高考物理一轮复习专题研讨课:中心天体与环绕天体
- 格式:ppt
- 大小:653.00 KB
- 文档页数:23
考点3 天体的追及和相遇问题“天体相遇”,指两天体相距最近.若两环绕天体的运转轨道在同一平面内,则两环绕天体与中心天体在同一直线上,且位于中心天体的同侧(或异侧)时相距最近(或最远).“天体相遇”问题类似于在田径场赛道上的循环长跑比赛,跑得快的每隔一段时间多跑一圈追上并超过跑得慢的.状态图示关系(同向)最近(1)角度关系:ω1t-ω2t=n·2π(n=1、2、3、…)(2)圈数关系:tT1-tT2=n(n=1、2、3、…)最远(1)角度关系:ω1t-ω2t=(2n-1)π(n=1、2、3、…)(2)圈数关系:tT1-tT2=2n-12(n=1、2、3、…)研透高考明确方向7.[相距最近或最远分析/2023湖北]2022年12月8日,地球恰好运行到火星和太阳之间,且三者几乎排成一条直线,此现象被称为“火星冲日”.火星和地球几乎在同一平面内沿同一方向绕太阳做圆周运动,火星与地球的公转轨道半径之比约为3∶2,如图所示.根据以上信息可以得出(B)A.火星与地球绕太阳运动的周期之比约为27∶8B.当火星与地球相距最远时,两者的相对速度最大C.火星与地球表面的自由落体加速度大小之比约为9∶4D.下一次“火星冲日”将出现在2023年12月8日之前解析r火3r地3=T火2T地2r火r地=32]→T火T地=3√32√2,A错下一次冲日有→t =T 火T 地T 火-T 地>T 地→下次火星冲日在2023年火星与地球→两者速度反向→两者相对速度最大,B 对GMm R 2=mg →g =GMR 2M 火、M 地未知]→不能求g 之比,C 错8.[不在同一轨道平面的“相遇”/2023重庆/多选]某卫星绕地心的运动视为匀速圆周运动,其周期为地球自转周期T 的310,运行的轨道与地球赤道不共面,如图所示.t 0时刻,卫星恰好经过地球赤道上P 点正上方.地球的质量为M ,半径为R ,引力常量为G .则( BCD )A.卫星距地面的高度为(GMT 24π2)13-RB.卫星与位于P 点处物体的向心加速度大小比值为59πR(180πGMT 2)13C.从t 0时刻到下一次卫星经过P 点正上方时,卫星绕地心转过的角度为20πD.每次经最短时间实现卫星距P 点最近到最远的行程,卫星绕地心转过的角度比地球的多7π解析 对卫星由万有引力提供向心力有G Mm(R +ℎ)2=m4π2(310T)2(R +h ),解得h =(9GMT 2400π2)13-R ,A错误;对卫星有m 4π2(310T)2(R +h )=ma ,对地球赤道上P 点处的物体有m'4π2T 2R =m'a',联立解得aa '=59πR(180πGMT 2)13【点拨:在求比值时,可以先约分,再代入求解,简化运算量】,B 正确;设从t 0时刻到卫星经过P 点正上方的时间为t ,假设下一次卫星经过P 点正上方时是在地球的另一侧关于球心对称的位置,则卫星运动的圈数和地球运动的圈数均为整数 圈加半圈,又地球运动的半周期为0.5T ,卫星运动的半周期为0.15T ,则有t0.5T =2k -1,t0.15T =2k'-1,k 、k'均为正整数,联立得6k'=20k -7,显然假设不成立,故下 一次卫星经过P 点正上方时还是在t 0时刻的位置,则卫星运动的圈数和地球运动的圈 数均为整数圈,又地球运动的周期为T ,卫星运动的周期为0.3T ,则有tT =n ,t0.3T = n',n 、n'均为正整数,联立得3n'=10n ,得最小的满足条件的n'=10,即从t 0时刻到 下一次卫星经过P 点正上方的过程,卫星运动了10圈,所以卫星绕地心转过的角度 为θ=10×2π=20π,C 正确;设实现卫星距P 点最近到最远的时间为t',则有t '0.5T=2n 1-1、t '0.3T =n 2或t 'T =n 3、t '0.15T =2n 4-1,n 1、n 2、n 3、n 4均为正整数,解得最小的满足条件的n 1=2、n 2=5,此时t'=1.5T ,即实现卫星距P 点最近到最远的最短时间为1.5T ,故卫星绕地心转过的角度比地球的多2π(t '0.3T -t 'T )=7π,D 正确.。
高三天体问题知识点天体问题是物理学中的一个重要研究领域,涉及到天体运动、引力、行星轨道等内容。
在高三物理学习中,我们需要掌握一些关键的天体问题知识点。
本文将从天体运动、行星轨道和引力三个方面来介绍高三物理学习中的天体问题知识点。
一、天体运动知识点1. 行星公转:行星在太阳周围做椭圆形轨道运动,公转周期是由行星质量和距离太阳的半长轴决定的。
