;3.强调需要列方程解题,以图表形式表示问题。
合作探究(25分钟)1.按照题目进行分组,每组学生分配同一道题目;2.鼓励学生利用所学知识,进行合作,思考问题;3.强调讨论的重要性,鼓励学生互相交流,探究解题思路;4.适时地进行小组展示,分享解题思路和答案。
拓展应用(15分钟)1.指导学生自主查找和倍、差倍问题的应用场景,并进行演示;2.鼓励学生拓展思路,尝试应用所学知识解决新问题;3.强调文化的多样性,引导学生了解和倍、差倍问题在不同国家和地区的应用。
总结(5分钟)1.总结和倍、差倍问题的基本概念和解题方法;2.强调重要性,提醒学生在学习过程中要多加注意。
作业1.让学生回家复习已学内容,并做完题目;2.试用所学知识,解决实际生活中的问题,并写成学习日记或小报告。
教学评估1.课堂互动和合作能力是否得到提高?2.分享展示的内容是否具有一定的启发性?3.学生的秒表成绩是否有所提高?4.学生的作业完成情况和答案正确率。
初数学列方程解应用题精选班级_________姓名__________一、和、差、倍、分问题:这类问题的基本相等关系式是:各分量之和等于总量.1.丢番图的墓志铭:“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一.又过十二分之一,两颊长胡,再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”你知道丢番图去世时的年龄吗?请你列出方程解答.2.一批商界人士在露天茶座聚会,他们先是两人一桌,服务员给每桌送上1瓶果汁.后来他们又改为三人一桌,服务员给每桌送上1瓶葡萄酒.不久他们改坐成四人一桌,服务员给每桌送上1瓶啤酒.此外他们每人都要了一瓶可口可乐.聚会结束时服务员收拾到了100个空瓶.如果没有人带走瓶子,那么聚会有多少人参加?二、盈余与不足问题:这类问题的基本相等关系式是:不同分法所得的总量相等.3.某中学有住校生若干人,若每间宿舍住8人,则有5人无处住;若每间宿舍增加1人,则还空35张床位,问有宿舍多少间?住校生多少人?4.用一队卡车运一批货物,若每辆装7吨,尚余10吨货物装不完;若每辆装8吨,则最后一辆只装3吨就装完了货物.问这批货物共几吨?5.用绳子量井深,把绳子三折来量,井外余绳4尺;把绳四折来量,井外余绳1尺.求井深和绳长各是多少?三、配套问题此类问题的基本相等关系式是:每一套中所涉及物体之间的倍数关系.6.用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底48个,一个盒身与两个盒底配成一套.现有100张白铁皮,应怎样分配制盒身与盒底才能配套?7.某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配套.要在36天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?8. 服装厂要生产一批某种型号的服装,已知每3米的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的布料生产这种服装,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?四、劳力调配问题此类问题的基本相等关系式是:各部分分量之和等于总量.9. 若在甲处工作的有31人,在乙处工作的有20人,现调来18人分别派往甲、乙两处,使在甲处工作的人数是在乙处工作的人数的2倍,则应往甲、乙两处各派多少人?10. 青海省玉树县发生地震后,甲、乙两工程队奔赴灾区支援建设工作,其中甲工程队人数是乙工程队人数的2倍.因工作需要,从甲工程队抽调16人支援乙工程队,使得甲工程队人数比乙工程队人数的一半少3人,试求甲、乙两工程队原来各有多少人?五、年龄问题解决有关年龄问题时,抓年龄差...这个不变量建立方程.11.父亲今年38岁,女儿今年14岁,则哪一年时,父亲的年龄是女儿年龄的7倍?12.学生问数学老师:“你今年多少岁”?老师说:“当你是我现在的年龄时,我35岁;当我是你现在的年龄时,你2岁.”问老师今年多少岁?学生今年多少岁?六、数字、日历问题13.一个两位数,个位上的数字是十位上的数字的2倍,如果把十位与个位上的数字对调,那么所得的两位数比原来两位数大36,求原来的两位数.14.初一(2)班的数学课代表苗苗问数学老师家的电话号码是多少?老师说:“我家的电话号码是八位数,这个数的前四位数字相同,后面四位数字是连续的自然数、全部数字之和恰好等于号码的最后两位数,巧的是,这个号码的后五位数也是连续的自然数.”请你把老师家的电话号码求出来.(提示:求整体,设部分)15.有四个数,其中每三个数之和分别为22,20,17,25,求此四个数.(提示:求部分,设整体)16.把99拆成四个数之和,使得第一个数加上2,第二个数减去2,第三个数乘2,第四个数除以2,所得的结果都相等,求所拆成的四个数.(提示:设特征量)17.小华在日历上任意找出一个数,发现它连同上、下、左、右的共5个数的和为85,请求出小华找的数是当月的几号?七、工程问题工程问题中的基本关系式:工作总量=工作效率×工作时间;各部分工作量之和=工作总量18.一件工作,甲独做需20小时,乙独做需12小时. (1)如果把总工作量看做“1”,甲的工效是____,乙的工效是____,甲、乙合作1小时的工作量是_______.(2)若先由甲独做4小时,剩下由甲、乙合作,还需多少小时完成?(3)若先由甲独做4小时,剩下由甲、乙合作,共需多少小时完成?19.食堂存煤若干吨,原来每天烧煤4吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天,求原存煤量.20.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?21.两支等长粗细不同的蜡烛,细蜡烛4小时燃完,粗蜡烛5小时燃完.某时,天突然起雾,同时点燃这两支蜡烛,雾散去时,一支剩下的长度是另一支的两倍.问点燃多少时间?22.一水池,单开进水管3小时可将水池注满,单开出水管4小时可将满池水放完.现对空水池先打开进水管2小时,然后打开出水管,使进水管、出水管一起开放,问再过几小时可将水池注满?八、行程问题1.基本公式:路程=速度×时间2.基本类型:相遇问题、追及问题、环形跑道问题、航行问题(飞行)问题.3.航行问题的数量关系:(1)顺水航行的路程=逆水航行的路程;(2)顺水速度=静水速度+水速;逆水速度=静水速度-水速飞行问题基本等量关系:顺风速度=无风速度+风速;逆风速度=无风速度-风速23.A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发.(1)若两车相向而行,请问B车行了多长时间后与A车相遇?(2)若两车同向而行(B车在A车前面),请问B车行了多长时间后被A车追上?(3)若两车相向而行,请问B车行了多长时间后两车相距20千米?24.甲、乙两人在400米长的环形跑道上练习跑步,甲每秒跑5米,乙每秒跑3米. (1)若两人同时同地同向出发,多长时间两人首次相遇?(2)若两人同时同地反向出发,多长时间两人首次相遇?25.