1-2几何光学三定律
- 格式:ppt
- 大小:660.00 KB
- 文档页数:23
主要内容一、几何光学的三个基本定律二、光路可逆原理三、全反射、光学纤维四、费马原理光线:空间的几何线。
各向同性介质中,光线即波面法线。
光的直线传播、反射和折射都可以用直线段及其方向的改变表示。
几何光学是关于光的唯象理论。
对于光线,是无法从物理上定义其速度的。
几何光学是关于物体所发出的光线经光学系统后成像的理论。
几何光学实验定律成立的条件:1.被研究对象的几何尺寸D远大于入射光波波长λD/ λ>>1 衍射现象不明显,定律适用。
D/ λ~1 衍射现象明显,定律不适用。
2.入射光强不太强在强光作用下可能会出现新的光学现象。
强光:几何光学的基本实验定律有一定的近似性、局限性。
一、几何光学的三个基本定律1.光的直线传播定律在真空或均匀介质中,光沿直线传播,即光线为2.光的独立传播定律自不同方向或由不同物体发出的光线在空间相交后,对每一光线的独立传播3.光的反射和折射定律3.1 反射定律G 3.2 折射定律入射面n光线在梯度折射率介质中的弯曲nn 5n 1n 3n 2n 4n 6海市蜃楼:沙漠中海面上光线在梯度折射率介质中的弯曲二、光路可逆原理在弱光及线性条件下,当光的传播方向逆转时,•光线如果沿原来反射和折射方向入射时,则相应的反射和折射光将沿原来的入射光的方向。
如果物点Q发出的光线经光学系统后在Q三、全反射、光学纤维1.全反射原理。
继续增大入射角,,而是按反射定律确定的方向全部反射。
全反射的应用:增大视场角毛玻璃r rr2.光纤的基本结构特性(1)光纤的几何结构光纤的几何结构(2)光纤分类①按纤芯介质分:均匀光纤,非均匀光纤。
(3)光纤的传光条件i cn 0n 2n 1(4)光纤的数值孔径四、费马原理物质运动的趋势:达到一种平衡状态或极值状态费马原理:在所有可能的光传播路径中,实际路径所需的时间取极值。
1说明:费马原理是光线光学的理论基础。
① 直线传播定律:两点间的所有可能连线中,线段最短——光程取极小值。
几何光学的三个基本定律一、引言几何光学是研究光在直线传播过程中的行为的光学分支。
其理论基础是几何光学三个基本定律,这些定律揭示了光在透明介质中的传播规律。
本文将详细介绍这三个基本定律,并探讨它们对光学现象的解释和应用。
二、第一定律:直线传播定律直线传播定律是几何光学中最基本的定律,它表明光线在均匀介质中直线传播。
光的传播路径可以用直线表示,且沿一定方向传播。
这意味着光线在不同介质之间传播时会发生折射,但在同一介质内则是直线传播。
三、第二定律:反射定律反射定律是几何光学的第二个基本定律,它描述了光线在界面上的反射行为。
根据反射定律,入射光线与法线的夹角等于反射光线与法线的夹角,而且入射光线、反射光线和法线在同一平面内。
这个定律解释了为什么我们能够看到镜子中的自己,以及为什么我们可以利用反射现象制作反光镜和平面镜。
四、第三定律:折射定律折射定律是几何光学中的第三个基本定律,它描述了光线在不同介质中的折射行为。
根据折射定律,入射光线、折射光线和法线在同一平面内,而且入射角和折射角之间的正弦比等于两个介质的折射率之比。
这个定律解释了为什么我们能看到水中的鱼和游泳池底部的景物,以及为什么光能够通过透镜形成清晰的图像。
1. 折射率的定义折射率是指光在某一介质中的速度与真空中速度之比。
高折射率的介质会使光线偏折得更多,而低折射率的介质则会使光线偏折得较少。
2. 斯涅尔定律斯涅尔定律是折射定律的一种特殊形式,适用于光线从一介质射入另一介质的情况下。
根据斯涅尔定律,入射角、折射角和两个介质的折射率之比满足一个简单的数学关系式。
五、光学现象的应用几何光学的三个基本定律在光学现象的解释和应用中起着重要的作用。
以下是几个常见光学现象及其与定律的关系:1. 倒影倒影是一种反射现象,发生在平面镜或其他光滑表面上。
根据反射定律,镜子中的物体通过镜面反射形成倒立的像。
这个现象在我们日常生活中的镜子和反光材料中得到了广泛应用。
2. 折射折射是光线在不同介质之间传播时发生的偏折现象。
几何光学基本定律一、引言几何光学是研究光线在透明介质中传播的规律和现象的一门学科,它是光学的基础。
几何光学基本定律是几何光学理论的核心,也是解决实际问题的关键。
二、光线传播的基本原理1. 光线传播方式在均匀透明介质中,光线沿直线传播,且在相同介质中传播方向不变。
2. 入射角和反射角当光线从一个介质射入另一个介质时,入射角和反射角分别定义为入射光线和法线之间的夹角以及反射光线和法线之间的夹角。
根据斯涅尔定律可知,入射角等于反射角。
3. 折射率折射率是一个介质对光的折射能力大小的量度。
通常用n表示。
当两个介质之间的折射率不同时,会发生折射现象。
