人教版高中数学必修二导学案:第三章第一节倾斜角与斜率
- 格式:doc
- 大小:56.00 KB
- 文档页数:4
. 倾斜角与斜率.直线的倾斜角()倾斜角的定义:当直线与轴相交时,取轴作为基准,轴正方向与直线向上方向之间所成的角叫做直线的倾斜角.如图所示,直线的倾斜角是∠,直线′的倾斜角是∠.()倾斜角的范围:直线的倾斜角α的取值范围是°≤α<°,并规定与轴平行或重合的直线的倾斜角为°. [点睛]()倾斜角定义中含有三个条件:①轴正方向;②直线向上的方向;③小于°的非负角.()平面直角坐标系中的每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等..直线的斜率()斜率的定义:一条直线的倾斜角α的正切值叫做这条直线的斜率.常用小写字母表示,即=α.()斜率公式:经过两点(,),(,)(≠)的直线的斜率公式为=.当=时,直线没有斜率.()斜率的作用:用实数反映了平面直角坐标系内的直线的倾斜程度.[点睛]直线都有倾斜角,但并不是所有的直线都有斜率.当倾斜角是°时,直线的斜率不存在,此时,直线垂直于轴(平行于轴或与轴重合)..判断下列命题是否正确.(正确的打“√”,错误的打“×”)()任一直线都有倾斜角,都存在斜率( )()倾斜角为°的直线的斜率为( )()若一条直线的倾斜角为α,则它的斜率为=α( )()直线斜率的取值范围是(-∞,+∞)( )答案:()×()×()×()√.若直线经过原点和(-),则它的倾斜角是( ).°.°.-°.°或°解析:选作出直线,如图所示,由图易知,应选..已知直线的倾斜角为°,则直线的斜率为( ).解析:选由题意可知,直线的斜率=°=.。
3.1 直线的倾斜角与斜率教案教学目标:1.知识与技能:(1)理解直线的倾斜角与斜率的概念(2)掌握倾斜角与斜率的对应关系(3)掌握过直线两点的直线的斜率公式2.过程与方法:(1)培养学生对数学知识的理解能力、应用能力及转化能力;(2)使学生初步了解数形结合、分类讨论的数学思想方法。
3.情感、态度与价值观:(1)通过直角坐标系将几何问题转化为代数问题,培养学生利用代数解决几何问题的能力;(2)通过坐标法的引入,培养学生联系、对应、转化的辩证思维;(3)激发学生学习数学的热情。
重点难点:重点:确定直线位置的几要素,直线的倾斜角和斜率的概念,直线倾斜角与斜率的关系,用代数方法刻画直线斜率的过程以及过两点的直线斜率的计算公式。
难点:探索直线的斜率与它的倾斜角之间的关系,推导过两点的直线斜率的计算公式。
教学方法:探究式学习教学工具:多媒体教学过程:一、情景导学:1.笛卡尔人物简介(了解坐标系的创立历史)2.介绍坐标系的作用,从而引出本节内容。
二、新知:利用两个动画,探究在平面直角坐标系中确定直线的要素思考:通过以上两个动画,我们可以学到什么?在直角坐标系中:1.只知道直线上一点或者知道直线的方向,直线是不确定的。
2.要确定一条直线的位置,只要知道直线上的不同两点或一点和方向问题3:以上动画2又可以如何表示直线方向(或者倾斜程度)?用角:这个角在直线中也叫做直线的倾斜角,那么直线的倾斜角又是怎样定义的?(引出直线的倾斜角)1.直线的倾斜角定义:探究:直线倾斜角的取值范围:动画演示思考下列问题:你认为下列说法对吗?a.所有的直线都有唯一确定的倾斜角与它对应。
b.每一个倾斜角都对应于唯一的一条直线。
问题4:在表示直线的倾斜程度时,除了用倾斜角之外,还有没有其他的表示方法呢?(生活实例)2. 直线斜率的定义:定义:倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率。
斜率通常用k 表示,即:k=tana (a 为直线的倾斜角且a ≠90°)注意:倾斜角为90°时,斜率不存在。
章节
3.1.1 课题直线的倾斜角与斜率教
学目标1、在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;
2、理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程;
3、掌握过两点的直线的斜率计算公式。
教学重点理解直线的倾斜角与斜率的概念。
教学难点过两点的直线的斜率公式推导【复习回顾】
1.锐角三角函数的定义:如图所示,正弦(sin)等于对边比斜边,sinA=a/c;
余弦(cos)等于邻边比斜边,cosA=b/c;正切(t a n)等于对边比邻边,t a nA=a/b。
2.特殊角的正切值
α0o30o45o60o90o120o135o150o tanα
通过上述表格,你能得出互余的两个角、互补的两个角的正切有怎样的关系?
(1),(2)。
课前预习案
【新知探究】
探究一、确定直线的几何要素
问题1:给出一点P,可以作无数条直线,这些直线组成“直线束”,这些直线的共同点是什么,不同点是什么?由此你能总结出确定直线的几何要素吗?
共同点: ,不同点: 。
确定直线的几何要素:。
探究二、直线的倾斜角与斜率
问题2:平面直角坐标系中,直线l与x轴有几种位置关系?在刻画直线的倾斜程度时,我们取x 轴作为基准线,引入倾斜角的概念,它的定义是什么,取值范围如何?