一小船由A港口顺流航行到B港口需行驶6小时,由B港口到A港口需行驶8小时,一天,小船由A港口出发顺流到达B港口时发现一救生圈中途落水,立即返回,1小时后找到救生圈,若水流速度是2千米/时.(1)小船在静水中的速度是多少?(2)救生圈是何时掉入水中的?26.一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离?27.一铁路桥长1200米,现在有一列火车从桥上匀速通过,测得火车从上桥到完全过桥共用时50秒,整列火车完全在桥上的时间是30秒,求火车的长度和速度.28.一列客车和一列货车在平行的轨道上同向匀速行驶,客车在货车的后方,客车的长是200米,货车的长是280米,客车的速度与货车的速度比是5 :3,客车赶上货车的交叉时间是1分钟,求各车的速度;若两车相向行驶,它们的交叉时间是多少分钟?九、销售利润问题基本关系式:商品利润= 商品售价—商品进价 %100⨯=进价利润利润率 10打折数标价商品售价⨯= 利润率)(商品进价商品售价+⨯=1 29. 小华的妈妈为爸爸买了一件衣服和一条裤子,共用了306元.其中衣服按标价打七折,裤子按标价打八折,衣服的标价为300元,则裤子的标价为 元.30.某商品的标价是3000元,进价是2000元,需打_____折才能使利润率为5%.31.某商品因换季准备打折出售,如果按定价的七五折出售将赔25元;而按定价的九折出售将赚20元,求这种商品的定价是多少?32.某商店在某一时间以每件60元的价格卖出A 、B 两类衣服,其中A 类一件盈利25%,B 类一件亏损25%.(1)A 、B 两类衣服每一件的成本价分别是多少元?(2)A 、B 各卖一件总收入是盈利还是亏损?或是不盈不亏?(3)若A 类衣服每件的标价是66元,商场要打折促销,并要获得10﹪的利润,请计算一下应打几折?(4)现商店准备A 类衣服每件卖60元,B 类每件卖120元.有两种出售方式:方式一,全部9折优惠;方式二,每买4件B 类衣服赠送一件A 类衣服.我校初一22班准备买班服,其中A 类需要15件,B 类需要40件.问怎样购买花钱最少?十、方案设计33. 某县要印制高中招生的录取通知书,有两个印刷厂前来联系制作业务,甲厂的优惠条件是:按每份定价1.5元的八折优惠收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元价格不变,而制版费900元则六折优惠.回答下列问题:①印刷多少份时,两厂所需费用相等;②如何根据印刷的数量选择比较合算的印刷厂,举例说明;③如果要印刷3000份录取通知书,那么应当选择哪个厂?需要多少费用?34. 某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元;制成酸奶销售,每吨可获利润1200元;制成奶片销售,每吨可获利润2000元,该厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天加工1吨,受人员限制,两种加工方式不可同时进行;受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案,方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利较多?为什么?十一、其他问题35. 如右图,宽为50cm的长方形图案由10个大小相同的小长方形拼成.其中一个小长方形的面积为 cm2.36. 某学生在署假期间观察了x天的天气情况,其结果是:①共有7天上午是晴天;②共有5个下午是晴天;③共下了8次雨,在上午或下午;④上午下雨的那天,下午是晴天.则x等于()A.8B.9C.10D.1137.参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1000元.那么此人住院的医疗费是()38. 旅游车上乘坐着日本、美国、法国三个国家的游客,现知道日本游客有18人,法国游客有9人;成年男游客中,美国5人,法国3人;成年女游客中,法国3人,日本5人;男孩子中,日本3人,美国2人,法国2人;女孩子中,美国2人,法国1人.还知道成年女游客比成年男游客少2人,而男孩和女孩一样多,则美国游客有人.39. 张老师在出版社出版了一本书,并从出版社一次性取得稿酬收入若干元,按个人所得税法的规定,稿酬扣除800元后的余额,按照14%的比例征收个人所得税,张老师应缴个人所得税210元,则张老师领取税后稿酬元.40.全国足球联赛赛完8轮,胜一场得3分,平一场得1分,负一场得0分.到目前为止,上海国际队踢平的场数是所负场数的2倍,共得17分,则该队胜了________场.41.为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于200 0.55第二档大于200小于400 0.6第三档大于等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?42.某校初2021届1到4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:班级1班2班3班4班实际购数量(本)3321实际购数量与计划购数量的差值(本)+12﹣8﹣9(1)完成表格;(2)根据记录的数据可知4个班实际一共购书_________本?(3)书店给出两种优惠方案,方案甲:一次购买不少于15本,其中2本书免费;乙方案:如果一次性购书不少于20本,总价9折优惠,假设每本书售价为30元,请你计算初2021届1班实际购书最少花费多少元?43.【新知理解】如图①,点C在线段AB上,图中的三条线段AB、AC和BC.若其中一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点;(填“是”或“不是”或“不确定是”)【问题解决】(2)如图②,点A和B在数轴上表示的数分别是﹣20和40,点C是线段AB的巧点,求点C在数轴上表示的数.【应用拓展】(3)在(2)的条件下,动点P从点A发,以每秒2个单位长度的速度沿AB向点B匀速运动;动点Q从点B出发,以每秒4个单位长度的速度沿BA向点A匀速运动.点P、Q同时出发,当其中一点到达终点时,两个点运动同时停止,设运动的时间为t秒,当t为何值时,A、P、Q三点中,其中一点恰好是另外两点为端点的线段的巧点?并求出此时巧点在数轴上表示的数.(直接写出答案).。
七年级上册数学列方程解应用题题目 1:和差倍分问题。
某工厂三个车间共有 180 人,第二车间人数是第一车间人数的 3 倍多 1 人,第三车间人数是第一车间人数的一半还少 1 人,三个车间各有多少人?解析:设第一车间有x人,则第二车间有(3x + 1)人,第三车间有((1)/(2)x - 1)人。
根据题意,可列方程:x + (3x + 1) + ((1)/(2)x - 1) = 180x + 3x + 1 + (1)/(2)x - 1 = 180(9)/(2)x = 180x = 40第二车间人数:3x + 1 = 3×40 + 1 = 121(人)第三车间人数:(1)/(2)x - 1 = (1)/(2)×40 - 1 = 19(人)答案:第一车间 40 人,第二车间 121 人,第三车间 19 人。
