《大学物理》第四章 相对论基础 (2)
- 格式:ppt
- 大小:987.50 KB
- 文档页数:31
北理珠09-10(2)大学物理B 第四章 狭义相对论基础(自测题) 第1页洛伦兹坐标变换x '=;y y '=;z z '=;2v t x t -'=一、判断题1. 狭义相对论的相对性原理是伽利略相对性原理的推广。
………………………………[ ]2. 物理定律在一切惯性参考系中都具有相同的数学表达式。
……………………………[ ]3. 伽利略变换是对高速运动和低速运动都成立的变换。
…………………………………[ ]4. 在一惯性系中同时发生的两个事件,在另一相对它运动的惯性系中,并不一定同时发生。
…………………………………………………………………………………………[ ]5. K '系相对K 系运动,在K '中测量相对K 系静止的尺的长度,测量时必须同时测量尺的两端。
…………………………………………………………………………………………[ ]6. 信息与能量的传播速度不可以超过光速。
………………………………………………[ ]7. 人的眼睛可以直接观测到“动尺缩短”效应。
…………………………………………[ ]二、填空题8. 狭义相对论的两条基本原理是:1、 ;2、 。
9. 静止的细菌能存活4分钟,若它以速率0.6c 运动,存活的时间为 。
10. 静止时边长为a 的正立方体,当它以速率v 沿与它的一个边平行的方向相对于S 系运动时,在S 系中测得它的体积等于 。
11. 静止质量为0m ,以速率为v 运动,其相对论的动量为 ;能量为 ;动能为 。
三、计算题12. 在惯性系K 中观测到两事件同时发生,空间距离相隔1m ,惯性系K '沿两事件连线的方向相对于K 运动,在K '系中观测到两事件之间的距离为3m ,求K '系相对于K 的速度和在其中测得两事件之间的时间间隔。
13. 在S 系中观察到在同一地点发生两个事件,第二事件发生在第一事件之后2s 。
习 题4-1 一辆高速车以0.8c 的速率运动。
地上有一系列的同步钟,当经过地面上的一台钟时,驾驶员注意到它的指针在0=t ,她即刻把自己的钟拨到0'=t 。
行驶了一段距离后,她自己的钟指到6 us 时,驾驶员瞧地面上另一台钟。
问这个钟的读数就是多少? 【解】s)(10)/8.0(16/12220μ=-μ=-∆=∆c c s cu t t所以地面上第二个钟的读数为)(10's t t t μ=∆+=4-2 在某惯性参考系S 中,两事件发生在同一地点而时间间隔为4 s,另一惯性参考系S′ 以速度c u 6.0=相对于S 系运动,问在S′ 系中测得的两个事件的时间间隔与空间间隔各就是多少?【解】已知原时(s)4=∆t ,则测时(s)56.014/1'222=-=-∆=∆s cu t t由洛伦兹坐标变换22/1'c u ut x x --=,得:)(100.9/1/1/1'''8222220221012m c u t u c u ut x c u ut x x x x ⨯=-∆=-----=-=∆4-3 S 系中测得两个事件的时空坐标就是x 1=6×104 m,y 1=z 1=0,t 1=2×10-4 s 与x 2=12×104 m,y 2=z 2=0,t 2=1×10-4 s 。
如果S′ 系测得这两个事件同时发生,则S′ 系相对于S 系的速度u 就是多少?S′ 系测得这两个事件的空间间隔就是多少? 【解】(m)1064⨯=∆x ,0=∆=∆z y ,(s)1014-⨯-=∆t ,0'=∆t0)('2=∆-∆γ=∆cxu t t 2cxu t ∆=∆⇒ (m/s)105.182⨯-=∆∆=⇒x t c u (m )102.5)('4⨯=∆-∆γ=∆t u x x4-4 一列车与山底隧道静止时等长。
大学物理相对论目录相对论基本概念狭义相对性原理光速不变原理质能关系030201等效原理广义协变原理引力场方程相对论与经典物理关系相对论是经典物理的延伸和发展,解决了经典物理在高速和强引力场下的困境。
相对论和经典物理在低速和弱引力场下是一致的,但在极端条件下存在显著差异。
相对论揭示了时间和空间的相对性,以及质量和能量的等价性,这些概念在经典物理中是没有的。