根据开普勒第二定律,行星在椭圆轨道上的相等时间内扫过的面积是相等的。
2. 地球自转:地球自西向东自转,自转周期为24小时。
地球自转导致了地球的日晷现象,即昼夜交替的现象。
3. 星空的运动:由于地球自转和公转,星空中的星星看起来会有运动。
恒星的视运动通常分为南北视运动和东西视运动。
二、行星轨道知识点1. 椭圆轨道:行星绕太阳运动的轨道通常是一个椭圆。
椭圆有两个焦点,太阳位于其中一个焦点上。
椭圆的长轴和短轴决定了椭圆的形状和大小。
2. 圆形轨道:圆形轨道是一种特殊的椭圆轨道,它的长轴和短轴相等,即椭圆的离心率为零。
地球绕太阳的轨道就是一个接近圆形的椭圆轨道。
3. 开普勒定律:开普勒定律是描述行星运动的经验规律。
包括开普勒第一定律(椭圆轨道定律)、开普勒第二定律(面积定律)和开普勒第三定律(调和定律)。
三、引力知识点1. 引力的概念:引力是物质之间相互吸引的作用力,是宇宙中最普遍的力之一。
地球表面上的物体受到的重力大小与其质量成正比。
2. 引力定律:牛顿引力定律是描述引力作用的定律,它表明物体间的引力大小与它们的质量成正比,与它们的距离的平方成反比。
3. 太阳引力和行星运动:太阳对行星的引力决定了行星的运动轨迹和速度。
根据万有引力定律,太阳和行星之间的引力与它们的质量和距离有关。
通过对以上天体问题的知识点进行了解,我们能够更好地理解宇宙中的天体运动规律,进一步认识到人类在宇宙中的微小和脆弱。
天体问题是物理学习中的一部分,也是我们对宇宙的探索和理解的重要组成部分。
希望本文对高三物理学习中的天体问题知识点的了解有所帮助,并能够激发对宇宙的好奇与探索的热情。
山东高考物理天体知识点物理是高考科目中的一门重要学科,而物理中的天体知识点在山东高考中占据了一定比例。
本文将从天体运动、天体系统、天体结构以及天体观测等方面,介绍山东高考物理中的天体知识点。
一、天体运动天体运动是物理中的一个重要概念,它包括了地球的自转和公转,以及其他星球的运动。
在山东高考物理中,学生需要掌握以下几个知识点:1. 地球自转:地球自转是指地球以自身轴线为中心,在自转周期内完成一周运动。
学生需要了解地球自转的周期和对地球自转速度的计算方法。
2. 地球公转:地球公转是指地球围绕太阳运动的轨道运动。
学生需要掌握地球公转的周期、轨道形状等相关知识。
3. 星球运动:学生需要了解其他星球的自转和公转运动规律,如火星、木星等行星的自转周期和公转周期。
二、天体系统天体系统是指由天体组成的一个系统,其中包括太阳系等。
在山东高考物理中,学生需要了解以下几个天体系统的知识点:1. 太阳系:太阳系是由太阳和绕太阳运动的各种天体组成的系统。
学生需要了解太阳系的结构、各个行星的位置和运动规律。
2. 星系:星系是由大量恒星、行星、星云等天体组成的一个系统。
学生需要了解不同类型的星系和其特点,如螺旋星系、椭圆星系等。
三、天体结构天体结构是指天体内部和外部的组成和特点。
在山东高考物理中,学生需要了解以下几个天体结构的知识点:1. 星球结构:学生需要了解星球的内部结构,包括恒星的核心、辐射区和对流区等。
2. 星云结构:学生需要了解星云的组成和特点,了解恒星的形成过程和演化规律。
四、天体观测天体观测是指利用望远镜等仪器观测天体的现象和特征。
在山东高考物理中,学生需要了解以下几个天体观测的知识点:1. 望远镜:学生需要了解望远镜的种类、原理和使用方法,以及通过望远镜观测天体时需要注意的事项。
2. 天体观测方法:学生需要了解通过天文观测手段,如恒星观测、行星观测等,研究天体的方法和技巧。
总结:在山东高考物理中,天体知识点是一个必考内容。
第22讲天体运动的热点问题能力命题点一卫星运行参量的分析与比较1.卫星的轨道(1)赤道轨道:卫星的轨道在错误!赤道平面内,同步卫星就是其中的一种。
(2)极地轨道:卫星的轨道过南、北两极,即在错误!垂直于赤道的平面内,如极地气象卫星。
(3)其他轨道:除以上两种轨道外的卫星轨道。
注意:①所有卫星的轨道平面一定通过地球的球心。
②除过特殊的椭圆轨道的卫星,一般卫星的运行轨道可认为是圆。