题目 2:行程问题。
甲、乙两地相距 162 千米,甲地有一辆货车,速度为每小时 48 千米,乙地有一辆客车,速度为每小时 60 千米,求两车同时相向而行,多长时间相遇?解析:设两车相遇的时间为x小时。
根据路程 = 速度×时间,可得货车行驶的路程为48x千米,客车行驶的路程为60x千米。
两车相向而行,它们行驶的路程之和等于两地的距离,可列方程:48x + 60x = 162108x = 162x = 1.5答案:1.5 小时相遇。
题目 3:工程问题。
一项工程,甲单独做 20 天完成,乙单独做 30 天完成,两人合作多少天可以完成这项工程?解析:设两人合作x天可以完成这项工程。
把这项工程的工作量看作单位“1”,甲每天的工作效率为(1)/(20),乙每天的工作效率为(1)/(30)。
根据工作总量 = 工作时间×工作效率,可列方程:((1)/(20) + (1)/(30))x = 1(1)/(12)x = 1x = 12答案:12 天可以完成。
题目 4:销售问题。
某商品的进价是 1500 元,标价为 2500 元,商店要求以利润率不低于 5%的售价打折出售,售货员最低可以打几折出售此商品?解析:设售货员最低可以打x折出售此商品。
一、列方程解应用题
和倍问题
例1 图书馆买回来60本文艺书和科普书,其中文艺书的本数是科普书的3倍,文艺书有多少本?
例2 一个果园有荔枝、龙眼和芒果这三种果树108棵,其中荔枝的棵树是龙眼的3倍,芒果的棵树是龙眼的2倍,这三种果树各有多少棵?
例3 一个水池装有甲、乙两排水管,甲管每小时的排水量是乙管的3倍。
水池里有16吨水,打开两管5小时能把水排完,甲管每小时排水量多少吨?
例4 某粮店全天卖出大米、面粉和玉米面11520千克,卖出大米的千克数是面粉的6倍,面粉的千克数是玉米面的5倍,卖出的大米比玉米面多多少千克?
差倍问题
一个问题的已知条件是有关数量的差与数量之间的倍的关系,这种问题就是差倍问题。
列方程解差倍问题,可以吧问题中的一个未知数量用x表示,再根据问题中的“差”或“倍”的关系,把其他未知数量用含有x 的式子表示,再找出数量之间的等量关系列方程。
在设未知数x时,通常把倍的关系中作为1的数量设为x较好。
例1一张办公桌的价钱是一把椅子的4倍,办公桌的定价比椅子贵138元,一张办公桌的价钱是多少钱?
例2 一个书柜下层放的书的本数是上层的3倍,如果从下层取43本数放到上层,两层的书的本数相同,这个书柜一共放有多少本书?
例3 水果店购进的一批西瓜,分三天售完,其中第一天售出的千克数是第二天的2倍,第二天售出的千克数是第三天的1.5倍,第三天售出的比第一天少88千克,这批西瓜共有多少千克?。
精锐教育学科教师指导授课设计学号:年:五年数: 3学姓名:科目:数学学科教:程主:列方程解用(一)授:1、初步掌握列方程解用的步;学目2、在理解意的基上正确找“和倍”、“差倍”、“和差” 用的等量关系,初步掌握列方程解两、三步算的。
授课内容内容回顾1.常用“ 数”来表示与正数相反的意,如温度、海拔中均有数出。
2.正数表示比0 大的数,而数表示比0 小的数,得越多数越小。
3.似于温度 , 可以将正数分布在一条直上 , 种直叫做数。
我把定了原点、正方向、位度的一条直叫做数。
-2-1012原点单位长正方向4.数的画法:1.画直(一般画成水平的),定原点,出原点“0”。
2.取原点向右方向正方向,那么,向左方向方向,并出箭。
3,- 2,-3 ,1, 2, 3⋯⋯各点。
(所3.合适的度作位度,(必一短)并出⋯⋯,-的数可以是正数、也可以是分数、小数、)-3-2 -10123知识精讲【知识梳理】解决和、差、倍问题的要点是抓住“ 1 倍量”,找到“多倍数”。
若是用方程来解决,那么一般将“ 1 倍量”设为未知数,再依照其他条件列出方程。
【例题精讲】例 1. 一个三角形的底边长厘米,面积是厘米。
它的高是多少厘米例 2. 用一根长为28 厘米的铁丝围成一个长方形,这个长方形的长是8 厘米,宽是几厘米试一试:1. 一块梯形木版,面积是平方分米,上底是 2 分米,高是分米,下底长几分米2.一个长方形,长是宽的倍,若是宽增加 2 厘米,这个长方形就变成一个正方形,这个长方形的长和宽各是多少厘米例 3. 果园里梨树和桃树共有365 棵,桃树的棵树比梨树的 2 倍多 5 棵。
果园里梨树和桃树各有多少棵例 4. 有两根电线,第二根长度是第一根的倍,若是第二根剪去12 米,那么两根电线的长度就相等。
第二根电线原来长多少米试一试:1. 有两筐梨,甲筐梨重 35 千克,乙筐梨比甲筐轻 7 千克,从甲筐取出多少千克梨放入乙筐,两筐梨的重量相等(两种解法)2. 一辆汽车第一天行了 3 小时,第二天行了 5 小时,第一天比第二天少行90 千米。
中考复习——方程(组)的应用——和差倍分问题一、选择题1、为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A 、B 两类玩具,其中A 类玩具的进价比B 类玩具的进价每个多3元,经调查:用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同.设A 类玩具的进价为m 元/个,根据题意可列分式方程为( ).A. 900m =7503m +B. 9003m +=750mC. 900m =7503m -D. 9003m -=750m 答案:C解答:设A 类玩具的进价为m 元/个,则B 类玩具的进价为(m -3)元/个, 由题意得,900m =7503m -. 2、岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( ).A. 200x =3503x -B. 200x =3503x +C. 2003x +=350xD. 2003x -=350x答案:B 解答:设每个笔记本的价格为x 元,则每个笔袋的价格为(x +3)元,根据题意得:200x =3503x +. 3、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x 只,兔有y 只,则根据题意,下列方程组中正确的是( ).A. 352494x y x y +=⎧⎨+=⎩B. 354294x y x y +=⎧⎨+=⎩C. 235494x y x y +=⎧⎨+=⎩D. 435294x y x y +=⎧⎨+=⎩ 答案:A解答:设鸡有x 只,兔有y 只,由题意得:352494x y x y +=⎧⎨+=⎩.4、《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是().A.8374y xy x-=⎧⎨-=⎩B.8374y xx y-=⎧⎨-=⎩C.8374x yy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩答案:C解答:设合伙人数为x人,物价为y钱,根据题意,可列方程组:8374 x yy x-=⎧⎨-=⎩,选C.5、今年我省荔枝喜获丰收,有甲、乙两块面积相同的荔枝园,分别收获8600 kg和9800 kg,甲荔枝园比乙荔枝园平均每亩少60 kg,问甲荔枝园平均每亩收获荔枝多少kg.