直线l与x轴的位置关系:。
定义包括两个方面:(1)当直线l与x轴相交时,。
(2)当直线l与x轴平行或重合时,。
取值范围:。
高中数学人教A版必修2导学案:3.1.1直线的倾斜角和斜率(学生版)。
人教版高中数学直线的倾斜角和斜率教案第一章:直线的倾斜角教学目标:1. 理解直线的倾斜角的概念;2. 学会计算直线的倾斜角;3. 掌握直线的倾斜角与斜率的关系。
教学重点:直线的倾斜角的概念及计算方法。
教学难点:直线的倾斜角与斜率的关系。
教学准备:直角坐标系图。
教学过程:1. 引入:引导学生回顾初中阶段学过的直线的倾斜概念,提问:直线的倾斜角是什么?2. 讲解:讲解直线的倾斜角的定义,通过直角坐标系图,演示直线的倾斜角的计算方法。
3. 练习:让学生在直角坐标系图中找出给定直线的倾斜角,并计算。
第二章:斜率的定义教学目标:1. 理解斜率的定义;2. 学会计算直线的斜率;3. 掌握斜率的符号表示。
教学重点:斜率的定义及计算方法。
教学难点:斜率的符号表示。
教学准备:直角坐标系图。
教学过程:1. 引入:引导学生回顾初中阶段学过的斜率概念,提问:斜率是什么?2. 讲解:讲解斜率的定义,通过直角坐标系图,演示斜率的计算方法。
3. 练习:让学生在直角坐标系图中找出给定直线的斜率,并计算。
第三章:斜率的计算教学目标:1. 掌握斜率的计算方法;2. 学会使用斜率公式;3. 能够应用斜率公式解决实际问题。
教学重点:斜率的计算方法及应用。
教学难点:斜率公式的运用。
教学准备:直角坐标系图。
教学过程:1. 引入:让学生回顾上一章所学的内容,提问:如何计算直线的斜率?2. 讲解:讲解斜率的计算方法,通过直角坐标系图,演示斜率的计算过程。
3. 练习:让学生运用斜率公式计算给定直线的斜率,并解决实际问题。
第四章:直线的倾斜角与斜率的关系教学目标:1. 理解直线的倾斜角与斜率的关系;2. 学会利用直线的倾斜角求斜率;3. 能够利用斜率求直线的倾斜角。
教学重点:直线的倾斜角与斜率的关系。
教学难点:利用斜率求直线的倾斜角。
教学准备:直角坐标系图。
教学过程:1. 引入:让学生回顾前几章所学的内容,提问:直线的倾斜角与斜率有什么关系?2. 讲解:讲解直线的倾斜角与斜率的关系,通过直角坐标系图,演示如何利用直线的倾斜角求斜率,以及如何利用斜率求直线的倾斜角。
《直线的倾斜角与斜率》教学设计一、内容及其解析《线的倾斜角与斜率》是人教版数学必修2第三章第一节的内容,是高中解析几何内容的开始。
本节内容是:直线在平面直角坐标系下的倾斜角和斜率。
其核心内容是:直线倾斜角的概念和斜率的求法。
理解它的关键是:在平面直角坐标系中,直线向上的方向与X轴正方向所成的角,和角的正切值。
之前学生已经学过一次函数的图像和平面中两点可以确定一条直线,这节内容就是刻画直线倾斜程度的几何要素与代数表示,是平面直角坐标系内以坐标法(解析法)的方式来研究直线及其几何性质(如直线位置关系、交点坐标、点到直线距离等)的基础。
通过该内容的学习,帮助学生初步了解直角坐标平面内几何要素代数化的过程,渗透解析几何的基本思想和基本研究方法。
直线的斜率是后继内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及讨论直线与二次曲线的位置关系,直线的斜率都发挥着重要作用。
二、教学目标(一)知识与技能1、正确理解直线的倾斜角和斜率的概念.2、斜率公式的推导过程,掌握过两点的斜率公式(二)过程与方法经历将直线的位置问题(几何问题)转化为倾斜角问题的过程,进而倾斜角的正切即斜率问题(代数问题)进行解决,不断体会“数形结合”思想。
(三)情感态度与价值观1、通过直线倾斜角概念的引入学习,直线的斜率的定义,以及直线的倾斜角与斜率关系,提高观察、探索能力,运用数学语言表达能力,数学交流和评价能力。
2、通过建立斜率概念和推导斜率公式,进一步理解数形结合思想,树立辩证统一观点,形成严谨的科学态度和求简的数学精神。
三、学情与重难点分析本次授课班级为重点班,相对来说,学生基础较好。
本节课中教师主要采用问答式与学生分组讨论的形式进行,再由教师协助学生归纳总结的授课方式。
教学重点:直线的倾斜角,斜率的概念与公式。
教学难点:斜率的计算方法教学关键:直线斜率的两种计算方法教学突破方法:结合图形,使学生理解直线倾斜角的概念,抓住直线的倾斜角与斜率的联系,引导学生掌握直线斜率的计算方法。
人教版高中数学必修2《直线的倾斜角与斜率》教学设计及教案本节课选自高中数学《必修2》(普通高中课程标准实验教科书)第三章第一节第一节课。
一、内容和内容解析内容:解析几何介绍,直线的倾斜角和斜率。
每一章的第一节课非常重要,所讲内容要体现出“大问题”,“显著问题”,要从全章的角度来看问题。
因此教学内容不仅有倾斜角、斜率的概念,还应当包含坐标法、数形结合思想、解析几何发展史等。
直线的倾斜角和斜率都描述了直线的倾斜程度,倾斜角用几何位置关系刻画,斜率从数量关系刻画,二者的联系桥梁是正切函数值,并且可以用直线上两个点的坐标表示。
建立斜率公式的过程,体现了坐标法的基本思想:把几何问题代数化,通过代数运算研究几何图形的性质。
本课涉及两个概念——倾斜角和斜率。
倾斜角是几何概念,它主要起过渡作用,是联系新旧知识的纽带,研究斜率、直线的平行、垂直的解析表示等问题时都要用这个概念;斜率概念,不仅其建立过程很好地体现了解析法,而且它在建立直线方程、通过直线方程研究几何问题时也起核心作用,这是因为在直角坐标系下,确定直线的条件最本质条件是直线上的一个点及其斜率,其他形式都可以化归到这两个条件上来。
教学重点:1、使学生经历几何问题代数化的过程,初步了解解析几何研究问题的基本思想方法,体会坐标法;2、理解斜率的定义,掌握过两点的直线的斜率公式。
二、目标和目标解析1.理解倾斜角的概念,体会在直角坐标系下,以坐标轴为“参照系”,用统一的标准刻画几何元素的思想方法。
2.理解斜率的定义和斜率公式,经历几何问题代数化的过程,了解解析法的基本步骤,感受解析几何的思想方法。
3.通过解析几何发展史的简单介绍,渗透数学文化教育。
三、教学问题诊断分析平面几何中,“两点确定一条直线”是没有“参照系”的,如何使学生在这一知识的基础上,顺利、自然地过渡到直角坐标系下用一个点和倾斜角确定一条直线,是比较困难的。
事实上,已知直线的倾斜角就相当于已知直线的方向,因此已知“两个点可以确定直线的方向,这与‘一个点和直线的方向确定一条直线’是一致的”。
