人教版初三数学下册28.1.1锐角三角函数公开课教案
- 格式:doc
- 大小:266.00 KB
- 文档页数:4
28.1.1锐角三角函数学校矿泉中学授课陆叙波时间设计理念注重学生经历观察、操作等探索过程,强调学生对知识的感觉与对新知识的理解与认知。
鼓励学生自主探索与合作交流,培养学生概括的能力,使知识形成体系,并渗透数学思想方法。
教学目标1、知识目标:使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定这一事实,进而认识正弦(sinA).2、技能目标:经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维.3、情感态度与价值观:使学生体验数学活动充满着探索与创造,能积极参与数学学习活动重点使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实,认识正弦(sinA).难点学生很难想到对任意锐角,它的对边与斜边的比值是固定值的事实,关键在于教师引导学生比较、分析,得出结论.方法体验、探索式教学课型新授课教学过程教学环节教学内容师生活动设计意图一、观察发现问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?思考:1.在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?2.若斜坡与水平面所成角的度数是45°,结果会如何呢?3.若斜坡与水平面所成角的度数是40°,结果会如何呢?4.若已知出水口高度为40m,斜坡上铺设的水管长50m,那么斜坡与水平面所成角的度数是多少呢?教师提出问题,给学生一定的时间进行思考,之后可让学生进行交流。
得到在直角三角形中,如果一个锐角是30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都是12由实际需要引出新知.前两个问题学生很容易回答.主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.后两个问题的设计却使学生感到疑惑,这对九年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.二、探究1.请每一位同学拿出自己的三角板,分别测量并教师提出问在培养学生。
人教版数学九年级下册教学设计28.1《锐角三角函数》一. 教材分析人教版数学九年级下册第28.1节《锐角三角函数》是初中数学的重要内容,主要介绍了锐角三角函数的概念、定义及应用。
本节内容是学生对三角形知识深入理解的基础上进行学习的,对于培养学生的逻辑思维能力、空间想象能力和数学应用能力具有重要意义。
教材通过丰富的实例,引导学生探究锐角三角函数的定义,并运用函数思想解决实际问题。
二. 学情分析九年级的学生已经掌握了三角形的基本知识,具有较好的逻辑思维能力和空间想象能力。
但是,对于锐角三角函数的概念和应用,部分学生可能会感到抽象和难以理解。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的特点进行针对性的教学。
三. 教学目标1.知识与技能:使学生掌握锐角三角函数的概念、定义及性质,能够运用锐角三角函数解决实际问题。
2.过程与方法:通过探究活动,培养学生合作交流、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的抽象思维能力和创新意识。
四. 教学重难点1.重点:锐角三角函数的概念、定义及性质。
2.难点:锐角三角函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生认识锐角三角函数,激发学生的学习兴趣。
2.探究教学法:学生进行小组讨论,共同探究锐角三角函数的性质,培养学生的合作意识。
3.案例教学法:通过典型例题,讲解锐角三角函数在实际问题中的应用,提高学生的解决问题的能力。
六. 教学准备1.教学PPT:制作精美的教学PPT,展示锐角三角函数的相关概念、定义及应用。
2.教学案例:挑选具有代表性的例题,供课堂讲解和练习使用。
3.学习素材:为学生提供相关的学习资料,帮助学生巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如建筑设计、工程测量等,引导学生认识锐角三角函数,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示锐角三角函数的概念、定义及性质,让学生初步了解并掌握相关知识。
人教版九年级数学下册: 28《锐角三角函数》《《锐角三角函数》教案》教案1一. 教材分析人教版九年级数学下册第28课《锐角三角函数》是学生在学习了三角函数概念和特殊角的三角函数值的基础上进行的一节实践性较强的课程。