设甲荔枝园平均每亩收获荔枝x kg,根据题意,可得方程().A. 8600x=980060x+B.8600x=980060x-C.860060x-=9800xD.860060x+=9800x答案:A解答:设甲荔枝园平均每亩收获荔枝x kg,根据题意,可得方程:8600x=980060x+.6、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是().A. 12x=(x-5)-5 B.12x=(x+5)+5C. 2x=(x-5)-5D. 2x=(x+5)+5答案:A解答:设索为x尺,杆子为(x-5)尺,根据题意得:12x=(x-5)-5.7、闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x公顷旱地改造为林地,则可列方程为().A. 60-x=20%(120+x)B. 60+x=20%×120C. 180-x=20%(60+x)D. 60-x=20%×120答案:A解答:设把x公顷旱地改为林地,根据题意可得方程:60-x=20%(120+x).8、《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是().A. x+2x+4x=34685B. x+2x+3x=34685C. x+2x+2x=34685D. x+12x+14x=34685答案:A解答:第一天读x个字,则第二天读2x个字,第三天读4x个字,共34685个字,所以x+2x+4x=34685,选A.9、朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,请问共有多少个小朋友?()A. 4个B. 5个C. 10个D. 12个答案:B解答:设有x个小朋友,由题意得,3x-3=2x+2,解得:x=5.10、程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x人,依题意列方程得( ).A. 3x +3(100-x )=100B.3x -3(100-x )=100 C. 3x +1003x -=100 D. 3x -1003x -=100 答案:C解答:设大和尚有x 人,则小和尚有(100-x )人,根据题意得:3x +1003x -=100. 二、填空题11、某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.请列出满足题意的方程组______.答案:3421x y x y +=⎧⎨=+⎩ 解答:设到井冈山的人数为x 人,到瑞金的人数为y 人,故答案为:3421x y x y +=⎧⎨=+⎩.12、小明上周三在超市恰好用10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多用了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x 袋牛奶,则根据题意列得方程为______. 答案:(x +2)(10x-0.5)=12 解答:设他上周三买了x 袋牛奶,则根据题意列得方程为:(x +2)(10x-0.5)=12. 13、某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有______名. 答案:23解答:设男生人数为x 人,女生人数为y 人.由此可得方程组52217x y x y +=⎧⎨=-⎩,解得:2923x y =⎧⎨=⎩. 所以,男生有29人,女生有23人.故答案为:23.14、某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是______.答案:608x+=45x解答:小李每小时分拣x个物件,则小王每小时分拣(x+8)个物件.根据题意得:608x+=45x.15、有两块面积相同的小麦试验田,分别收获小麦9000 kg和15000 kg.已知第一块试验田每公顷的产量比第二块少3000 kg,若设第一块试验田每公顷的产量为x kg,根据题意,可得方程______.答案:9000x=150003000x+解答:第一块试验田的面积为:9000x,第二块试验田的面积为:150003000x+.方程应该为:9000x=150003000x+.16、在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增.共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有______盏灯.答案:3解答:假设顶层的红灯有x盏,由题意得:x+2x+4x+8x+16x+32x+64x=381,127x=381,x=3.答:塔的顶层是3盏灯.17、公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为______.答案:133 8解答:设“它”的值为x,由题意可得x+17x=19,解得x=1338.则“它”的值为1338.三、解答题18、在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?答案:七年级收到的征文有38篇.解答:设七年级收到的征文有x篇,则八年级收到的征文有(118-x)篇,依题意得:(x+2)×2=118-x,解得:x=38.答:七年级收到的征文有38篇.19、有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中各有几只鸡和兔?答案:笼子里鸡有18只,兔有12只.解答:设这个笼中的鸡有x只,兔有y只,根据题意得302484x yx y+=⎧⎨+=⎩.,解得1812xy=⎧⎨=⎩..答:笼子里鸡有18只,兔有12只.20、我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.答案:1个大桶可以盛酒1324斛,1个小桶可以盛酒724斛.解答:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则5352 x yx y+=⎧⎨+=⎩,解得:1324724xy⎧=⎪⎪⎨⎪=⎪⎩,答:1个大桶可以盛酒1324斛,1个小桶可以盛酒724斛.21、列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五.人出七,不足三.问人数、羊價各幾何.”题意是:若干人共同出资买羊,每人出5元,则差45元.每人出7元,则差3元.求人数和羊价各是多少.答案:买羊人数为21人,羊价为150元.解答:设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150(元),∴买羊人数为21人,羊价为150元.22、北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?答案:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次.解答:设轨道交通日均客运量为x万人次,则地面公交日均客运量为(4x-69)万人次.