高中数学 3.1.1倾斜角与斜率导学案 新人教A 版必修2学习目标:(1)理解直线的倾斜角的定义、范围和斜率;(2)掌握过两点的直线斜率的计算公式;(3)能用公式和概念解决问题.学习重点:直线的倾斜角与斜率的概念、斜率公式.学习难点:直线的斜率与它的倾斜角之间的关系.学习过程:(一)自主学习自学教材82~ 86P P 的内容,找出疑惑之处,并完成以下问题1: 叫做直线l 的倾斜角.注意:当直线与x 轴平行或重合时,我们规定它的倾斜角为 度.★:请指出下列各直线l 的倾斜角的大小或范围.★:直线倾斜角α的范围是2:一条直线的倾斜角α (2πα≠)的 叫这条直线的斜率,记为tan k α=.★.已知各直线倾斜角,则其斜率的值为①当0α=时,则k = ;②当090α<< 时,则k ∈ ;③当 90α= 时,则k ;④当 90180α<< 时,则k ∈ .3: 已知直线上两点 111(,)P x y ,222(,)P x y 12()x x ≠的直线的斜率公式: ★:已知直线上两点A(1a ,1b )、B (2a ,2b ), 使用上述公式计算直线的斜率时,与A 、B 两点坐标的顺序相关吗?★:当直线平行于y 轴时,或与y 轴重合时,上述公式还适用吗?为什么?(二)合作探究1.在平面直角坐标系中,画出经过原点且斜率分别为1,-1,2及-3的直线1l ,2l ,3l 及4l2.已知ABC ∆三个顶点的坐标为A(3,2),B(-4,1),C(0,-1).(1)求ABC ∆三边所在直线的斜率;(2)若点P 是边AC 上的动点,求直线PB 的斜率的变化范围及倾斜角的变化范围.(三)巩固练习1.倾斜角为α的直线经过两点(1,5)A 和(2,4)B -,则有 ( )A .030α<<B .3045α<<C .4560α<<D .6090α<<2.下列说法正确的是 ( )A .若直线的倾斜角为α,则直线的斜率为tan α;B .若两直线的倾斜角相等,则斜率也相等;C .若两直线的斜率相等,则倾斜角也相等;D .若直线的斜率存在,则直线的倾斜角越大,它的斜率也越大.3.若直线l 的斜率为l 的倾斜角为 .4.已知一个三角形的三个顶点坐标为(4,2)A -,(2,2)B ,(4,8)C -,则直线AC 的倾斜角为 ;直线AB 的倾斜角为 ;直线BC 的倾斜角为 .(四) 个人收获与问题:知识:方法:我的问题:。
§3.1直线的倾斜角与斜率学习目标1.理解直线的倾斜角的定义、范围和斜率;2.掌握过两点的直线斜率的计算公式;3.能用公式和概念解决问题.学习过程一、课前准备(预习教材P90~ P91,找出疑惑之处)复习1:在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?复习2:在日常生活中,我们常说这个山坡很陡峭,有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢?二、新课导学※学习探究新知1:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角(angle of inclination).关键:①直线向上方向;②x轴的正方向;③小于平角的正角.注意:当直线与x轴平行或重合时,我们规定它的倾斜角为0度..试试:请描出下列各直线的倾斜角.反思:直线倾斜角的范围?探究任务二:在日常生活中,我们经常用“升高量与前进量的比”表示“坡度”,则坡度的公式是怎样的?新知2:一条直线的倾斜角()2παα≠的正切值叫做这条直线的斜率(slope).记为tankα=.试试:已知各直线倾斜角,则其斜率的值为⑴当0oα=时,则k;⑵当090o oα<<时,则k;⑶当90oα=时,则k;⑷当090180oα<<时,则k .新知3:已知直线上两点111222(,),(,)P x y P x y12()x x≠的直线的斜率公式:2121y ykx x-=-.探究任务三:1.已知直线上两点1212(,),(,),A a aB b b运用上述公式计算直线的斜率时,与,A B两点坐标的顺序有关吗?2.当直线平行于y轴时,或与y轴重合时,上述公式还需要适用吗?为什么?※典型例题例1 已知直线的倾斜角,求直线的斜率:⑴30οα=;⑵135οα=;⑶60οα=;⑷90οα=变式:已知直线的斜率,求其倾斜角.⑴0k=;⑵1k=;⑶3k=-;⑷k不存在.例2 求经过两点(2,3),(4,7)A B的直线的斜率和倾斜角,并判断这条直线的倾斜角是锐角还是钝角. ※动手试试练1. 求经过下列两点直线的斜率,并判断其倾斜角是锐角还是钝角. ⑴(2,3),(1,4)A B -; ⑵(5,0),(4,2)A B -.练2.画出斜率为0,1,1-且经过点(1,0)的直线. 练3.判断(2,12),(1,3),(4,6)A B C --三点的位置关系,并说明理由.三、总结提升 ※ 学习小结1.任何一条直线都有唯一确定的倾斜角,直线斜角的范围是[0,180)︒.2.直线斜率的求法:⑴利用倾斜角的正切来求;⑵利用直线上两点111222(,),(,)P x y P x y 的坐标来求;⑶当直线的倾斜角90οα=时,直线的斜率是不存在的3.直线倾斜角、斜率、斜率公式三者之间的关系:※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列叙述中不正确的是( ).A .若直线的斜率存在,则必有倾斜角与之对应B .每一条直线都惟一对应一个倾斜角C .与坐标轴垂直的直线的倾斜角为0o或90ο D .若直线的倾斜角为α,则直线的斜率为tan α2. 经过(2,0),(5,3)A B --两点的直线的倾斜角( ).A .45οB .135οC .90οD .60ο 3. 过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为( ).A.1B.4C.1或3D.1或4 4. 直线经过二、三、四象限,l 的倾斜角为α,斜率为k ,则α为 角;k 的取值范围 . 5. 已知直线l 1的倾斜角为α1,则l 1关于x 轴对称的直线l 2的倾斜角2α为________.1. 已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围.2. 已知直线l 过2211(2,()),(2,())A t B t t t-+-两点,求此直线的斜率和倾斜角.§ 3.2两直线平行与垂直的判定1. 熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断两条直线的位置关系; 2.通过研究两直线平行或垂直的条件的讨论,培养学生运用已有知识解决新问题的能力以及学生的数形结合能力;3.