2.卫星的运行参数随轨道半径变化的规律由G错误!=ma=m错误!=mω2r=m错误!r=m·4π2n2r可得:错误!⇒当r增大时错误!越高越慢3.地球同步卫星的特点(2019·安徽宣城二模)有a、b、c、d四颗地球卫星,卫星a 还未发射,在地球赤道上随地球表面一起转动,卫星b在地面附近近地轨道上正常运行,c是地球同步卫星,d是高空探测卫星,各卫星排列位置如图,则有()A.a的向心加速度等于重力加速度gB.b在相同时间内转过的弧长最长C.c在4 h内转过的圆心角是错误!D.d的运动周期有可能是20 h解析同步卫星的周期与地球自转周期相同,角速度相同,则知a与c的角速度相同,根据a=ω2r知,c的向心加速度大于a的向心加速度,由G错误!=ma,解得:a=错误!,可知卫星的轨道半径越大,向心加速度越小,则c的向心加速度小于b的向心加速度,而b的向心加速度约为g,故a的向心加速度小于重力加速度g,A错误;由v=ωr知,a的线速度小于c的线速度,由G错误!=m错误!,解得:v=错误!,可知卫星的轨道半径r越大,线速度v越小,所以b的线速度最大,在相同时间内转过的弧长最长,B正确;c是地球同步卫星,周期是24 h,则c在4 h内转过的圆心角是错误!×4=错误!,故C错误;由开普勒第三定律得:错误!=k,可知卫星的轨道半径越大,周期越大,所以d的运动周期大于c的周期24 h,故D错误。
答案B近地卫星、赤道上静止物体和同步卫星的比较如图所示,a为近地卫星,轨道半径为r1;b为地球同步卫星,轨道半径为r2;c为赤道上随地球自转的物体,轨道半径为r3。
卫星运行参量的分析、近地、同步卫星与赤道上物体的比较一、卫星运行参量与轨道半径的关系1.天体(卫星)运行问题分析将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供. 2.物理量随轨道半径变化的规律G Mmr 2= ⎩⎪⎨⎪⎧ma →a =GM r 2→a ∝1r2m v 2r →v =GM r →v ∝1r mω2r →ω=GM r 3→ω∝1r3m 4π2T 2r →T =4π2r3GM→T ∝r 3即r 越大,v 、ω、a 越小,T 越大.(越高越慢)3.公式中r 指轨道半径,是卫星到中心天体球心的距离,R 通常指中心天体的半径,有r =R +h .4.同一中心天体,各行星v 、ω、a 、T 等物理量只与r 有关;不同中心天体,各行星v 、ω、a 、T 等物理量与中心天体质量M 和r 有关.5.所有轨道平面一定通过地球的球心。
如右上图6.同步卫星的六个“一定”二、宇宙速度1.第一宇宙速度的推导 方法一:由G Mm R 2=m v 12R,得v 1=GMR = 6.67×10-11×5.98×10246.4×106m/s≈7.9×103 m/s.方法二:由mg =m v 12R得v 1=gR =9.8×6.4×106 m/s≈7.9×103 m/s.第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg=2π 6.4×1069.8s≈5 075 s≈85 min. 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面做匀速圆周运动. (2)7.9 km/s<v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆. (3)11.2 km/s≤v 发<16.7 km/s ,卫星绕太阳运动的轨迹为椭圆.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.三、近地卫星、同步卫星及赤道上物体的运行问题1.如图所示,a 为近地卫星,半径为r 1;b 为地球同步卫星,半径为r 2;c 为赤道上随地球自转的物体,半径为r 3。
2018届高考物理一轮复习第五章第2讲:万有引力定律的两个应用——中心天体和环绕天体班级__________ 座号_____ 姓名__________ 分数__________一、知识清单1. 解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即G Mm r 2=ma n =m v 2r =mω2r =m 4π2r T 2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体表面的重力加速度)。
2. 计算中心天体的质量和密度3. 求天体质量和密度,警惕三个常见误区(1)不考虑自转问题时,有GMm R2=mg ,其中g 为星球表面的重力加速度,若考虑自转问题,则在两极上才有:GMm R 2=mg ,而赤道上则有:GMm R 2-mg =m 4π2T 2R 。
(2)利用G Mm r 2=m 4π2T2r 计算天体质量时,只能计算中心天体的质量,不能计算绕行天体的质量。
