脉冲发射的相位式激光测距技术研究
- 格式:pdf
- 大小:3.06 MB
- 文档页数:50
脉冲测距与相位测距的对比分析
在现代科技领域,测量距离的方法多种多样,其中,脉冲测距和相位测距是两种常用的测距方式。
本文将对这两种测距方式进行详细的对比分析。
一、脉冲测距
脉冲测距是一种利用发射短时间的脉冲光波,通过测量发射和接收之间的时间差来确定目标距离的方法。
这种测距方式的主要优点在于其精度高,因为其直接测量的是光传播的时间,而光速是一个非常稳定的常数。
此外,脉冲测距还可以通过改变脉冲宽度来调整测距范围,适应性较强。
然而,脉冲测距也存在一些缺点。
首先,由于需要精确测量微秒级别的时差,因此对电子设备的性能要求较高,成本相对较大。
其次,脉冲测距的抗干扰能力较弱,容易受到环境因素的影响。
二、相位测距
相位测距则是一种利用激光干涉原理,通过测量发射光波和反射光波之间的相位差来确定距离的方法。
相位测距的优点主要体现在其具有较高的分辨率和较强的抗干扰能力,适合于微小距离的测量。
但是,相位测距也有其局限性。
一方面,由于相位差受光波长限制,因此其测距范围较小。
另一方面,相位测距对环境条件要求较高,例如需要保持稳定的温度和湿度等,这在一定程度上限制了其应用场合。
三、对比分析
总的来说,脉冲测距和相位测距各有优劣,适用的场景也有所不同。
脉冲测距更适合于远距离、大范围的测距需求,如地质勘探、航空测量等领域;而相位测距则更适用于微小距离的高精度测量,如精密仪器制造、生物医学研究等领域。
综上所述,选择哪种测距方式取决于具体的测量需求和环境条件。
在未来的发展中,我们期待看到更多的新技术和新方法出现,以满足日益增长的测距需求。
《相位法激光测距仪设计》摘要:I.引言- 激光测距仪背景和应用- 相位法激光测距仪的优势II.相位法激光测距仪原理- 相位法基本原理- 激光测距仪系统构成III.相位法激光测距仪设计- 系统硬件设计- 激光发射器- 激光接收器- 数字鉴相器- 系统软件设计- 相位差计算- 距离计算IV.相位法激光测距仪应用- 军事领域- 民用领域V.结论- 相位法激光测距仪的优势- 发展前景正文:激光测距仪是一种利用激光技术测量物体距离的仪器,广泛应用于军事、民用等领域。
相位法激光测距仪作为其中一种类型,具有高精度、高效率等优势,成为近年来研究的热点。
相位法激光测距仪基于相位法原理,通过检测发射光和反射光之间的相位差来检测距离。
其系统构成主要包括激光发射器、激光接收器、数字鉴相器等部分。
其中,激光发射器负责发射激光束,激光接收器负责接收反射光,而数字鉴相器则负责计算相位差。
在设计相位法激光测距仪时,需要考虑系统硬件和软件的设计。
在硬件方面,激光发射器和接收器需要具有较高的稳定性和精度,以保证测量结果的准确性。
此外,数字鉴相器的设计也非常重要,其性能直接影响到相位差计算的准确性。
在软件方面,相位差计算和距离计算的算法需要优化,以提高计算速度和精度。
相位法激光测距仪在军事和民用领域具有广泛的应用前景。
在军事领域,相位法激光测距仪可以应用于侦查、定位、导航等方面,提高作战效率和精度。
在民用领域,相位法激光测距仪可以应用于土地测量、建筑测量、无人机导航等领域,为生产生活提供便捷。
总之,相位法激光测距仪具有显著的优势,其设计和应用值得进一步研究和探讨。
激光测距相位激光测距相位法是一种常用的测量距离的技术方法,它利用激光器发射激光脉冲,通过测量激光的相位差来确定目标物体与测量仪器之间的距离。
该方法具有测量精度高、测量范围广、测量速度快等优点,被广泛应用于工业、建筑、医疗和科学等领域。
相位法是一种利用激光的光波特性进行测距的方法。
它的基本原理是利用激光脉冲的相位差来计算目标物体与测量仪器之间的距离。
激光脉冲发射时首先经过一个光调制器,光调制器可以控制激光的频率和相位,然后被目标物体反射回来,最后由一个接收器接收。
接收器接收到的激光脉冲经过信号处理后,测量出激光脉冲的相位差,进而计算出目标物体的距离。
在测量中,激光脉冲发射后,经过一段时间后,激光脉冲被目标物体反射回接收器。
激光脉冲的相位差就是指发射时刻和接收时刻的相位差。
可以通过测量激光脉冲的到达时间差或测量激光脉冲的相位差来计算出目标物体与测量仪器之间的距离。
在计算激光脉冲的相位差时需要考虑到激光的传播速度。