本节课主要让学生了解锐角三角函数的概念,学会用锐角三角函数解决实际问题,培养学生运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了三角函数的基本概念和特殊角的三角函数值,具备一定的数学基础。
但是,对于锐角三角函数的实际应用,学生可能还比较陌生。
因此,在教学过程中,教师需要注重引导学生将理论知识与实际问题相结合,提高学生运用数学知识解决实际问题的能力。
三. 教学目标1.知识与技能:让学生掌握锐角三角函数的概念,学会用锐角三角函数解决实际问题。
2.过程与方法:通过自主学习、合作探究的方式,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:锐角三角函数的概念及应用。
2.难点:如何引导学生将理论知识与实际问题相结合,提高学生运用数学知识解决实际问题的能力。
五. 教学方法1.情境教学法:通过生活实例,引导学生了解锐角三角函数在实际生活中的应用。
2.自主学习法:鼓励学生自主探究,培养学生的学习能力。
3.合作学习法:学生进行小组讨论,提高学生的团队合作能力。
六. 教学准备1.准备相关的生活实例,用于引导学生了解锐角三角函数在实际生活中的应用。
2.准备多媒体教学课件,帮助学生直观地理解锐角三角函数的概念。
七. 教学过程1.导入(5分钟)教师通过展示一些生活实例,如测量山的高度、计算建筑物的斜面积等,引导学生了解锐角三角函数在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)教师通过多媒体课件,介绍锐角三角函数的概念,让学生了解锐角三角函数的定义和性质。
同时,教师可以通过讲解特殊角的三角函数值,帮助学生巩固已学的知识。
人教版九年级下册28.1锐角三角函数课程设计本门课程旨在让学生掌握锐角三角函数的基本概念及应用。
通过对本门课程的学习,学生将能够深入了解三角函数的性质和图像,并且了解三角函数在实际生活中的应用。
一、基本概念和性质1.1 锐角三角函数的概念锐角三角函数是指三角函数中正弦函数、余弦函数和正切函数,它们都只在锐角范围内有定义。
1.2 正弦函数、余弦函数和正切函数的图像学生可以通过画出不同角度下正弦函数、余弦函数和正切函数的图像进行观察和对比,并从中了解它们之间的关系和特点。
1.3 三角函数的周期性和奇偶性三角函数是周期函数。
对于正弦函数和余弦函数,其图像关于y轴对称;对于正切函数,它的图像关于原点对称。
二、三角函数的应用2.1 三角函数在几何中的应用三角函数在几何中有着广泛的应用,比如可以用正弦函数计算直角三角形中的角度,用余弦函数计算平行四边形对角线长度等等。
2.2 三角函数在物理中的应用三角函数在物理中也有着广泛的应用,比如可以用正弦函数计算某一物体的压强,用余弦函数计算物体的质量等等。
三、课程设计3.1 教学目标1.掌握锐角三角函数的基本概念;2.了解正弦函数、余弦函数和正切函数图像,并能进行比较和分析;3.熟练掌握三角函数在几何中和物理中的应用。
3.2 教学重难点1.三角函数在几何中的应用;2.三角函数在物理中的应用。
3.3 教学过程与方法1.教师讲解锐角三角函数的基本概念和性质;2.教师示范正弦函数、余弦函数和正切函数的图像,并让学生进行观察和探究;3.学生进行小组讨论,分析三角函数在几何和物理中的应用;4.教师辅导学生进行三角函数在实际问题中的应用题目练习。
3.4 课堂作业1.练习册P314,第1-3题。
四、课后反思通过本堂课的学习,学生对锐角三角函数的基本概念和应用有了更加深入的了解。
但是在课堂教学中,有些学生因为对数学知识掌握不熟练,导致在课堂练习与实际问题解决中表现不佳,需要在后续的教学中加以重点关注和辅导。
课题:锐角三角函数(第一课时)教材:人教版九年级下册28.1【教学目标】1.经历回顾及提出问题的过程,能将实际问题转化为几何模型,感悟研究直角三角形边角关系的重要性.2.参与锐角三角函数定义的活动过程,会计算特殊角对应边的比值,能结合图形陈述锐角三角函数概念、表示方法、取值范围,体会概念形成过程和所蕴含的归纳、类比思想.3.通过求锐角三角函数值的活动,掌握特殊角的三角函数值,积累求锐角三角函数值的数学活动经验.【教学重难点】教学重点:通过求锐角三角函数值的活动,掌握特殊角的三角函数值,能用锐角三角函数解直角三角形.教学难点:探索并认识锐角三角函数.【教学方法与教学手段】教学方法:自学.议论.引导教学法.教学手段:利用生活中的实例引入教学,抽象出要解决的问题,师生共同探究归纳总结生成结论.【教学过程】一、情境导入活动1问题如图,为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使水管出水口到水平面的高度为35m,那么需准备多长的管?导图【设计意图】对这样实际问题,教师引导学生如何将这一实际问题转化为数学模型,让学生在相互交流中获得结论.教师重点关注学生获取结论的过程,即是否运用“ = ”这一结论.