狭义相对论基本原理洛伦兹变换同时性相对性在一个惯性参考系中同时发生的两个事件,在另同时性相对性是狭义相对论的基本原理之一,与长度收缩和时间膨胀010203广义相对论基本原理等效原理弱等效原理强等效原理引力场与以适当加速度运动的参考系是等价的。
弯曲时空概念时空弯曲测地线爱因斯坦场方程场方程形式$R_{munu} -frac{1}{2}g_{munu}R + Lambda g_{munu} = frac{8piG}{c^4}T_{munu}$,其中$R_{munu}$ 是里奇张量,$g_{munu}$ 是度规张量,$R$ 是标量曲率,$Lambda$ 是宇宙学常数,$G$ 是万有引力常数,$c$ 是光速,$T_{munu}$ 是能量-动量张量。
场方程的物理意义描述了物质如何影响时空的几何结构,以及时空几何结构如何影响物质的运动。
狭义相对论在物理学中应用质能关系及核能计算核反应能量计算质能方程在核反应中,质量亏损对应的能量释放遵循质能方程,可计算核反应释放的能量。
核裂变与核聚变1 2 3放射性衰变粒子衰变动力学衰变产物的检测与分析粒子衰变过程分析高速运动物体观测效应长度收缩效应时间膨胀效应质速关系及质能变化广义相对论在物理学中应用宇宙微波背景辐射广义相对论预测了宇宙微波背景辐射的存在,这是宇宙大爆炸后遗留下来的热辐射,为宇宙大爆炸理论提供了有力证据。
宇宙大爆炸理论广义相对论为宇宙大爆炸理论提供了理论框架,解释了宇宙的起源、膨胀和演化。
暗物质与暗能量广义相对论在解释宇宙大尺度结构形成和宇宙加速膨胀时,提出了暗物质和暗能量的概念,这些物质和能量对于理解宇宙的演化至关重要。
大学物理中的相对论问题相对论是现代物理学的基石之一,涉及到了时间、空间、光速等重要概念。
在大学物理的学习过程中,相对论问题经常出现,需要我们深入理解和解决。
本文将围绕大学物理中的相对论问题展开讨论。
一、相对论的基本概念相对论是由爱因斯坦提出的,它与牛顿力学有着本质的区别。
相对论中有两个重要假设:光速不变原理和等效原理。
从而导致了时间的相对性、长度的收缩效应等许多令人称奇的现象。
大学物理中的相对论问题往往以光速和能量方面为主,需要我们通过公式推导和实际问题求解来加深对相对论的理解。
二、光速和时空变换问题相对论中的一个重要概念是光速不变原理,即光在真空中的速度是一个恒定值。
这个恒定的光速在不同参考系中都是相同的,不会受到运动的影响。
根据光速不变原理,时间和空间都会发生变换。
在大学物理中,我们通常通过洛伦兹变换来解决相关问题。
举个例子来说明光速和时空变换问题。
假设有两个静止的观察者,一个在地面上,一个在飞行的飞船上。
观察者在飞行的飞船上看来,地面上的时钟运行地比较慢,长度也有所改变。
这是因为光速在不同参考系中是恒定的,时间和空间需要做出调整来保持光速不变。
通过洛伦兹变换的计算,我们可以准确地得出不同参考系下的时间和空间关系。
三、相对论与能量相对论中对能量的定义与牛顿力学不同。
牛顿力学中的能量是由物体的质量和速度决定的,而相对论中的能量概念更广义,包括了物体的静止质量以及其运动引起的能量。
相对论中的质能关系式E=mc²描述了质量和能量之间的等价性。
在大学物理中,我们经常会遇到能量守恒的问题。
相对论中的能量守恒原理同样适用,但是由于质量与能量之间的关系不同,需要我们通过相对论的方式来进行能量计算。
例如,核反应和粒子加速器等物理现象中的能量转换问题需要用到相对论能量的计算公式。
四、狭义相对论与广义相对论相对论主要分为狭义相对论和广义相对论两个部分。
狭义相对论是对相对论最基本的描述,主要涉及到了时间、空间和速度等概念的变化。
title大学物理—相对论、电磁学(大连理工大学) 中国大学mooc答案100分最新版content第二周相对论基础(2)相对论单元测验1、地面观察者测得地面上事件A和B同时发生,并分别处于x轴上x1和x2两点(x1< x2),则沿x 轴负向高速运动的飞船上的观察者测得此两事件中答案: B晚发生2、 p 介子静止时平均寿命为t. 用高能加速器把p 介子加速到u ,则在实验室中观测,p 介子平均一生最长行程为。
答案:3、若从一惯性系中测得宇宙飞船的长度为其固有长度的一半,则宇宙飞船相对该惯性系的速度为()。
答案:4、 K系与K¢系是坐标轴相互平行的两个惯性系,K¢系相对K系沿ox轴正方向以接近光速的速度匀速运动。