(3)注意区分轨道半径r 和中心天体的半径R ,计算中心天体密度时应用ρ=M 43πR 3而不是ρ=M 43πr 3,但在表面附近绕行的卫星,可近似认为R =r 。
4. 计算环绕天体运动参量5. 六个注意①四个参量都是r 的函数,与环绕天体质量m 无关。
r 一定,四个参量大小不变。
②“三度”(线速度v 、角速度ω、加速度a )随着r 的增加而减小,只有T 随着r 的增加而增加。
即越高越慢。
③上述公式适合环绕天体围绕中心天体做匀速圆周运动的情形。
开普勒行星运动三定律适用于椭圆运动。
④如果不是围绕同一个中心天体的环绕天体,因M 不同,所以四个参量还与M 有关。
⑤万有引力和动能、势能还与环绕天体的质量m 有关。
⑥同一中心天体M 、同质量的环绕天体m ,越高动能越小,势能越大,机械能越大。
二、例题精讲6. (多选)(2016·海南)通过观察冥王星的卫星,可以推算出冥王星的质量。
高三物理天体环绕知识点天体环绕是高三物理教学中的一个重要知识点,它是理解天体运动规律的基础。
本文将从行星运动、人工卫星运行和地球公转等角度介绍天体环绕的相关知识。
一、行星运动行星运动是天体环绕的一种形式,它包括行星绕恒星的公转和自转。
行星沿着椭圆轨道围绕恒星运动,这个轨道的形状和行星与恒星之间的引力有关。
根据开普勒定律,行星的轨道是个椭圆,恒星在椭圆的一个焦点上。
行星绕恒星的运动速度是不均匀的,这是由于行星与恒星之间的距离在运动中发生变化导致的。
行星的自转是指行星绕自身的轴线旋转,造成昼夜交替的现象。
行星的自转轴一般与其公转轴是不重合的,这导致了行星上的不同地区有不同的季节和温度。
二、人工卫星运行人工卫星运行是指人类制造的卫星绕地球或其它行星的运动。
人工卫星可以用来进行通信、导航、天气预报等各种应用。
人工卫星需要具备一定的速度和高度才能保持在轨道上运行。
根据轨道的高度不同,人工卫星可以分为低地球轨道(LEO)、中地球轨道(MEO)和高地球轨道(GEO)。
不同的轨道高度对应着不同的卫星应用和性能要求。
人工卫星的运行速度和轨道高度密切相关。
运行速度越快,轨道高度越高,卫星所绕地球一周所需时间越长。
人工卫星的速度需要与地球引力平衡,以保持稳定的轨道。
同时,为了避免与其他卫星的碰撞,卫星的运行轨道需要保持一定的间距。
三、地球公转地球的公转是指地球绕太阳运动的现象,它是引起四季交替和年份的变化的主要原因之一。
地球绕太阳公转是一个椭圆轨道运动,是根据开普勒定律进行的。
地球的公转速度是不均匀的,这是由于地球与太阳之间的距离在运动中发生变化导致的。
在地球公转过程中,太阳直射点的位置也会发生变化,从而影响到地球上不同地区的气温和季节。
结语天体环绕是高三物理教学中的一大重点,本文从行星运动、人工卫星运行和地球公转三个角度进行了简要介绍。
对于理解天体运动规律,掌握这些知识点是非常重要的。
希望本文对高三物理学习有所帮助。
专题八—天体运动 知识点总结一 开普勒三定律的理解和应用1.行星绕太阳的运动通常按圆轨道处理.2.开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.3.开普勒第三定律a 3T2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同.但该定律只能用在同一中心天体的两星体之间. 二 万有引力定律的理解 1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向.(1)在赤道上:G MmR 2=mg 1+m ω2R .(2)在两极上:G MmR2=mg 0.(3)在一般位置:万有引力G MmR2等于重力mg 与向心力F 向的矢量和.越靠近南、北两极,g 值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即GMmR2=mg .2.星球上空的重力加速度g ′星球上空距离星体中心r =R +h 处的重力加速度为g ′,mg ′=GmM (R +h )2,得g ′=GM (R +h )2.所以g g ′=(R +h )2R 2. 3.万有引力的“两点理解”和“两个推论”(1)两点理解①两物体相互作用的万有引力是一对作用力和反作用力.②地球上的物体(两极除外)受到的重力只是万有引力的一个分力. (2)两个推论①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F 引=0.②推论2:在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对其的万有引力,即F =G M ′mr2.