通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,激发学生学习的兴趣.一、课前准备:(预习教材P 95~ P 98,找出疑惑之处) 复习1:1.已知直线的倾斜角(90)οαα≠,则直线的斜率为 ;已知直线上两点1122(,),(,)A x y B x y 且12x x ≠,则直线的斜率为 .2.若直线l 过(-2,3)和(6,-5)两点,则直线l 的斜率为 ,倾斜角为 .3.斜率为2的直线经过(3,5)、(a ,7)、(-1,b )三点,则a 、b 的值分别为 .4.已知12,l l 的斜率都不存在且12,l l 不重合,则两直线的位置关系 . 5.已知一直线经过两点(,2),(,21)A m B m m --,且直线的倾斜角为60ο,则m = . 复习2:两直线平行(垂直)时它们的倾斜角之间有何关系?二、新课导学: ※ 学习探究问题1:特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时: (1)当另一条直线的斜率也不存在时,两直线的倾斜角为 ,两直线位置关系是 .(2)当另一条直线的斜率为0时,一条直线的倾斜角为 ,另一条直线的倾斜角为 ,两直线的位置关系是 .问题2:斜率存在时两直线的平行与垂直.设直线1l 和2l 的斜率为1k 和2k .⑴两条直线平行的情形.如果21//l l ,那么它们的倾斜角与斜率是怎么的关系,反过来成立吗? 新知1:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即12//l l ⇔1k =2k注意,上面的等价是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不存立. ⑵两条直线垂直的情形.如果12l l ⊥,那么它们的倾斜角与斜率是怎么的关系,反过来成立吗?新知2:两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直.即12l l ⊥⇔121k k =-⇔121k k =- ※ 典型例题例1 已知(2,3),(4,0),(3,1),(1,2)A B P Q ---,试判断直线BA 与PQ 的位置关系, 并证明你的结论. 例2 已知(1,1),(2,2),(3,0)A B C -三点,求点D 的坐标,使直线CD AB ⊥,且//CB AD .变式:已知(5,1),(1,1),(2,3)A B C -,试判断三角形ABC 的形状.※ 动手试试练1. 试确定m 的值,使过点(,1),(1,)A m B m -的直线与过点(1,2),(5,0)P Q -的直线 ⑴平行; ⑵垂直练2. 已知点(3,4)A ,在坐标轴上有一点B ,若2AB k =,求B 点的坐标.三、总结提升:※ 学习小结:1.1212//l l k k ⇔=或12,l l 的斜率都不存在且不重合. 2.12121l l k k ⊥⇔=-或10k =且2l 的斜率不存在,或0k =且l 的斜率不存在.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列说法正确的是( ). A .若12l l ⊥,则121k k =-B .若直线12//l l ,则两直线的斜率相等C .若直线1l 、2l 的斜率均不存在,则12l l ⊥D .若两直线的斜率不相等,则两直线不平行2. 过点(1,2)A 和点(3,2)B -的直线与直线1y =的位置关系是( ).A .相交 B.平行 C.重合 D.以上都不对 3. 经过(,3)m 与(2,)m 的直线l 与斜率为4-的直线互助垂直,则m 值为( ).A .75-B .75C .145-D .1454. 已知三点(,2),(5,1),(4,2)A a B C a -在同一直线上,则a 的值为 .5. 顺次连结(4,3),(2,5),(6,3),(3,0)A B C D --,所组成的图形是 .1. 若已知直线1l 上的点满足260ax y ++=,直线2l 上的点满足2(1)10(1)x a y a a +-+-=≠,试求a为何值时,⑴12//l l ;⑵12l l ⊥.2. 已知定点(1,3),(4,2)A B -,以,A B 为直径的端点,作圆与x 轴有交点C ,求交点C 的坐标.§ 3.2.1直线的点斜式方程1.理解直线方程的点斜式、斜截式的形式特点和适用范围;2.能正确利用直线的点斜式、斜截式公式求直线方程;3.体会直线的斜截式方程与一次函数的关系.一、课前准备:(预习教材P 101~ P 104,找出疑惑之处)复习1.已知直线12,l l 都有斜率,如果12//l l ,则 ;如果12l l ⊥,则 . 2.若三点(3,1),(2,),(8,11)A B k C -在同一直线上,则k 的值为 .3.已知长方形ABCD 的三个顶点的坐标分别为(0,1),(1,0),(3,2)A B C ,则第四个顶点D 的坐标.4.直线的倾斜角与斜率有何关系?什么样的直线没有斜率?二、新课导学: ※ 学习探究问题1:在直线坐标系内确定一条直线,应知道哪些条件?新知1:已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程. 问题2:直线的点斜式方程能否表示坐标平面上的所有直线呢?问题3:⑴x 轴所在直线的方程是 ,y 轴所在直线的方程是 .⑵经过点000(,)P x y 且平行于x 轴(即垂直于y 轴)的直线方程是 . ⑶经过点000(,)P x y 且平行于y 轴(即垂直于x 轴)的直线方程是 . 问题4:已知直线l 的斜率为k ,且与y 轴的交点为(0,)b ,求直线l 的方程.新知2:直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距(intercept ).直线y kx b =+叫做直线的斜截式方程.注意:截距b 就是函数图象与y 轴交点的纵坐标. 问题5:能否用斜截式表示平面内的所有直线? 斜截式与我们学过的一次函数表达式比较你会得出什么结论.※ 典型例题例1 直线过点(1,2)-,且倾斜角为135ο,求直线l 的点斜式和斜截式方程,并画出直线l .变式:⑴直线过点(1,2)-,且平行于x 轴的直线方程 ;⑵直线过点(1,2)-,且平行于x 轴的直线方程 ; ⑶直线过点(1,2)-,且过原点的直线方程 . 例2 写出下列直线的斜截式方程,并画出图形: ⑴,在y 轴上的距截是-2; ⑵ 斜角是0135,在y 轴上的距截是0变式:已知直线的方程3260x y +-=,求直线的斜率及纵截距.