依题意,得x+(4x-69)=1696.解得x=353.4x-69=4×353-69=1343(万人次).答:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次.23、“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?答案:省级自然保护区有22个,市县级自然保护区有17个.解答:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.24、文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)答案:(1)甲种图书售价每本28元,乙种图书售价每本20元.(2)甲种图书进货533本,乙种图书进货667本时利润最大.解答:(1)设乙种图书售价每本x元,则甲种图书售价为每本1.4x元由题意得:140016801.4x x-=10解得:x=20经检验,x=20是原方程的解∴甲种图书售价为每本1.4×20=28元答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货a本,总利润W元,则W=(28-20-3)a+(20-14-2)(1200-a)=a+4800,∵20a+14×(1200-a)≤20000,解得a≤16003,∵W随a的增大而增大,∴当a最大时W最大,∴当a=533本时,W最大,此时,乙种图书进货本数为1200-533=667(本),答:甲种图书进货533本,乙种图书进货667本时利润最大.25、某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?答案:甲、乙两种商品的单价分别为6元、12元.解答:设甲商品的单价为x元,乙商品的单价为2x元,根据题意,得:2403002x x-=15,解这个方程,得:x=6.经检验,x=6是所列方程的根.∴2x=2×6=12(元).答:甲、乙两种商品的单价分别为6元、12元.。
十六种用一元一次方程解决实际问题专题类型一:和差倍分问题1.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)2.某同学在A、B两家超市发现他看中的随身听的单价相同,书包的单价也相同,随身听与书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打8折销售,超市B全场购物每满100元返购物券30元(不足100元不返券,购物券全场通用),但他只带了400元钱.若两家都可以选择,在哪一家购买更省钱?类型二:行程问题(相遇、追及、相对速度等)(1)直线型路线3.A,B两地相距480千米,甲乙两车分别从A,B两地出发,相向而行,2小时30分相遇.已知甲车速度是每小时80千米,乙车速度每小时多少千米?4.A、B两地相距400米,甲、乙两人分别从A、B两地同时同向出发,甲在乙后面,已知甲每分钟跑250米,乙每分钟跑200米,经过多长时间甲能追上乙?5.列方程解应用题:甲、乙两站相距448km,一列慢车从甲站出发开往乙站,速度为60km/h;一列快车从乙站出发开往甲站,速度为100km/h(1)两车同时出发,出发后多少时间两车相遇?(2)慢车先出发32min,快车开出后多少时间两车相距48km?(2)环型跑道6.小红和小明绕周长为1200米的湖晨练,小红的速度为85米/分,小明比她快10米/分.(1)如果两人同时同向同一地点开跑,多少分钟两人会相遇?(2)如果两人同时相向同地开跑,多少分钟两人会相遇?(3)如果小红在小明前面200米两人同时反向开跑,多少分钟两人会相遇?(3)相对速度7.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16s,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?8.小明和小红沿着与铁轨平行的方向相向而行,两人行走的速度均为每小时7.2千米,恰有一列火车从他们身旁驶过.火车与小明相向而行,从小明身旁驶过用了10秒;火车与小红同向而行,从小红身旁驶过用了12秒.求火车车身的长度.类型三:航行问题(航空、陆地、水上等)9.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时40分,逆风飞行需要3小时,两城市间的距离为.10.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度为7.5km/h,水流速度为2.5km/h,若A,C两地相距10km,求A,B两地的距离.类型四:工(作)程问题(工作总量为单位“1”,工作总量=工作效率×工作时间)11.由于洪水渗漏造成堤坝内积水,用三部抽水机抽水,单独用一部抽水机抽尽,第一部需用24小时,第二部需用30小时,第三部需用40小时.现在第一部、第二部共同抽8小时后,第三部也加入,问从开始到结束,一共用了多少小时才把水抽掉?12.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?类型五:销售盈亏问题13.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是()A.不赚不亏B.赚8元C.亏8元D.赚15元14.一家商场因换季决定将某种服装打折销售,每件服装如果按标价的5折出售将亏20元,而按标价的8折出售就可赚40元.问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?15.某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大?(其中B种商品不少于7件)(2)在“五•一”期间,该商场对A、B两种商品进行如下优惠促销活动:打折前一次购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打八折超过400元售价打七折促销活动期间小颖去该超市购买A种商品,小华去该超市购买B种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?类型六:调配问题(内部、外部等)16.某班学生分两组参加植树活动,甲组有17人,乙组有25人,后来由于需要,又从甲组抽调部分学生去乙组,结果乙组人数是甲组的2倍,问从甲组抽调了多少学生去乙组?17.学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n 是大于1的正整数,不包括1.)则符合条件的n的值共有个.类型七:余缺问题18.学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.这个学校的住宿生有多少人?宿舍有多少房间?类型八:数字问题19.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.这个三位数可表示成()A.10b+a B.ba C.100b+a D.b+10a20.