二、师生议学探究1问题如果将上述问题中出水口到水平面的高度改为50m,那么需准备多长的水管?通过对前面问题和探究的思考,你有什么发现?【设计意图】在学生自主探究,获得结论后,让他们相互交流各自体会,为掌握本节知识积累感性认识.最后教师与学生一道进行简要总结.【归纳结论】在一个直角三角形中,如果一个锐角为30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于12,是一个定值.探究2问题如图1,如果将上述问题中的斜坡与水平面所成角的度数改成固定角度α,那么这个角的对边和斜边的比值还是定值吗?图1【设计意图】由特殊到一般的推理,学生可以利用相似三角形的性质发现当B i点在射线AB上移动时,每个直角三角形中锐角对边和斜边的比值是定值.【归纳结论】直角三角形中,锐角的对边和斜边的比值是定值.探究3问题如果将上述问题中的斜坡与水平面所成角的度数改成变化的角度α,那么随着角的变化,这个角的对边和斜边的比值还是定值吗?【设计意图】学生通过上述问题理解随着角的变化,这个角的对边和斜边的比值也在变化,感悟比值就是这个角的函数.【归纳结论】如图2,我们把锐角A的对边与斜边的比叫做∠A的正弦函数,记作sin A,即sin A==A ac∠的对边斜边.图2【典例剖析】例1 如图3,在Rt△ABC中,∠C=90°,求sin A和sin B的值.图3活动2探究4问题刚才我们研究了∠A的正弦函数,也就是∠A的对边和斜边之比,那么类似的还能提出哪些关于边之比的问题?【设计意图】类比已经学过的知识,学生通过思考,自主建构,可能会提出邻边与斜边、对边与邻边、斜边与邻边、邻边与对边之比等各位结论,引导学生建构余弦、正切函数.邻边ac对边斜边CαOC【归纳结论】我们把锐角A 的邻边与斜边的比叫做∠A 的余弦函数,记作cos A ,即cos A ==A b c∠的邻边斜边,我们把锐角A 的对边与邻边的比叫做∠A 的正切函数,记作tan A ,即tan A ==A a b∠的对边邻边,初中阶段我们只研究这3个函数,这里sin A , cos A , tan A 都是一个完整的符号,单独的“sin”没有意义.其中A 前面的 “∠”一般省略不写.∠A 的正弦、余弦、正切都是∠A 的锐角三角函数.探究5问题 根据图形,能得出这三个三角函数的取值范围吗?【设计意图】通过取值范围的探究,学生会更注重数形结合,能够加深对这三个函数的理解,有利于建立角与边之间的关系.【归纳结论】0<sin A <1,0<cos A <1,tan A >0.活动3自主整理30°,45°,60°的三角函数值,小组交流结论,并提出猜想.【设计意图】学生自主探究特殊角的三角函数值,进一步增加对三角函数的理解,同时为后续利用特殊角的三角函数值解决问题打下基础.【归纳结论】(90°-A ), tan A ×tan (90°-A )=1,sin 2A +cos 2A =1等结论.【典例剖析】例2 (1)求sin45°cos60°-cos45°;(2)在Rt △ABC 中,∠C =90°,AC =12,5sin 13A =,求AB 的长及sin B ,cos A 和tan A .【设计意图】所选例题,可由学生自主探究完成.学生既能独立思考,又可相互合作,师生共同寻求解题方法,完成解答过程.本题学生先画图,利用图形的直观性来获得结论更好些.【归纳结论】(2)利用参数思想,学生可以具体化对应边长,最终容易得出结论。
28.1 锐角三角函数
为了绿化荒山,某地打算从位于山脚下的机井
房沿着山坡铺设水管,在山坡上修建一座扬水站,
对坡面的绿地进行喷灌。
现测得斜坡的仰角为30°
【问题一】为使出水口的高度为35m,需要准备多长的水管?
【问题二】如果出水口的高度为50 m,那么需要准备多长的水管?100m
例1 如图(1)(2),在Rt△ABC中,∠C=90°,求sinA和sinB的值.
变式1-1在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()
A.3
5 B.3
4
C.4
5
D.4
3
变式1-2 把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值()
A.不变B.缩小为原来的1
3
C.扩大为原来的3倍D.不能确定
变式1-3 在△ABC中,∠C=90°,如果 sinA = 1
3
,AB=9,那么BC=___.
典例2 在 Rt△ABC 中,∠C=90°,若∠A=30°且 BC=2,求cosA=?
变式2-1 在 Rt△ABC 中,∠C=90°,若∠A=45°且 BC=2,求cosA=?
,AC=6cm,那么BC等于_____.
变式2-2 Rt△ABC中,∠C=90°,cosA=3
5
变式2-3 如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=4
,则AC=____.