※ 动手试试练1. 求经过点(1,2),且与直线23y x =-平行的直线方程.练2. 求直线48y x =+与坐标轴所围成的三角形的面积.三、总结提升: ※ 学习小结1.直线的方程:⑴点斜式00()y y k x x -=-;⑵斜截式y kx b =+;这两个公式都只能在斜率存在的前提下才能使用.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 过点(4,2)-,倾斜角为135ο的直线方程是( ).A20y ++-=B360y +++=C.40x -=D.40x += 2. 已知直线的方程是21y x +=--,则( ). A .直线经过点(2,1)-,斜率为1- B .直线经过点(2,1)--,斜率为1 C .直线经过点(1,2)--,斜率为1-D .直线经过点(1,2)-,斜率为1-3. 直线130kx y k -+-=,当k 变化时,所有直线恒过定点( ).A .(0,0)B .(3,1)C .(1,3)D .(1,3)-- 4. 直线l的倾斜角比直线12y =+的倾斜角大45ο,且直线l 的纵截距为3,则直线的方程 . 5. 已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程 .1. 已知三角形的三个顶点(2,2),(3,2),(3,0)A B C -,求这个三角形的三边所在的直线方程.2. 直线l 过点(2,3)P -且与x 轴、y 轴分别交于,A B 两点,若P 恰为线段AB 的中点,求直线l 的方程.§ 3.2.2直线的两点式方程1.掌握直线方程的两点的形式特点及适用范围; 2.了解直线方程截距式的形式特点及适用范围.一、课前准备:(预习教材P 105~ P 106,找出疑惑之处)复习1:直线过点(2,3)-,斜率是1,则直线方程为 ;直线的倾斜角为60ο,纵截距为3-,则直线方程为 . 2.与直线21y x =+垂直且过点(1,2)的直线方程为 .3.方程()331--=+x y 表示过点______,斜率是______,倾斜角是______,在y 轴上的截距是______的直线.4.已知直线l 经过两点12(1,2),(3,5)P P ,求直线l 的方程.二、新课导学: ※ 学习探究新知1:已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为1112122121(,)y y x x x x y y y y x x --=≠≠--,由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式(two-point form ). 问题1:哪些直线不能用两点式表示?例 已知直线过(1,0),(0,2)A B -,求直线的方程并画出图象.新知2:已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程1=+bya x 叫做直线的截距式方程. 注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.问题3:a ,b 表示截距,是不是表示直线与坐标轴的两个交点到原点的距离?问题4:到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?※ 典型例题例1 求过下列两点的直线的两点式方程,再化为截距式方程. ⑴(2,1),(0,3)A B -; ⑵(4,5),(0,0)A B --.例2 已知三角形的三个顶点(5,0),(3,3)A B --,(0,2)C ,求BC 边所在直线的方程,以及该边上中线所在直线的方程.※ 动手试试练1.求出下列直线的方程,并画出图形. ⑴ 倾斜角为045,在y 轴上的截距为0; ⑵ 在x 轴上的截距为-5,在y 轴上的截距为6;⑶ 在x 轴上截距是-3,与y 轴平行; ⑷ 在y 轴上的截距是4,与x 轴平行.三、总结提升: ※ 学习小结1.直线方程的各种形式总结为如下表格:2. 中点坐标公式:已知1122(,),(,)A x y B x y ,则AB 的中点(,)M x y ,则2121,22x x y y x y ++==.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 直线l 过点(1,1),(2,5)--两点,点(1002,)b 在l 上,则b 的值为( ).A .2003B .2004C .2005D .2006 2. 若直线0Ax By C ++=通过第二、三、四象限,则系数,,A B C 需满足条件( )A. ,,A B C 同号B. 0,0AC BC <<4. 在x 轴上的截距为2,在y 轴上的截距为3-的直线方程 .5. 直线21y x =-关于x 轴对称的直线方程 ,关于y 轴对称的直线方程 关于原点对称的方程 .1. 过点P (2,1)作直线l 交,x y 正半轴于AB 两点,当||||PA PB ⋅取到最小值时,求直线l 的方程.2. 已知一直线被两直线1:460l x y ++=,2l :3x 560y --=截得的线段的中点恰好是坐标原点,求该直线方程.§ 3.2.3直线的一般式方程1.明确直线方程一般式的形式特征;2.会把直线方程的一般式化为斜截式,进而求斜率和截距;3.会把直线方程的点斜式、两点式化为一般式.一、课前准备:(预习教材P 107~ P 109,找出疑惑之处)复习1:⑴已知直线经过原点和点(0,4),则直线的方程 . ⑵在x 轴上截距为1-,在y 轴上的截距为3的直线方程 . ⑶已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线方程是 . 复习2:平面直角坐标系中的每一条直线都可以用一个关于,x y 的二元一次方程表示吗?二、新课导学: ※ 学习探究新知:关于,x y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)叫做直线的一般式方程,简称一般式(general form ).注意:直线一般式能表示平面内的任何一条直线 问题1:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?问题4:在方程0Ax By C ++=中,,,A B C 为何值时,方程表示的直线⑴平行于x 轴;⑵平行于y 轴;⑶与x 轴重合;⑷与y 重合.