晶体结构
- 格式:ppt
- 大小:4.01 MB
- 文档页数:94
常见的晶体结构晶体结构是材料科学中的基础概念之一,也是研究材料性质和应用的重要手段。
通过研究晶体结构,可以了解材料的晶格结构、晶体缺陷、晶体生长以及物理性质等信息。
在本文中,我们将主要介绍几种常见的晶体结构。
1.立方晶系。
立方晶系是最简单、最对称的晶体结构之一,其中所有三个晶轴都是等长且互相垂直。
立方晶系包括体心立方晶体(bcc)和面心立方晶体(fcc)。
在体心立方晶体中,每个原子位于一个正八面体的中心和另外八个顶点之一,而在面心立方晶体中,每个原子位于一个正方形面的中心和其四个相邻原子分别组成的正方形的四个角上。
2.六方晶系。
六方晶系包括一个长度为a和两个垂直于晶轴的长度为c的晶轴,其正交晶面呈六边形。
六方晶系中最常见的是六方密堆积结构,其中每个原子最近的邻居原子共有12个,六个在同一水平面上,另外六个分别位于上下两个平面上。
3.正交晶系。
正交晶系包括三个长度分别为a、b和c的互相垂直的晶轴,其六个面分别为长方形。
正交晶系中最常见的结构是析出相结构,例如钛钶合金中的钛纤维基板。
4.单斜晶系。
单斜晶系包括两个长度不等、互相成锐角的晶轴,以及垂直于这两个轴的垂轴。
单斜晶系中最常见的结构是某些金属、半导体和陶瓷材料中的基体结构。
5.斜方晶系。
斜方晶系包括两个长度不等但互相垂直的晶轴以及一个垂直于晶面的垂轴。
斜方晶系的晶体结构非常多样,但最常见的是钙钛矿结构,这是一种广泛存在于氧化物中的晶体结构。
总结。
以上介绍的几种晶体结构是最常见的晶体结构之一,它们共同构成了材料科学中的基础知识。
了解晶体结构对于研究材料性质和开发新型功能材料非常重要。
另外,随着实验技术和计算方法的不断优化,我们对于各种晶体结构的了解将会越来越深入。
14种晶体结构晶体是由原子、分子或福隔离子按照一定的空间规则排列而成的有序固体。
晶体结构是指晶体中原子、离子或分子排列的规则和顺序。
在固体物质中,晶体结构的种类有很多种,其中比较常见的有以下14种:1. 立方晶体结构:最简单的晶体结构之一,具有三个等长的边和六个等角,包括简单立方、体心立方和面心立方三种类型。
2. 六方晶体结构:其晶胞的基本结构是六方密堆,其中最典型的就是六方晶体和螺旋晶体。
3. 正交晶体结构:晶胞具有三个不相互垂直的晶轴,分别被称为a、b 和c 轴,是最常见的晶体结构之一。
4. 单斜晶体结构:晶胞具有两个不相互垂直的晶轴,是晶体结构中的一种。
5. 三方晶体结构:具有三个相等的轴,夹角为60度,最常见的晶体结构之一是石英。
6. 菱晶体结构:晶胞内部有四面体结构,是一种简单的晶体结构。
7. 钙钛矿晶体结构:一种具有钙钛矿结构的晶体,包括钙钛矿结构和螺旋钙钛矿结构。
8. 蜗牛晶体结构:晶胞的形状像一只蜗牛的壳,是晶体结构中的一种。
9. 立方密排晶体结构:晶胞的结构是立方密排,是晶体结构中的一种。
10. 体心立方晶体结构:晶体结构的晶胞中有一个原子位于晶体的中心,是晶体结构中的一种。
11. 面心立方晶体结构:晶体结构的晶胞的各个面的中心有一个原子,是晶体结构中的一种。
12. 钻石晶体结构:晶体结构的晶胞构成了一种钻石结构,是晶体结构中的一种。
13. 银晶体结构:晶体结构的晶胞构成了一种银结构,是晶体结构中的一种。
14. 锶钛矿晶体结构:晶体结构的晶胞构成了一种锶钛矿结构,是晶体结构中的一种。
晶体结构的种类繁多,每种晶体结构都有其独特的结构特点和性质,对晶体的物理和化学性质有着重要的影响。
研究晶体结构不仅可以帮助我们更好地了解晶体的构成和性质,还有助于我们在材料科学、物理化学等领域的应用和研究。
因此,对晶体结构的研究具有重要的科学意义和应用价值。
常见晶体的结构1.原子晶体(1)金刚石晶体中,每个C与相邻4个C形成共价键,C—C 键之间的夹角是109°28′,最小的环是六元环。
含有1 mol C的金刚石中,形成的共价键是2 mol。
(2)SiO2晶体中,每个Si原子与4个O原子成键,每个O原子与2个硅原子形成共价键,最小的环是十二元环,在“硅氧”四面体中,处于中心的是Si原子,1 mol SiO2中含有4 mol Si—O键。
2.分子晶体(1)干冰晶体中,每个CO2分子周围等距且紧邻的CO2分子有12个。
(2)冰晶体中,每个水分子与相邻的4个水分子以氢键相连接,含1 mol H2O的冰中,最多可形成2 mol“氢键”。
3.离子晶体(1)NaCl型:在晶体中,每个Na+同时吸引6个Cl-,每个Cl-同时吸引6个Na+,配位数为6。
每个晶胞含4个Na+和4个Cl-。
(2)CsCl型:在晶体中,每个Cl-吸引8个Cs+,每个Cs+吸引8个Cl-,配位数为8。
4.石墨晶体石墨层状晶体中,层与层之间的作用是分子间作用力,平均每个正六边形拥有的碳原子个数是2,C原子采取的杂化方式是sp2。