一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数,求这个两位数.类型九:日历问题21.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72类型十:年龄问题22.今年母女两人的年龄和为60岁,10年前母亲的年龄是女儿的7倍,则今年女儿的年龄是多少岁?类型十一:银行利率问题23.某人按定期2年向银行储蓄1500元,假设年利率为3%(不计复利)到期支取时,扣除利息所得税(税率为20%),此人实得利息为.24.一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库.假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是元.类型十二:比赛积分问题25.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制.某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?类型十三:部分量之各等于总量26.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.B.C.D.类型十四:等积变形问题27.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,求甲的容积为何()A.1280cm3 B.2560cm3 C.3200cm3 D.4000cm3类型十五:分段计费问题(水、电、煤、气、出租车和工资等)28.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水的收费价格见价目表:价目表每月用水量单价不超出6立方米的部分2元/米3超出6立方米不超出10立方米的部分4元/米3超出10立方米的部分8元/米3 注:水费按月结算.若某户居民1月份用水8立方米,则应交水费:2×6+4×(8﹣6)=20(元).(1)若该户居民2月份用水12.5立方米,则应交水费元;(2)若该户居民3,4月份共用水15立方米(4月份用水量多于3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?类型十六:方案设计问题(设备购买、房屋销售、汽车运输等)29.A、B两仓库分别有水泥20吨和30吨,C、D两工地分别需要水泥15吨和35吨.已知从A、B仓库到C、D工地的运价如下表:到C工地到D工地A仓库每吨15元每吨12元B仓库每吨10元每吨9元(1)若从A仓库运到C工地的水泥为x吨,则用含x的代数式表示从A仓库运到D工地的水泥为吨,从B仓库将水泥运到D工地的运输费用为元;(2)求把全部水泥从A、B两仓库运到C、D两工地的总运输费(用含x的代数式表示并化简);(3)如果从A仓库运到C工地的水泥为15吨时,那么总运输费为多少元?。
人教版七年级上册一元一次方程实际应用-和差倍分问题(含答案)1.甲、乙、丙三辆卡车所运货物的质量之比为6:7:4.5,已知甲车比乙车少运货物12吨,则三辆卡车共运货物()A.120吨 B.130吨 C.210吨 D.150吨2.某班学生共40人,外出参加植树活动,根据任务不同,要分成甲、乙、丙三个小组且使甲、乙、丙三个小组人数之比为1︰2︰5,则甲小组有()A.5人B.10人C.20人D.25人3.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330B.(1﹣10%)x=330C.(1﹣10%)2x=330D.(1+10%)x=3304.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,设这个班有学生x人,下列方程正确的是()A.3x+20=4x﹣25 B.3x﹣25=4x+20C.4x﹣3x=25﹣20 D.3x﹣20=4x+255.数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分,必须答对的题数是()A.8 B.7 C.6 D.96.今有浓度分别为3%、8%、11%的甲、乙、丙三种盐水50 千克、70 千克、60 千克,现要用甲、乙、丙这三种盐水配制浓度为7%的盐水100 千克,则丙种盐水最多可用_________千克.7.幼儿园阿姨给x个小朋友分糖果,如果每人分4颗则少13颗;如果每人分3颗则多15颗,根据题意可列方程为______.8.经调查,某校学生上学所用的交通方式中,选择“自行车”、“公交车”、“其它”的比例为7:3:2,若该校学生有3200人,则选择“公交车”的学生人数是_____人.9.一队卡车运一批货物,若每辆卡车装7吨货物,则剩余10吨货物装不完;若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有______ 吨.10.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为_______________.11.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15cm,各装10cm高的水,下表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没有溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少cm?底面积(cm2)甲杯60乙杯80丙杯10012.某人把360cm长的铁丝分成两段,每段分别做成一个正方形,已知两个正方形的边长之比是4︰5,则这两个正方形的边长分别是__________.13.某校七年级共有587名学生分别到北京博物馆和中国科技馆参观,其中到北京博物馆的人数比到中国科技馆人数的2倍还多56人,设到中国科技馆的人数为x人,可列方程为_____.14.甲、乙两个图形的面积之和是2cm.150cm,面积之比为7:3,则较大图形的面积是____215.浙江农村地区向来有打年糕的习俗,糯米做成年糕的过程中重量会增加20%.如果原有糯米a斤,做成年糕后重量为______斤.16.如图为一块在电脑屏幕上出现的色块图,由6个颜色不同的正方形拼成的长方形,如果中间最小的正方形边长为1,则所拼成的长方形的面积是________.17.将49毫升蜂蜜全部放入下面两个盛有水的杯子中,杯子分别有160和400毫升水,要使两杯水的甜度相同,这两个杯中应分别放入多少毫升蜂蜜?18.某车间共有28名工人生产螺栓和螺母,每人平均每天生产螺栓12个或螺母18个,问:如何安排工人才能使每天生产的螺栓和螺母按1:2配套?19.某校开展植树活动,七(1)班有27人,七(2)班有19人,现另调26人去支援,使七(1)班人数与七(2)班人数相等,问应调往七(1)班、七(2)班各多少人?20.列方程解应用题:2018年元月初,我国中东部地区普降大雪,某武警部队战士在两个地方进行救援工作,甲处有130名武警部队战士,乙处有70名武警部队战士,现在又调来200名武警部队战士支援,要使甲处的人数比乙处人数的2倍多10人,应往甲、乙两处各调来多少名武警部队战士?21.