※ 典型例题例1 已知直线经过点(6,4)A -,斜率为12,求直线的点斜式和一般式方程.例2 把直线l 的一般式方程260x y -+=化成斜截式,求出直线l 的斜率以及它在x 轴与y 轴上的截距,并画出图形.变式:求下列直线的斜率和在y 轴上的截距,并画出图形⑴350x y +-=;⑵145x y-=;⑶20x y +=;⑷7640x y -+=;⑸270y -=.※ 动手试试练1.根据下列各条件写出直线的方程,并且化成一般式:⑴ 斜率是12-,经过点(8,2)A -;⑵ 经过点(4,2)B ,平行于x 轴;⑶ 在x 轴和y 轴上的截距分别是3,32-;⑷ 经过两点12(3,2),(5,4)P P --. 练2.设A 、B 是x 轴上的两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA的方程为10x y -+=,求直线PB 的方程三、总结提升:※ 学习小结 1.通过对直线方程的四种特殊形式的复习和变形,概括出直线方程的一般形式:0Ax By C ++=(A 、B 不全为0);2.点00(,)x y 在直线0Ax By C ++=上⇔00Ax By +0C +=学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1 斜率为3-,在x 轴上截距为2的直线的一般式方程是( ).A .360x y ++=B .320x y -+=C .360x y +-=D .320x y --= 2. 若方程0Ax By C ++=表示一条直线,则( ). A .1A ≠ B .0B ≠ C .0AB ≠ D .220A B +≠ 3. 已知直线1l 和2l 的夹角的平分线为y x =,如果1l 的方程是0(0)ax by c ab ++=>,那么2l 的方程为( ).A .0bx ay c ++=B .0ax by c -+=C .0bx ay c +-=D .0bx ay c -+= 4. 直线270x y ++=在x 轴上的截距为a ,在y 轴上的截距为b ,则a b += .5. 直线1:2(1)40l x m y +++=与直线2:3l mx y +20-=平行,则m = .课后作业1. 菱形的两条对角线长分别等于8和6,并且分别位于x 轴和y 轴上,求菱形各边所在的直线的方程.2.光线由点(1,4)A -射出,在直线:2360l x y +-=上进行反射,已知反射光线过点62(3,)13B ,求反射光线所在直线的方程. § 3.1两条直线的交点坐标学习目标1.掌握判断两直线相交的方法;会求两直线交点坐标;2.体会判断两直线相交中的数形结合思想.学习过程一、课前准备:(预习教材P 112~ P 114,找出疑惑之处)1.经过点(1,2)A -,且与直线210x y +-+垂直的直线 . 2.点斜式、斜截式、两点式和截距式能否表示垂直于坐标轴的直线?3.平面直角系中两条直线的位置关系有几种?二、新课导学: ※ 学习探究问题1:已知两直线方程1111:0l A x B y C ++=,222:l A x B y +20C +=,如何判断这两条直线的位置关系?问题2:如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系?※ 典型例题例1 求下列两直线1:3420l x y +-=,2:22l x y ++0=的交点坐标.变式:判断下列各对直线的位置关系.如果相交,求出交点坐标.⑴1:0l x y -=,2:33100l x y +-=; ⑵1:30l x y -=,2:630l x y -=; ⑶1:3450l x y +-=,2:68100l x y +-=. 例2 求经过两直线2330x y --=和20x y ++=的交点且与直线310x y +-=平行的直线方程. 变式:求经过两直线2330x y --=和20x y ++=的交点且与直线310x y +-=垂直的直线方程. 例3 已知两点(2,1),(4,3)A B -,求经过两直线2310x y -+=和3210x y +-=的交点和线段AB 中点的直线l 的方程.※ 动手试试练1. 求直线20x y --=关于直线330x y -+=对称的直线方程.练2. 已知直线1l 的方程为30Ax y C ++=,直线2l 的方程为2340x y -+=,若12,l l 的交点在y 轴上,求C 的值.三、总结提升: ※ 学习小结1.两直线的交点问题.一般地,将两条直线的方程联立,得方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩,若方程组有唯一解,则两直线相交;若方程组有无数组解,则两直线重合;若方程组无解,则两直线平行.2.直线与直线的位置关系,求两直线的交点坐标,能将几何问题转化为代数问题来解决.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 两直线12:210,:220l x y l x y ++=-++=的交点坐标为( ).A .13(,)24B .13(,)24-C .13(,)24--D .13(,)24-2. 两条直线320x y n ++=和2310x y -+=的位置关系是( ).A .平行B .相交且垂直C .相交但不垂直D .与n 的值有关 3. 与直线2360x y +-=关于点(1,1)-对称的直线方程是( ).A .3220x y -+=B .2370x y ++=C .32120x y --=D .2380x y ++= 4. 光线从(2,3)M -射到x 轴上的一点(1,0)P 后被x 轴反射,则反射光线所在的直线方程 .5. 已知点(5,8),(4,1)A B ,则点A 关于点B 的对称点C 的坐标 .1. 直线54210x y m +--=与直线230x y m +-=的交点在第四象限,求m 的取值范围.2. 已知a 为实数,两直线1l :10ax y ++=,2l :0x y a +-=相交于一点,求证交点不可能在第一象限及x 轴上.§ 3.3.2两点间的距离1.掌握直角坐标系两点间距离,用坐标法证明简单的几何问题.2.通过两点间距离公式的推导,能更充分体会数形结合的优越性.3.体会事物之间的内在联系,,能用代数方法解决几何问题.一、课前准备:(预习教材P 115~ P 116,找出疑惑之处)1.直线0mx y m +-=,无论m 取任意实数,它都过点 .2.若直线111:1l a x b y +=与直线222:1l a x b y +=的交点为(2,1)-,则112a b -= .3.