激光在真空中的传播速度为光速,而在大气中的传播速度则受到大气折射率的影响。
因此,在测量中需要将激光传播的时间与激光的相位差进行转化,从而得到准确的距离值。
激光测距相位法具有许多优点。
首先,它具有测量精度高的特点。
由于激光的相位差可以精确地测量,在近距离的测量中,可以达到亚毫米级别的测量精度。
其次,激光测距相位法的测量范围广。
激光的传播速度非常快,而且激光脉冲的相位差可以进行很大的可调范围,因此可以实现从几毫米到几百米甚至几千米的距离测量。
此外,激光测距相位法还具有测量速度快的特点。
激光脉冲的传播速度很快,在实际应用中可以实现实时测距,适用于需要快速测量的场合。
激光测距相位法被广泛应用于许多领域。
在工业领域,激光测距相位法可以用于测量物体的尺寸、位置和形状,为生产加工提供重要的参数。
例如,在汽车制造中,可以利用激光测距相位法测量车身外形的尺寸,以确保其符合设计要求。
在建筑领域,激光测距相位法可以用于测量建筑物的高度、宽度和倾斜度等参数,为建筑设计和施工提供参考。
一、激光测距简介:激光测距仪无论在军事应用方面,还是在科学技术、生产建设方面,都起着重要作用。
由于激光波长单一,测量精度高,且激光测距仪结构小巧,安装调整方便,故激光测距仪是目前高精度测距最理想的仪器。
激光器与普通光源有显著的区别,它利用受激发射原理和激光腔的滤波效应,使所发光束具有一系列新的特点:①激光有小的光束发散角,即所谓的方向性好或准直性好。
②激光的单色性好,或者说相干性好,普通灯源或太阳光都是非相干光。
③激光的输出功率虽然有限度,但光束细,所以功率密度很高,一般的激光亮度远比太阳表面的亮度大。
若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。
若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。
世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的。
美国军方很快就在此基础上开展了对军用激光装置的研究。
1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用联合体。
激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。
它是提高坦克、飞机、舰艇和火炮精度的重要技术装备。
由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。
国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。
激光测距仪-分类:一维激光测距仪用于距离测量、定位;二维激光测距仪(Scanning Laser Range finder)用于轮廓测量,定位、区域监控等领域;三维激光测距仪(3D Laser Range finder)用于三维轮廓测量,三维空间定位等领域。
激光测距-方法激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。
相位式激光测距原理
相位式激光测距原理是一种利用光学原理测量物体距离的方法。
其基
本原理是将激光束发送到目标物体,经过反射后接收回来,然后根据
光的相位差计算出物体到激光测距仪的距离。
下面将会逐一讲解相位
式激光测距原理的详细内容。
1. 激光的发射
相位式激光测距仪通过激光器发射一束定向、单色、激光光束,将激
光传输到目标体上。
2. 激光的接收
激光的接收有两种方法,其中一种可以使用普通的接收型光电二极管
来完成,另一种则需要使用相位测量的方法。
3. 相位差的测量
通过对激光发射时和接收时的相位差进行测量,得到目标到发射点的
距离,这个距离与光的波长有关。
4. 数据的处理
将测得的距离进行处理后,即可得到精确的目标距离数据,同时在数
据处理的过程当中,还可以实现自动跟踪,提高了装置的实用性。
总之,相位式激光测距原理是一种非常先进和高精度的测距方法,其
原理也比较复杂,需要参考一定的物理学知识,而在工业、航空航天、军事等领域都有广泛的应用。
激光测距传感器工作原理脉冲和相位的区别
脉冲和相位法测距的区别是什么?