根据斯涅尔定律可知,两个介质之间入射角与折射角之比等于两个介质之间折射率之比。
三、几何光学基本定律1. 费马原理费马原理是几何光学的核心原理之一。
它是指光线在传播过程中,总是沿着使光程达到极小值的路径传播。
这个路径称为光线的传播路径或者光程最小路径。
2. 斯涅尔定律斯涅尔定律是描述折射现象的基本规律。
它表明,当一束光从一个介质射入另一个介质时,入射角、折射角和两个介质之间的折射率之间有如下关系:n1sinθ1=n2sinθ2。
3. 全反射定律当一束光从一个折射率较大的介质入射到折射率较小的介质中,如果入射角大于一个特定角度(临界角),则发生全反射现象。
全反射定律规定了临界角与两个介质之间的折射率之比有关。
四、应用举例几何光学基本定律在实际应用中具有广泛的应用价值。
以下是一些常见应用:1. 透镜成像透镜成像是利用凸透镜或凹透镜对物体进行成像的过程。
根据几何光学基本定律,通过透镜成像时,物距、像距和焦距之间有如下关系:1/f=1/v+1/u。
2. 全息术全息术是一种记录和再现物体三维信息的技术。
它利用光的干涉原理和衍射原理进行图像记录和重建。
全息术的基本原理就是费马原理。
3. 光纤通信光纤通信是一种利用光纤传输信息的通信方式。
在光纤中,由于折射率不同而导致光线发生反射、折射等现象,从而实现信息传输。
§1 几何光学的基本定律1.1 几何光学三定律折射定律的斯涅耳(W. Snell,1621)公式1.2 全反射1.3 棱镜与色散1.4 光的可逆性原理定义:撇开光的波动本性,仅以光的直线传播、反射折射定律为基础,研究光在透明介质中的传播问题。
适用范围:尺度远大于波长,是应用光学的基础特点:原理简单、计算复杂,计算软件(追迹)的发展替代了复杂的计算§1 几何光学的基本定律光线(ray of light):用一条表示光传播方向的几何线来代表光,称这条几何线为光线1.1 几何光学三定律1. 直线传播定律:在均匀介质中光沿直线传播2. 独立传播定律:不同方向的光线相交,不影响每一光线的传播3. 反射(reflection)、折射(refraction)定律:在两种媒质的界面发生反射、折射例:机场跑道能看多远?夏日机场跑道上方温度梯度较大,导致空气折射率发生变化:()β≈1.5⨯10-6/mn y()=n01+βy人站在跑道的一端,最远能看多远?m n n n n θθθθsin ...sin sin sin 221100====θ光线方程:n 0=1⎧⎪入射光反射光通过内壁上的多次全内反射,从纤维的一端传向另一端。
损耗极低!光纤灯,内窥镜,光纤传感器,……光纤发展历史✧~1840,D Colladon 和J Babinet提出可以依靠光折射现象来引导光线的传播。
✧1854,J Tyndall在英国皇家学会的一次演讲中用实验证实:光线能够沿盛水的弯曲管道传输。
✧1927,JL Baird利用光纤阵列传输图像。
(step index fiber,✧1957,Hirschowitz在美国胃镜学会上展示了研制的光导纤维内窥镜。
✧1961,E Snitzer完成了单模光纤的理论工作。
✧1963,西泽润一提出了使用光纤进行通信的概念。
✧1964,西泽润一发明了渐变折射率光学纤维(gradedindex fiber,GIF)。
几何光学的基本定律
以几何光学的基本定律为标题,我们可以探讨光线在直线、平面和球面上的传播规律。
直线传播定律:光线在同一介质中沿直线传播,且一条光线与另一条光线不会相交或平行。
这是几何光学中最基本的定律之一,也是光学设计中的基础。
在实际应用中,我们可以通过调整光线的传播角度和位置,使其达到所需的效果。
平面传播定律:当光线通过一个平面界面时,会发生反射和折射。
反射光线与入射光线的夹角等于反射光线与法线的夹角,折射光线与入射光线的夹角和折射光线与法线的夹角之比为两个介质的折射率之比。
这个定律在许多光学器件中都得到了应用,如反射镜、棱镜等。
球面传播定律:当光线通过一个球面界面时,会发生反射、折射和像的形成。
反射光线、入射光线和法线在同一平面内,反射角等于入射角。
折射光线的折射角和入射角的正弦值成反比例关系。
当光线从凸球面传播到凹球面时,会发生像的放大,反之则会发生像的缩小。
这个定律在眼镜、望远镜、显微镜等光学器件中都得到了广泛应用。
除了以上三个基本定律外,几何光学还有许多其他定律,如光的干涉、衍射等。
这些定律都是几何光学的重要组成部分,为我们研究
光的传播规律提供了基础。
在实际应用中,我们可以根据这些定律设计出各种光学器件,如激光器、相机、望远镜等。
几何光学的基本定律是研究光的传播规律的基础,对光学器件的设计和应用都具有重要意义。
我们应该深入研究这些定律,掌握它们的应用方法,为光学技术的发展做出贡献。