当k 为何值时,直线3y kx =+过直线2x y -10+=与5y x =+的交点?二、新课导学: ※ 学习探究问题1:已知数轴上两点,A B ,怎么求,A B 的距离? 问题2:怎么求坐标平面上,A B 两点的距离?及,A B 的中点坐标?新知:已知平面上两点111222(,),(,)P x y P x y ,则22122121()()PP x x y y =-+-.特殊地:(,)P x y 与原点的距离为22OP x y =+.※ 典型例题例1 已知点(8,10),(4,4)A B -求线段AB 的长及中点坐标.变式:已知点(1,2),(2,7)A B -,在x 轴上求一点,使PA PB =,并求PA 的值.例2 证明平行四边行四条边的平方和等于两条对角线的平方和.变式:证明直角三角形斜边上的中点到三个顶点的距离相等.※ 动手试试练1.已知点(1,2),(3,4),(5,0)A B C ,求证:ABC ∆是等腰三角形.练2.已知点(4,12)A ,在x 轴上的点P 与点A 的距离等于13,求点P 的坐标.三、总结提升: ※ 学习小结1.坐标法的步骤:①建立适当的平面直角坐标系,用坐标表示有关的量;②进行有关的代数运算;③把代数运算结果“翻译”成几何关系.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 两点(1,3),(2,5)A B -之间的距离为( ). A .23 B .13 C .11 D .32. 以点(3,0),(3,2),(1,2)A B C ---为顶点的三角形是( )三角形.A .等腰B .等边C .直角D .以上都不是 3. 直线a x +2y +8=0,4x +3y =10和2x -y =10相交于一点,则a 的值( ).A .2-B .2C .1D .1-4. 已知点(1,2),(2,7)A B -,在x 轴上存在一点P ,使PA PB =,则PA = .5. 光线从点M (-2,3)射到x 轴上一点P (1,0)后被x 轴反射,则反射光线所在的直线的方程 .课后作业1. 经过直线23y x =+和320x y -+=3的交点,且垂直于第一条直线.2. 已知a 为实数,两直线1l :01=++y ax ,2l :0=-+a y x 相交于一点,求证交点不可能在第一象限及x 轴上.§ 3.3点到直线的距离及两平行线距离学习目标1.理解点到直线距离公式的推导,熟练掌握点到直线的距离公式;2.会用点到直线距离公式求解两平行线距离3.认识事物之间在一定条件下的转化.用联系的观点看问题一、课前准备:(预习教材P 117~ P 119,找出疑惑之处)复习1.已知平面上两点(0,3),(2,1)A B -,则AB 的中点坐标为 ,AB 间的长度为 .复习2.在平面直角坐标系中,如果已知某点P 的坐标为00(,)x y ,直线l 的方程是:0l Ax By C ++=,怎样用点的坐标和直线的方程直接求点P 到直线l的距离呢?二、新课导学:※ 学习探究新知1:已知点00(,)P x y0=,则点P 到直线l 的距离为:d =.注意:⑴点到直线的距离是直线上的点与直线外一点的连线的最短距离;⑵在运用公式时,直线的方程要先化为一般式.问题2:在平面直角坐标系中,如果已知某点P 的坐标为00(,)x y ,直线方程0:=++C By Ax l 中,如果0A =,或0B =,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢并画出图形来. 例 分别求出点(0,2),(1,0)A B -到直线341x y --0=的距离.问题3:求两平行线1l :2380x y +-=,2l :23x y +10-=的距离.新知2:已知两条平行线直线1l 10Ax By C ++=,2:l 20Ax By C ++=,则1l 与2l 的距离为d =注意:应用此公式应注意如下两点:(1)把直线方程化为一般式方程;(2)使,x y 的系数相等.※ 典型例题例1 已知点(1,3),(3,1),(1,0)A B C -,求三角形ABC 的面积.例2 求两平行线1l :2380x y +-=,2l :46x y +10-=的距离.※ 动手试试练1. 求过点(1,2)A -,的直线方程.练2.求与直线:51260l x y -+=平行且到l 的距离为2的直线方程. 三、总结提升:※ 学习小结1.点到直线距离公式的推导过程,点到直线的距离公式,能把求两平行线的距离转化为点到直线的距离公式※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 求点(5,7)P -到直线12530x y +-=的距离( )A .1B .0C .1413D .28132. 过点(1,2)且与原点距离最大的直线方程是( ).A.250x y +-=B.240x y +-=C.370x y +-=D.350x y +-= 3. 到两坐标轴距离相等的点的轨迹方程是( ). A .0x y -= B .0x y += C .0x y -= D .0x y -= 4. 两条平行线3x -2y -1=0和3x -2y +1=0的距离5. 在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有 条.1.已知正方形的中心为(1,0)G -,一边所在直线的方程为350x y +-=,求其他三边所在的直线方程. 2.,A B 两个厂距一条河分别为400m 和100m ,,A B 两厂之间距离500m ,把小河看作一条直线,今在小河边上建一座提水站,供,A B 两厂用水,要使提水站到,A B 两厂铺设的水管长度之和最短,问提水站应建在什么地方? § 3.3.3章未复习提高1. 掌握直线的倾斜角的概念、斜率公式; 2. 掌握直线的方程的几种形式及其相互转化,以及直线方程知识的灵活运用;3. 掌握两直线位置关系的判定,点到直线的距离公式及其公式的运用.一、课前准备: 复习知识点:一.直线的倾斜角与斜率1.倾斜角的定义 , 倾斜角α的范围 , 斜率公式k = ,或 . 二.直线的方程1. 点斜式:00()y y k x x -=- 2. 斜截式:y kx b =+ 3. 两点式:112121y y x x y y x x --=-- 4. 截距式:1x ya b+=5. 一般式:0Ax By C ++=三.两直线的位置关系 1. 两直线平行2. 两直线相交.⑴两直线垂直,⑵两直线相交 3. 两直线重合 四.