5
观察30°、45°、60°角的正弦值、余弦值和正切值,你发现了什么?。
28.1锐角三角函数教学目标:1、 理解锐角三角函数的定义,掌握锐角三角函数的表示法;2、 能根据锐角三角函数的定义计算一个锐角的各个三角函数的值;3、 掌握Rt △中的锐角三角函数的表示:sinA=斜边的对边A ∠, cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠4、掌握锐角三角函数的取值范围;5、通过经历三角函数概念的形成过程,培养学生从特殊到一般及数形结合的思想方法。
教学重点:锐角三角函数相关定义的理解及根据定义计算锐角三角函数的值。
教学难点:锐角三角函数概念的形成。
教学过程:一、创设情境:鞋跟多高合适?美国人体工程学研究人员卡特·克雷加文调查发现,70%以上的女性喜欢穿鞋跟高度为6至7厘米左右的高跟鞋。
但专家认为穿6厘米以上的高跟鞋腿肚、背部等处的肌肉非常容易疲劳。
据研究,当高跟鞋的鞋底与地面的夹角为11度左右时,人脚的感觉最舒适。
假设某成年人脚前掌到脚后跟长为15厘米,不难算出鞋跟在3厘米左右高度为最佳。
问:你知道专家是怎样计算的吗? 显然,高跟鞋的鞋底、鞋跟与地面围城了一个直角三角形,回顾直角三角形的已学知识,引出课题。
二、探索新知:1、下面我们一起来探索一下。
实践一:作一个30°的∠A ,在角的边上任意取一点B ,作BC ⊥AC 于点C 。
⑴计算AB BC ,AB AC ,ACBC的值,并将所得的结果与你同伴所得的结果进行比较。
∠A=30°时 学生1结果 学生2结果 学生3结果 学生4结果⑵将你所取的AB 的值和你的同伴比较。
实践二:作一个50°的∠A ,在角的边上任意取一点B ,作BC ⊥AC 于点C 。
(1)量出AB ,AC ,BC 的长度(精确到1mm )。
(2)计算AB BC ,AB AC ,ACBC的值(结果保留2个有效数字),并将所得的结果与你同伴所∠A=50°时 ABACBCAC B学生1结果 学生2结果 学生3结果 学生4结果(3)将你所取的AB 的值和你的同伴比较。
28.1锐角三角函数(第一课时)教学设计学情分析教材利用意大利比萨斜塔偏离垂直中心线求比萨斜塔的倾斜程度这个实际问题的背景,从不同角度展示了直角三角形在实际中的广泛应用。
一方面可以让学生体会锐角三角函数和解直角三角形的知识来源于实际;另一方面让学生感受到由实际问题抽象出数学问题,通过解决数学问题得到数学答案,再将数学问题的答案回到实际问题的认识过程。
这个认识过程符合人的认知规律,有利于调动学生学习数学的积极性,丰富有趣的实际问题也能激发学生的学习兴趣。
教学目标知识目标1.利用相似的直角三角形,探索直角三角形的锐角确定时,它的对边与斜边的比是固定值,从而引出正弦的概念.2.理解锐角的正弦的概念,并能根据正弦的概念进行计算.能力目标1.通过探究锐角的正弦的概念的形成,体会由特殊到一般的数学思想方法,培养学生的归纳推理能力.2.通过学生自我发现问题培养学生的自我反思能力。
情感目标通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考的好习惯,同时培养学生的团队合作精神.教学重难点重点理解正弦函数的意义,并会求锐角的正弦值.难点正弦概念的理解和应用。
教学方法教法从生活实际出发,采用“探究——推理——发现”的模式,引导学生进行探究、交流,得出任意给定锐角,它的对边与斜边的比值是固定值。
学法学生通过小组交流,讨论,发展合情的推理能力,探究、发现正弦的特征,从而获得成功的体验。
教学准备教师准备:多媒体课件.学生准备:预习教材P61-63教学过程提出本节学习目标知识目标1.利用相似的直角三角形,探索直角三角形的锐角确定时,它的对边与斜边的比是固定值,从而引出正弦的概念.2.理解锐角的正弦的概念,并能根据正弦的概念进行计算.能力目标1.通过探究锐角的正弦的概念的形成,体会由特殊到一般的数学思想方法,培养学生的归纳推理能力.2.通过学生自我发现问题培养学生的自我反思能力。
情感目标通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考的好习惯,同时培养学生的团队合作精神.课前预习1、在直角三角形中 ,30°角所对的直角边等于斜边的_____.2、勾股定理的内容是________________.3、在Rt △ABC 中, ∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的____,记作______.问题引入:意大利比萨斜塔在1350年落成时就已倾斜,其塔顶中心点偏离垂直中心线2.1 m.1972年比萨地区发生地震,这座高54.5 m 的斜塔在大幅度摇摆后仍巍然屹立,但塔顶中心点偏离垂直中心线增至5.2 m ,而且还在继续倾斜,有倒塌的危险.当地从1990年起对斜塔维修纠偏,2001年竣工,此时塔顶中心点偏离垂直中心线的距离比纠偏前减少了43.8 cm. 你能把上述问题抽象成数学问题就是:已知直角三角形的某些边长,求其锐角的度数。