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总数的23,若提前购票,则给予不同程序的优惠:若在五月份内,团体票每张12元,共售出团体票数的35;零售票每张16元,共售出零售票数的一半;如果在六月份内,团体票按每张16元出售,并计划在六月份售出全部余票,设六月份零售票按每张x元定价,总票数为a张.(1)五月份的票价总收入为_____元;六月份的总收入为______元;(2)当x为多少时,才能使这两个月的票款收入持平?22.某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?23.某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动?24.某车间共有75名工人生产A、B两种工件,已知一名工人每天可生产A种工件15件或B种工件20件,但要安装一台机械时,同时需A种工件1件,B种工件2件,才能配套.问车间如何分配工人生产,才能保证一天连续安装机械时,两种工件恰好配套?25.有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.问:篮球、排球队各有多少支?26.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成. 工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?参考答案【解析】【分析】本题可以设甲,乙,丙三辆卡车所运货物的质量分别为:6x,7x,4.5x,根据乙车运货量-甲车运货量=12吨,可以列出方程7x-6x=12,解得即可.【详解】解:设甲,乙,丙三辆卡车所运货物的质量分别为:6x吨,7x吨,4.5x吨,根据题意得:7x-6x=12,解得:x=12.所以三辆卡车共运货物=6x+7x+4.5x=17.5x=17.5×12=210.故选:C.【点睛】此题考查了一元一次方程的应用,解题的关键是:根据题意设甲,乙,丙三辆卡车所运货物的质量分别为:6x吨,7x吨,4.5x吨,找到等量关系,然后列出方程.2.A【解析】根据三个小组人数的比例,设甲小组的人数为x,则乙小组的人数为2x,丙小组的人数为5x.因为三个小组的人数相加应该等于班级总人数,故可以列出如下方程:x+2x+5x=40合并同类项,得8x=40,系数化为1,得x=5,即甲小组有5人.故本题应选A.【解析】解:设上个月卖出x 双,根据题意得:(1+10%)x =330.故选D . 4.A 【解析】试题分析:设这个班有学生x 人,等量关系为图书的数量是定值,据此列方程. 解:设这个班有学生x 人, 由题意得,3x+20=4x ﹣25. 故选A .考点:由实际问题抽象出一元一次方程. 5.A . 【解析】试题分析:设答对的题数为x 道,则不答或答错的有(10﹣x )道,故:5x ﹣3(10﹣x )=34,解得:x=8.故选A . 考点:1.一元一次方程的应用;2.应用题. 6.50 【解析】 【分析】可设乙、丙三种盐水各用了x ,y 千克,则甲用了(100)x y --千克,盐的浓度=盐的质量与盐水总质量之比,根据题意可得3%(100)8%11%7%100x y x y--++=,化简即可确定y 的最大值.【详解】解:设乙、丙三种盐水各用了x ,y 千克,则甲用了(100)x y --千克,根据题意可得3%(100)8%11%7%100x y x y --++=,化简得85400y x +=,即5508y x =-+,所以y 的最大值为50,丙种盐水最多可用50千克. 故答案为:50 【点睛】本题考查了二元一次方程的应用,正确理解题意列出方程是解题的关键. 7.4x ﹣13=3x+15 【解析】 【分析】根据分配方法不同,但糖果总数相同,可列出方程. 【详解】根据两种分配方法糖果总数相等,得 4x ﹣13=3x+15故答案为:4x ﹣13=3x+15 【点睛】分析题意,抓住总数相等,列出方程. 8.800 【解析】 【分析】设选择“公交车”的学生人数是3x ,则自行车的有7x ,其他的有2x ,根据该校学生有3200人,列出方程,求出x 的值,即可得出答案. 【详解】设选择“公交车”的学生人数是3x,根据题意得:7x+3x+2x=3200,解得:x=8003,则选择“公交车”的学生人数是8003×3=800人;故答案为:800【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.115【解析】试题分析:可以设共有x辆卡车,货物的总量是不变的,根据相等关系列出方程,从而得出货物的总量.解:设共有x辆卡车,根据题意得:7x+10=8(x﹣1)+3解得:x=15则货物共有7×15+10=115(吨).故答案为:115考点:一元一次不等式的应用.10.2x+56=589-x【解析】试题解析:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589-x)人,由题意得,2x+56=589-x.考点:由实际问题抽象出一元一次方程.11.7.2【解析】【分析】设后来甲、乙、丙三杯内水的高度为3x、4x、5xcm,分别计算出倒水前后三个杯子中水的总体积,依据水的总体积不变列方程求解即可.【详解】解:设后来甲、乙、丙三杯内水的高度为3x、4x、5xcm,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,答:甲杯内水的高度变为3×2.4=7.2cm.故答案是:7.2.【点睛】本题考查了一元一次方程的应用,理解倒水前后三个水杯中水的总体积不变是解题关键.12.40cm;50cm.【解析】因为两个正方形的边长之比是4:5,所以可以设边长较短的正方形的边长为4x,则另一个正方形的边长应为5x. 由题意可知,这两个正方形的周长之和为360cm. 通过正方形边长与周长的关系获得这两个正方形的边长与周长之和的关系从而列出方程并求解.设边长较短的正方形的边长为4x,则由两个正方形的边长之比是4:5可知,边长较长的正方形的边长应为5x.由题意,得()()+=x x4445360整理,得 36360x =, 解之,得 10x =.因此,边长较短的正方形的边长为441040x =⨯=(cm),边长较长的正方形的边长为551050x =⨯=(cm). 故本题应依次填写:40cm ,50cm. 点睛:利用比例关系设未知数是一种重要的解题方法. 这种方法有别与直接设某一个量为未知数x 的方法. 利用某两个相关量之间的比例关系,将这两个量设为关于未知数x 的单项式形式 (单项式的系数为比例关系中的相应数值). 这种方法不仅可以简化对比例关系的分析,还可以在一定程度上减少由比例关系所带来的分数运算. 13.x+2x+56=587.【解析】试题分析:由到中国科技馆的人数为x 人可得到北京博物馆的人数为2x+56,再根据七年级共有589名学生列出方程即可解:设到中国科技馆的人数为x 人,依题意可列方程为: x+2x+56=589,故答案为:x+2x+56=589.考点:由实际问题抽象出一元一次方程. 