距离1. 两点之间的距离公式 , 2. 点线之间的距离公式 , 3. 两平行直线之间的距离公式 .二、新课导学: ※ 典例分析例1 如图菱形ABCD 的60O BAD ∠=,求菱形各边和两条对角线所在直线的倾斜角和斜率.例2 已知在第一象限的ABC ∆中,(1,1),(5,1)A B , 60,45O O A B ∠=∠=.求⑴AB 边的方程;⑵AC 和BC 所在直线的方程.例3 求经过直线3260x y ++=和2570x y +-=的交点,且在两坐标轴上的截距相等的直线方程. 例4 已知两直线1:40l ax by -+=,2:(1)l a x y -+0b +=,求分别满足下列条件的,a b 的值.⑴直线1l 过点(3,1)--,并且直线1l 与直线2l 垂直;⑵直线1l 与直线2l 平行,并且坐标原点到12,l l 的距离相等.例5 过点(4,2)P 作直线l 分别交x 轴、y 轴正半轴于,A B 两点,当AOB ∆面积最小时,求直线l 的方程.※ 动手试试练1. 设直线l 的方程为(2)3m x y m ++=,根据下列条件分别求m 的值. ⑴l 在x 轴上的截距为2-;⑵斜率为1-.练2.已知直线l经过点(2,2)-且与两坐标轴围成单位面积的三角形,求该直线的方程.三、总结提升:※学习小结1.理解直线的倾斜角和斜率的要领,掌握过两点的斜率公式;掌握由一点和斜率写出直线方程的方法,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行和垂直的条件,点到直线的距离公式;能够根据直线方程判断两直线的位置关系.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 点(3,9)关于直线3100x y+-=对称的点的坐标是().A.(1,3)-- B.(17,9)-C.(1,3)- D.(17,9)-2.方程(1)210()a x y a a R--++=∈所表示的直线().A.恒过定点(2,3)- B.恒过定点(2,3) C.恒过点(2,3)-和(2,3) D.都是平行直线3.已知点(3,)m到直线40x+-=的距离等于1,则m=().A..D4.已知(3,)P a在过(2,1)M-和(3,4)N-的直线上,则a= .5.将直线2)y x=-绕点(2,0)按顺时针方向旋转30o,所得的直线方程是.1.已知直线12:220,:1l x ay a l ax y+--=+-a-=.⑴若12//l l,试求a的值;⑵若12l l⊥,试求a的值2.两平行直线12,l l分别过点1(1,0)P和(0,5)P,⑴若1l与2l的距离为5,求两直线的方程;⑵设1l与2l之间的距离是d,求d的取值范围.。
第三章第一节倾斜角与斜率
三维目标
1.理解直线的倾斜角和斜率的概念;
2.理解直线倾斜角的唯一性和斜率的存在性;
3.掌握过两点的直线的斜率公式;
4. 通过本节课的学习,学生体会数形结合的思想,逐步养成观察和探索的习惯.
________________________________________________________________________________ 目标三导 学做思1
*问题1.初中我们学过一次函数)0(≠+=k b kx y ,请问,一次函数的图象是什么?其中k 的正负对直线有何影响?进一步,当k>0时,随着k 的增大直线有何变化?
问题2.对于平面直角坐标系内的一条直线l ,它的位置由哪些条件确定的?
问题3.在数学中,我们可以用哪些量来刻画直线的“倾斜程度”?
问题4.什么叫直线的倾斜角?它的范围是什么?任何一条直线都有倾斜角吗?
问题5.什么叫直线的斜率?任何一条直线都有斜率吗?
问题6.当倾斜角从0º一直增大到180º(0°≤α<180°)的时候,直线的斜率k 是如何变化的?
问题7. (小组合作) 探索如何由直线上两点的坐标计算直线的斜率?
平面直角坐标系下,直线l 经过两点P 1(x 1, y 1), P 2(x 2, y 2) (其中x 1≠x 2),则直线l 的斜率 k= ?
进一步:(1)运用该公式计算经过两点P 1(x 1, y 1), P 2 (x 2, y 2)的直线l 的斜率时,与这两个点坐标的顺序有关吗?
*(2)当x 1=x 2时,该公式还适用吗?此时直线的斜率如何?
(3)当直线平行于x 轴或者与x 轴重合时,该公式适用吗?直线的斜率等于多少呢?
【学做思2】
1. 求经过下列两点的直线的斜率,并判断其倾斜角是锐角还是钝角(或是其它的特殊角).
(1)(1,1),(2,4); (2)(-3,5),(0,2);
(3)(4,4),(4,5); (4)( 10,2),(-10,2).
【思考】在本例(2)中,直线倾斜角的大小是多少?
2. 在平面直角坐标系中,画出经过原点并且斜率分别为1,-1,2及-3的直线1234,,,l l l l
3.(1)已知点A(3,4),在坐标轴上有一点B,若直线AB 的斜率等于2,则点B 的坐标为
_____________________;(2) 已知点M (5,3)和点N (-3,2),若直线PM 和PN 的斜率分别为2和-74
, 则点P 的坐标为________.
【变式】(1) 若过P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,那么实数a 的取值范围是____________;
(2)已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3
)共线,则a =____________.
达标检测
1. 直线AB 过A (-1,0)和B (2,-3)两点,则AB 的倾斜角为( )
A .30°
B .60°
C .120°
D .150°
2. 下列各组中的三点共线的是( )
A .(1,4),(-1,2),(3,5)
B .(-2,-5),(7,6),(-5,3)
C .(1,0),(0,-13
),(7,2) D .(0,0),(2,4),(-1,3) 3. 已知直线l1、l2、l3的斜率分别为k1、k2、k3,如下图所示,则( )
A .k 1<k 2<k 3
B .k 3<k 1<k 2
C .k 3<k 2<k 1
D .k 1<k 3<k 2
4. 已知点P(1),点Q 在y 轴上,若直线PQ 的倾斜角为120°, 则 点Q 的坐标为________
5. 已知A(-2,1)、B(2,3)、C(1,-1),直线l 经过点C 与线段AB 相交,求直线l 斜率的取值范围.。