脉冲式激光测距传感器通过发送一束激光脉冲到目标物体,然后测量脉冲往返所需的时间来计算距离。
激光脉冲在发射后经过目标物体反射,返回传感器。
传感器根据脉冲往返的时间计算出目标物体的距离。
脉冲式激光测距传感器适用于长距离测量,其精度受限于脉冲持续时间和计时器的精度。
主要用于机载激光雷达、测距望远镜等远距离测场景。
相位式激光测距传感器通过发送连续激光束,并比较发射和接收激光束的相位差来计算距离。
相位式激光测距传感器在测量过程中,通过调整发射激光的频率或相位,并与接收到的反射激光进行相位比较,从而计算出目标物体的距离。
相位式激光测距传感器适用于中短距离测量,具有较高的精度。
主要用在工业自动化、机器人导航等精度要求高的场景。
在实际应用中,可以根据需求选择适合的激光测距传感器。
相位法激光测距原理及算法详解激光相位法测距的原理激光相位测距中,把连续的激光进⾏幅度调制,调制光的光强随时间做周期性变化,测定调制光往返过程中所经过的相位变化即可求出时间和距离。
图.1 相位式激光测距原理⽰意图如图1所⽰,设发射处与反射处(提升容器)的距离为x ,激光的速度为c ,激光往返它们之间的时间为t ,则有:cxt 2设调制波频率为f ,从发射到接收间的相位差为,则有:N cfxft 242 (2) 其中,N 为完整周期波的个数,为不⾜周期波的余相位。
因此可解出:)(2)22(24N N fcN f c f c x(3) 其中,f c L s 2 称为测尺或刻度,N 即是整尺数, 2 N 为余尺。
根据测得的相位移的⼤⼩,可知道N 余尺的⼤⼩。
⽽整尺数N 必须通过选择多个合适的测尺频率才能确定,测尺频率的选择是提升容器精确定位的关键因素之⼀。
多尺测量⽅法测量正弦信号相移的⽅法都⽆法确定相位的整周期数,即不能确定出相位变化中 2的整倍数N ,⽽只能测量不⾜ 2的相位尾数,因此公式(2.3)中的N 值⽆法确定,使该式产⽣多个解,距离D 就不能确定。
解决此缺陷的办法是选⽤⼀个较低的测尺频率s f ,使其测尺长度s L 稍⼤于该被测距离,这种状况下不会出现距离的多值解。
但是由于测相系统的测相误差,会导致测距误差,并且选⽤的s L 越⼤则测距误差越⼤。
因此为了得到较⾼的测距精度⽽使⽤较短的测尺长度,即较⼤的测尺频率s f ,系统的单值测定距离就相应变⼩。
为了解决长测程和⾼精度之间的⽭盾,⼀般使⽤的解决办法是:当待测距离D ⼤于基本测尺sb L (精测测尺)时,可再使⽤⼀个或⼏个辅助测尺sl L (⼜叫粗测测尺),然后将各个测尺测得的距离值组合起来得到单⼀的和精确的距离信息。
由此可见,⽤⼀组测尺共同对距离D 进⾏测量就可以解决距离的多值解,即⽤短尺保证精度,⽤长尺保证量程。
这样就解决⾼精度和长测程的⽭盾[4]。