14.105 【解析】设较大图形的面积为x 2cm ,则较小图形的面积为(150-x)2 cm , 由题意得:x :(150-x)=7:3, 解得x=105,即较大图形的面积是1052cm15.1.2a(或120%a)【解析】【分析】根据增加20%,列出代数式即可.【详解】解:∵糯米做成年糕的过程中重量会增加20%,∵a增加20%后为(1+20%)a=1.2a(或120%a).【点睛】本题考查了代数式的表示,属于简单题,将数学语言转换成符号语言是解题关键.16.143【解析】试题分析:若设第二小的正方形的边长为x.则有两种不同的方法可以表示出长方形的长:根据正方形的边长相等,可得:第一种表示方法为x+x+(x+1);第二种表示方法为(x+2)+(x+3);即可列出方程.解:设第二小的正方形的边长为x,则有:x+x+(x+1)=(x+2)+(x+3),解得:x=4,所以长方形的长为13,宽为11,面积=13×11=143.故答案是:143.考点:一元一次方程的应用.17.这两杯分别放入14ml、35ml蜂蜜【解析】可以设出未知数,列出比例式,解答即可.设放入第一杯xml ,第二杯()49x ml -蜂蜜,根据题意,可列比例式():16049:400x x =-,求解即可.【详解】解:设放入第一杯xml ,第二杯()49x ml -蜂蜜():16049:400x x =-14x = 491435ml -=答:这两杯分别放入14ml 、35ml 蜂蜜. 【点睛】此题考查了比与比例的意义,以及对比例的实际应用能力. 18.螺栓12人,螺母16人【解析】试题分析:设安排x 人生产螺栓,则有(28-x )人生产螺母,根据每天生产的螺栓和螺母按1:2配套列出方程求解即可.试题解析:设安排x 人生产螺栓,则有(28-x )人生产螺母, 根据题意得:18(28-x )=12x·2, 解得:x=12, 28-12=16(人).答:应安排12人生产螺栓,16人生产螺母才行. 19.应调往七(1)班9人,调往七(2)班17人.【解析】试题分析:设应调往七(1)班x 人,则应调往七(2)班(26-x)人,根据等量关系“七(1)班原有的人数+调往七(1)班的人数=七(2)班原有的人数+调往七(2)班的人数”,列出方程,解方程即可.设应调往七(1)班x人,则应调往七(2)班(26-x)人.根据题意,得27+x=19+26-x.解得x=9.26-x=17.答:应调往七(1)班9人,调往七(2)班17人.点睛:本题主要考查了一元一次方程的应用,根据两个班人数之间的关系列出方程是解题关键.20.应往甲处调去140名,往乙处调去60名武警部队战士【解析】【分析】设应往甲处调来x名武警部队战士, 则向乙处调来(200-x) 个武警部队战士, 根据调派后甲处的人数比乙处人数的2倍多10人, 即可得出关于ェ的一元一次方程, 解之即可得出结论.【详解】设应往甲处调去x名武警部队战士,则向乙处调去(200-x)名武警部队战士.根据题意,得130+x=2(70+200-x)+10,解得x=140,∵200-x=60.答:应往甲处调去140名,往乙处调去60名武警部队战士.【点睛】本题主要考查一元一次方程的应用,根据已知条件列出方程式解题的关键.21.(1)11215a,641156a ax;(2)19.2.【分析】(1)根据五月份的票价总收入=五月份团体票的收入+五月份零售票的收入即可求解;根据六月份的票价总收入=六月份团体票的收入+六月份零售票的收入即可求解;(2)本题的等量关系为:五月份票款数=六月份票款数,据此列方程求解即可. 【详解】(1)五月份的票价总收入为:23a ×35×12+13a ×12×16=11215a;六月份的票价总收入为:23a ×25×16+13a ×12×x =641156a ax +;(2)由题意得,11215a =641156a ax +, ∵a >0, ∵11215=641156x +, 解得x =19.2.∵六月份零售票应按每张19.2元定价. 【点睛】本题考查了一元一次方程的应用,有多个未知数的问题要抓住所求问题设为主元,问题中所涉及的其他未知量设为参量.在解方程中必然能消去参量,求出主元x 的值.同学们掌握了这个方法,就不必再惧怕有多个未知量的问题了. 22.应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.试题分析:设应分配x人生产甲种零件,则(60-x)人生产乙种零件,才能使每天生产的这两种种零件刚好配套,根据每人每天平均能生产甲种零件24个或乙种零件12个,可列方程求解.试题解析:设分配x人生产甲种零件,则共生产甲零件24x个和乙零件12(60-x),×12(60-x),依题意得方程:24x=23解得x=15,60-15=45(人).答:应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.考点:一元一次方程的应用.23.七年级共有200名同学参加这次公益活动.【解析】试题分析:由于本题要求的是参加这次公益活动的七年级学生总人数,所以可以设七年级共有x名同学参加这次公益活动. 进一步分析题意可以看出,这些学生进行了三项活动:宣传,植树以及清扫垃圾. 根据题意,进行宣传活动的学生人数可以用x表示为10%x,进行植树活动的学生人数可以表示为55%x,从而清扫垃圾的学生人数可以表示为x-10%x-55%x. 由于题目中已经给出了清扫垃圾的学生人数,故可以根据清扫垃圾的学生人数列出方程并求解.试题解析:设七年级共有x名同学参加这次公益活动.由题意,得x-10%x-55%x=70合并同类项,得0.35x=70,系数化为1,得x=200.答:七年级共有200名同学参加这次公益活动.在利用方程解决实际问题的题目中,列方程的基本根据是题目中的等量关系. 因此,在题目的条件中寻找合适的等量关系就成为解决问题的关键. 本题中应用的等量关系本质上是“总量=各部分量的和”. 在等量关系明确之后,利用未知数x对等量关系中的各个量进行表示则是正确列出方程的重要步骤.24.30名工人生产A种工件,45名工人生产B种工件【解析】试题分析:首先设分配x名工人生产A种工件,然后根据A种工件数量的2倍等于B种工件的数量列出方程进行求解,得出答案.试题解析:设分配x名工人生产A种工件,根据题意,得:2×15x=20(75-x)解得:x=30 ∵75-x=75-30=45答:分配30名工人生产A种工件,45名工人生产B种工件.考点:一元一次方程的应用25.篮球队有28支,排球队有20支.【解析】试题分析:设篮球队有x支,排球队有y支,根据共有48支队,520名运动员建立方程组求出其解即可.解:设篮球队有x支,排球队有y支,由题意,得,解得:.答:篮球队有28支,排球队有20支.考点:二元一次方程组的应用.26.每天能组装48套GH型电子产品;【解析】试题分析:(1)设有x名工人加工G型装置,则有(80-x)名工人加工H型装置,利用每台GH型产品由4个G型装置和3个H型装置配套组成得出等式求出答案;试题解析:(1)设有x名工人加工G型装置,则有(80-x)名工人加工H型装置,根据题意,6x 4=3(80−x)3,解得x=32,则80-32=48(套),答:每天能组装48套GH型电子产品;。