一根刚性尺静止在K¢系中,与o¢x¢轴成60°角,则在K系中观察该尺与ox轴的夹角q ,有()。
答案: q >60º5、两枚静止长度为20m 的火箭A、B,它们均以 0.9 c 的速度相对地面背向飞行。
在火箭 A上测量火箭B 的速度为()。
答案: 0.994 c6、一个静止质量是m0的粒子,以接近光速的速度v相对地面作匀速直线运动,则地面上的观测者测量其动能为( ).答案:7、由狭义相对论原理可知,相对于某些惯性系,运动物体的速度是可以达到真空中的光速的.答案: 错误8、在一惯性系中发生于同一时刻、不同地点的两个事件,在其他相对此惯性系运动的任何惯性系中一定不是同时发生的.答案: 错误9、在一惯性系中发生于同一时刻、不同地点的两个事件,在其他相对此惯性系运动的任何惯性系中可能不是同时发生的.答案: 正确10、由洛伦兹变换可得出下面的结论:有因果关系的两个事件发生的时间顺序在两个不同的惯性系中观察,有可能是颠倒的。
答案: 错误11、广义相对论的等效原理指出加速度和引力场等效.答案: 正确12、由狭义相对论原理可知:在任何一个惯性系中做光学实验都用来确定本参考系的运动速度。
01课程介绍与教学目标Chapter《大学物理》课程简介0102教学目标与要求教学目标教学要求教材及参考书目教材参考书目《普通物理学教程》(力学、热学、电磁学、光学、近代物理学),高等教育出版社;《费曼物理学讲义》,上海科学技术出版社等。
02力学基础Chapter质点运动学位置矢量与位移运动学方程位置矢量的定义、位移的计算、标量与矢量一维运动学方程、二维运动学方程、三维运动学方程质点的基本概念速度与加速度圆周运动定义、特点、适用条件速度的定义、加速度的定义、速度与加速度的关系圆周运动的描述、角速度、线速度、向心加速度01020304惯性定律、惯性系与非惯性系牛顿第一定律动量定理的推导、质点系的牛顿第二定律牛顿第二定律作用力和反作用力、牛顿第三定律的应用牛顿第三定律万有引力定律的表述、引力常量的测定万有引力定律牛顿运动定律动量定理角动量定理碰撞030201动量定理与角动量定理功和能功的定义及计算动能定理势能机械能守恒定律03热学基础Chapter1 2 3温度的定义和单位热量与内能热力学第零定律温度与热量热力学第一定律的表述功与热量的关系热力学第一定律的应用热力学第二定律的表述01熵的概念02热力学第二定律的应用03熵与熵增原理熵增原理的表述熵与热力学第二定律的关系熵增原理的应用04电磁学基础Chapter静电场电荷与库仑定律电场与电场强度电势与电势差静电场中的导体与电介质01020304电流与电流密度磁场对电流的作用力磁场与磁感应强度磁介质与磁化强度稳恒电流与磁场阐述法拉第电磁感应定律的表达式和应用,分析感应电动势的产生条件和计算方法。
法拉第电磁感应定律楞次定律与自感现象互感与变压器电磁感应的能量守恒与转化解释楞次定律的含义和应用,分析自感现象的产生原因和影响因素。
介绍互感的概念、计算方法以及变压器的工作原理和应用。
分析电磁感应过程中的能量守恒与转化关系,以及焦耳热的计算方法。
电磁感应现象电磁波的产生与传播麦克斯韦方程组电磁波的辐射与散射电磁波谱与光子概念麦克斯韦电磁场理论05光学基础Chapter01光线、光束和波面的概念020304光的直线传播定律光的反射定律和折射定律透镜成像原理及作图方法几何光学基本原理波动光学基础概念01020304干涉现象及其应用薄膜干涉及其应用(如牛顿环、劈尖干涉等)01020304惠更斯-菲涅尔原理单缝衍射和圆孔衍射光栅衍射及其应用X射线衍射及晶体结构分析衍射现象及其应用06量子物理基础Chapter02030401黑体辐射与普朗克量子假设黑体辐射实验与经典物理的矛盾普朗克量子假设的提普朗克公式及其物理意义量子化概念在解决黑体辐射问题中的应用010204光电效应与爱因斯坦光子理论光电效应实验现象与经典理论的矛盾爱因斯坦光子理论的提光电效应方程及其物理意义光子概念在解释光电效应中的应用03康普顿效应及德布罗意波概念康普顿散射实验现象与经德布罗意波概念的提典理论的矛盾测不准关系及量子力学简介测不准关系的提出及其物理量子力学的基本概念与原理意义07相对论基础Chapter狭义相对论基本原理相对性原理光速不变原理质能关系广义相对论简介等效原理在局部区域内,无法区分均匀引力场和加速参照系。