5.金属晶体的四种堆积模型分析堆积模型简单立方堆积体心立方堆积六方最密堆积面心立方最密堆积晶胞配位数 6 8 12 12 原子半径(r)和晶胞边长(a)的关系2r=a2r=3a22r=2a2一个晶胞内原子数目1 2 2 4常见金属Po() Na、K、Fe Mg、Zn、Ti Cu、Ag、Au1.按要求回答问题:(1)在金刚石晶体中最小碳环含有________个C原子;每个C原子被________个最小碳环共用。
(2)在干冰中粒子间作用力有____________________________________________________。
(3)含1 mol H2O的冰中形成氢键的数目为________。
(4)在NaCl晶体中,每个Na+周围有________个距离最近且相等的Na+,每个Na+周围有________个距离最近且相等的Cl-,其立体构型为____________。
第五章 晶体结构安徽师范大学化学与材料科学学院§51晶体的点阵理论晶体具有按一定几何规律排列的内部结构,即晶 体由原子(离子、原子团或离子团)近似无限地、在三 维空间周期性地呈重复排列而成。
这种结构上的长 程有序,是晶体与气体、液体以及非晶态固体的本 质区别。
晶体的内部结构称为晶体结构。
1. 晶体的结构特征(1)均匀性(2) 各向异性(3) 自发形成多面体外形(4) 具有确定的熔点(5) 对称性(6) X射线衍射2.周期性下面两个图形均表现出周期性:沿直线方向,每 隔相同的距离,就会出现相同的图案。
如果在图形 中划出一个最小的重复单位(阴影部分所示),通 过平移,将该单位沿直线向两端周期性重复排列, 就构成了上面的图形。
最小重复单位的选择不是唯一的,例如,在图(a) 中,下面任何一个图案都可以作为最小的重复单位。
点的位置可以任意指定,可以在单位中或边缘的任 何位置,但一旦指定后,每个单位中的点的位置必须 相同。
如,不论点的位置如何选取,最后得到的一组点在空间 的取向以及相邻点的间距不会发生变化。
3.结构基元在晶体中,原子(离子、原子团或离子团)周期性地重 复排列。
上面我们在图形找出了最小的重复单位,类似 的,可以在晶体中划出结构基元。
结构基元是指晶体中 能够通过平移在空间重复排列的基本结构单位。
【例1】一维实例:在直线上等间距排列的原子。
一个原子组成一个结构基元,它同时也是基本的化学组成单位。
结构基元必须满足如下四个条件:化学组成相同;空间结构相 同;排列取向相同;周围环境相同。
【例2】一维实例:在伸展的聚乙烯链中,CH2CH2组成一个 结构基元,而不是CH2。
【例3】二维实例:层状石墨分子,其结构基元由两个C原子组 成(相邻的2个C原子的周围环境不同)。
结构基元可以有不同的选法,但其中的原子种类和数目应保 持不变。
什么是晶体结构和晶格常数?晶体结构和晶格常数是固体物理学中重要的概念,对于理解材料的性质和行为至关重要。
本文将详细介绍晶体结构和晶格常数的概念、特征和影响因素。
一、晶体结构的概念晶体是由原子、离子或分子按照一定的规则排列组成的固体物质。
晶体结构是指描述晶体中原子、离子或分子排列方式和相互作用的有序空间结构。
晶体结构决定了晶体的物理、化学和力学性质。
二、晶体结构的特征1.周期性:晶体结构具有周期性,即原子、离子或分子在晶体中以规则的重复方式排列,形成一定的周期性结构。
2.对称性:晶体结构具有各种对称性,如平移对称、旋转对称和镜像对称等。
这些对称性决定了晶体的外观和性质。
3.晶胞:晶体结构通过晶胞进行描述,晶胞是晶体中最小的重复单元,由一组基矢和晶格常数确定。
4.晶格:晶体结构中的原子、离子或分子排列在规则的空间点阵中,称为晶格。
晶格定义了晶体的周期性结构。
三、晶格常数的定义和计算晶格常数是描述晶格的重要参数,它是指晶体中相邻晶格点之间的距离。
晶格常数可以通过实验测量或计算得到。
1.实验测量:晶格常数可以通过X射线衍射实验或中子衍射实验等方法测量得到。
这些实验利用入射射线与晶体中的原子或离子相互作用,通过观察衍射图案来确定晶格常数。
2.计算方法:晶格常数也可以通过理论计算得到。
基于量子力学和能带理论,可以利用计算方法预测晶体的晶格常数。
四、晶格常数的影响因素晶格常数受多种因素的影响,包括晶体的组成、结构和温度等。
以下是一些常见的影响因素:1.原子半径:晶格常数与晶体中原子或离子的半径有关。
原子半径越大,晶格常数越大。
2.晶体结构:不同的晶体结构具有不同的晶格常数。
例如,简单立方晶体的晶格常数比面心立方晶体的晶格常数小。
3.温度:晶格常数随温度的变化而变化。
一般来说,温度升高会导致晶格常数增大。
4.应力:外加应力也会影响晶格常数。
应力会使晶体发生形变,从而改变晶格常数。
综上所述,晶体结构和晶格常数是描述晶体性质的重要概念。