三 天体质量和密度的估算 天体质量和密度常用的估算方法使用方法已知量 利用公式 表达式 备注质量的计算利用运行天体r 、T G Mm r 2=mr 4π2T 2 M =4π2r 3GT 2只能得到中心天体的质量r 、vG Mm r 2=m v 2r M =rv 2Gv 、TG Mm r 2=m v 2r G Mm r 2=mr 4π2T2 M =v 3T 2πG利用天体表面重力加速度 g 、Rmg =GMm R 2M =gR 2G密度利用运r 、T 、R G Mm r 2=mr 4π2T 2 ρ=3πr 3GT 2R3 利用近地的计算行天体M =ρ·43πR 3当r =R 时 ρ=3πGT2卫星只需测出其运行周期利用天体表面重力加速度g 、Rmg =GMm R2M =ρ·43πR 3ρ=3g4πGR卫星运行参量 相关方程 结论线速度v G Mm r 2=m v 2r ⇒v = GM r r 越大,v 、ω、a 越小,T 越大角速度ωG Mmr2=m ω2r ⇒ω= GM r 3周期TG Mm r 2=m ⎝ ⎛⎭⎪⎫2πT 2r ⇒T =2π r 3GM向心加速度aG Mm r 2=ma ⇒a =GM r2 五 1.解决同步卫星问题的“四点”注意(1)基本关系:要抓住G Mm r 2=ma =m v 2r =mr ω2=m 4π2T2r .(2)重要手段:构建物理模型,绘制草图辅助分析. (3)物理规律:①不快不慢:具有特定的运行线速度、角速度和周期.②不高不低:具有特定的位置高度和轨道半径.③不偏不倚:同步卫星的运行轨道平面必须处于地球赤道平面上,只能静止在赤道上方的特定的点上.(4)重要条件:①地球的公转周期为1年,其自转周期为1天(24小时),地球半径约为6.4×103 km,地球表面重力加速度g约为9.8 m/s2.②月球的公转周期约27.3天,在一般估算中常取27天.③人造地球卫星的运行半径最小为r=6.4×103km,运行周期最小为T=84.8 min,运行速度最大为v=7.9 km/s.2.两个向心加速度卫星绕地球运行的向心加速度物体随地球自转的向心加速度产生原因由万有引力产生由万有引力的一个分力(另一分力为重力)产生方向指向地心垂直且指向地轴大小a=GMr2(地面附近a近似等于g)a=rω2,r为地面上某点到地轴的距离,ω为地球自转的角速度特点随卫星到地心的距离的增大而减小从赤道到两极逐渐减小3.两种周期(1)自转周期是天体绕自身某轴线转动一周所需的时间,取决于天体自身转动的快慢.(2)公转周期是运行天体绕中心天体做圆周运动一周所需的时间,T=2πr3GM,取决于中心天体的质量和运行天体到中心天体的距离.六卫星变轨问题1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.如图所示.(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.2.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.七 双星模型 1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.(2)特点:①各自所需的向心力由彼此间的万有引力提供,即Gm 1m 2L 2=m 1ω12r 1,Gm 1m 2L2=m 2ω22r 2 ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为:r 1+r 2=L④两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.⑤双星的运动周期T =2πL 3G (m 1+m 2)⑥双星的总质量M 八 天体的追及相遇问题 1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA -ωB )t =2n π(n =1,2,3,…). 2.相距最远当两卫星位于和中心连线的半径上两侧时,两卫星相距最远,从运动关系上,两卫星运动关系应满足(ωA -ωB )t ′=(2n -1)π(n =1,2,3…). 1+m 2=4π2L 3T 2G专题练习一、选择题1.1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该 卫星至今仍沿椭圆轨道绕地球运动.如图所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G 。