大学物理基础知识相对论与时空的变换相对论是现代物理学中的一门重要学科,它以解释运动物体的行为和描述时空结构的变化为核心内容。
本文将介绍相对论的基础知识以及时空的变换。
一、相对论的基本假设相对论的起点是两条基本假设:光速不变原理和等效原理。
光速不变原理指出,在任何参考系中,光在真空中的传播速度都是恒定的,即光速。
等效原理则认为,所有惯性参考系中的物理现象都是相同的,无法通过实验来区分不同的惯性参考系。
基于这两个假设,相对论推导出了一系列重要的定理和公式,如狭义相对论中的洛伦兹变换和质能关系等。
二、洛伦兹变换洛伦兹变换是相对论物理学中的重要数学工具,用于描述不同惯性参考系间的时空关系。
洛伦兹变换包括时间变换和空间变换两个部分。
1. 时间变换在相对论中,时间不再是一个绝对的概念,而是与观察者的参考系有关。
洛伦兹变换中的时间变换公式为:$$t' = \gamma(t-\frac{vx}{c^2})$$其中,t'为观察者的时间,t为被观察事件发生时的时间,v为两个参考系间的相对速度,x为两个参考系间的相对位置,c为光速,而$\gamma$是一个常数,其值为$\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$。
2. 空间变换与时间类似,空间也不再是一个绝对的概念。
洛伦兹变换中的空间变换公式为:$$x' = \gamma(x-vt)$$其中,x'为观察者的空间坐标,x为被观察事件发生时的空间坐标。
三、时空的变换相对论揭示了时空结构的变化与物体的运动状态有关。
引入时空间隔的概念,用于测量两个事件在时空中的距离。
时空间隔的不变性是相对论的重要结论之一。
时空间隔的不变性关系可由洛伦兹变换推导出:$$\Delta s^2 = c^2\Delta t^2 - \Delta x^2 - \Delta y^2 - \Delta z^2$$其中,$\Delta s$为两个事件之间的时空间隔,$\Delta t$为时间间隔,$\Delta x$、$\Delta y$和$\Delta z$为空间间隔。
第四章 静电场本章提要1.电荷的基本性质两种电荷,量子性,电荷首恒,相对论不变性。
2.库仑定律两个静止的点电荷之间的作用力12122204kq q q q r r==F r r πε 其中922910(N m /C )k =⨯⋅122-1-2018.8510(C N m )4k -==⨯⋅επ3.电场强度q =F E 0q 为静止电荷。
由10102204kq q q q r r==F r r πε 得112204kq q r r ==E r r πε4.场强的计算(1)场强叠加原理电场中某一点的电场强度等于各个点电荷单独存在时在该点产生的电场强度的矢量和。
i =∑E E(2)高斯定理电通量:在电场强度为E 的某点附近取一个面元,规定S ∆=∆S n ,θ为E 与n 之间的夹角,通过S ∆的电场强度通量定义为e cos E S ∆ψ=∆=⋅∆v S θ取积分可得电场中有限大的曲面的电通量ψd e sS =⋅⎰⎰E Ò高斯定理:在真空中,通过任一封闭曲面的电通量等于该封闭曲面的所有电荷电量的代数和除以0ε,与封闭曲面外的电荷无关。
即i 01d sq=∑⎰⎰E S g Ò内ε5.典型静电场(1)均匀带电球面0=E (球面)204q r πε=E r (球面外)(2)均匀带电球体304q R πε=E r (球体) 204q r πε=E r (球体外)(3)均匀带电无限长直线场强方向垂直于带电直线,大小为02E r λπε=(4)均匀带电无限大平面场强方向垂直于带电平面,大小为2E σε=6.电偶极矩电偶极子在电场中受到的力矩=⨯M P E思考题4-1 020 4qq r ==πεr 与FE E 两式有什么区别与联系。
答:公式q FE =是关于电场强度的定义式,适合求任何情况下的电场。
而公式0204q rπε=E r是由库仑定理代入定义式推导而来,只适于求点电荷的电场强度。
4-2一均匀带电球形橡皮气球,在气球被吹大的过程中,下列各场点的场强将如何变化?(1) 气球部 (2) 气球外部 (3) 气球表面答:取球面高斯面,由00d ni i q ε=⋅=∑⎰⎰ÒE S 可知(1)部无电荷,而面积不为零,所以E = 0。