电子探针的分析原理及构造
- 格式:docx
- 大小:241.17 KB
- 文档页数:3
电子探针分析方法结构与工作原理一、引言电子探针分析方法是一种常用的表面分析技术,可以用于研究材料的表面形貌、化学成分和电子结构等。
本文将详细介绍电子探针分析方法的结构和工作原理。
二、电子探针分析方法的结构电子探针分析方法主要由以下几个部分组成:1. 电子枪电子枪是电子探针分析仪器中的核心部件,它产生高能电子束。
电子枪通常由阴极、阳极和加速电极等组成。
阴极发射电子,经过加速电极加速后形成电子束。
2. 聚焦系统聚焦系统用于将电子束聚焦到一个小的区域,以提高分辨率。
聚焦系统通常由一组磁铁和透镜组成,通过调节磁场和电场来实现电子束的聚焦。
3. 电子探测器电子探测器用于检测电子束与样品相互作用后产生的信号。
常用的电子探测器包括二次电子探测器和能量色散X射线谱仪。
二次电子探测器可以获得样品表面的形貌信息,而能量色散X射线谱仪可以获得样品的化学成分信息。
4. 样品台样品台是用于支撑和定位样品的平台。
样品台通常具有多个自由度的运动,以便于对样品进行精确定位和调整。
三、电子探针分析方法的工作原理电子探针分析方法的工作原理基于电子束与样品相互作用后产生的信号。
主要包括以下几个步骤:1. 电子束的生成与聚焦电子束由电子枪产生,并经过聚焦系统聚焦到一个小的区域。
聚焦系统通过调节磁场和电场来实现电子束的聚焦,以提高分辨率。
2. 电子束与样品的相互作用电子束与样品相互作用后,会发生多种物理与化学过程,如电子散射、电子俘获、电子激发等。
这些相互作用会产生二次电子、背散射电子、X射线等信号。
3. 信号的检测与分析电子探测器用于检测电子束与样品相互作用后产生的信号。
二次电子探测器可以获得样品表面的形貌信息,而能量色散X射线谱仪可以获得样品的化学成分信息。
通过对信号的检测与分析,可以得到关于样品表面形貌、化学成分和电子结构等方面的信息。
4. 数据处理与图像重建获得的信号经过数据处理与图像重建,可以得到样品的表面形貌图像、元素分布图像等。
电子探针显微分析电子探针显微分析(Electron Probe Microanalysis,简称EPMA)是一种用于材料分析的先进技术。
它结合了扫描电子显微镜(Scanning Electron Microscopy,简称SEM)和能谱仪,能够提供高分辨率的成分分析和元素分布图像。
电子探针显微分析的原理是利用电子束和样品之间的相互作用。
首先,电子束通过集束系统聚焦到样品表面,与样品发生相互作用。
这些相互作用包括:在样品表面产生的次级电子、背散射电子和散射电子。
次级电子是从样品表面弹出的电子,背散射电子是从样品内部产生的电子,散射电子是从相互作用点散射出的电子。
次级电子和背散射电子是电子显微镜的常规成像信号,这部分信号可以用来获得样品的表面形貌和显微结构。
而散射电子则包含了样品的化学信息,通过能谱仪可以对这些散射电子进行能谱分析,获得样品的元素组成。
电子探针显微分析既可以定性分析材料中的元素,也可以定量分析元素的含量。
电子探针显微分析在材料科学、地质学、环境科学等领域广泛应用。
它可以对金属、陶瓷、半导体、岩石等各种材料进行分析。
在材料科学研究中,电子探针显微分析可以用于分析材料中的微观缺陷、晶体结构和化学成分。
在地质学研究中,它可以用于分析岩石样品中的矿物成分和地球化学元素分布。
在环境科学研究中,它可以对大气颗粒物、水体中的溶解物等进行化学成分分析。
除了成分分析,电子探针显微分析还可以进行元素的显微分布分析。
通过调整电子束的扫描区域和扫描速度,可以获得样品中元素的分布图像。
这些图像可以用来研究材料的相分离、溶质迁移和化学反应等过程。
总之,电子探针显微分析是一种强大的材料分析工具。
它提供了高分辨率、高灵敏度的成分分析和元素分布图像,对于研究材料的结构和性质具有重要意义。
未来,随着技术的不断进步,电子探针显微分析将在更多领域展示其潜力和应用价值。
电子探针的结构原理与应用一、什么是电子探针电子探针是一种用于探测、测量和操纵微观尺度物体或表面特征的纳米级工具。
它由纳米尖端构成,可以实现高分辨率的表面形貌和材料特性的观测、分析和操作。
电子探针在纳米科学、纳米技术、材料科学、生物医学等领域具有广泛的应用。
二、电子探针的主要结构原理电子探针主要由三个部分组成:探测器、控制器和图像系统。
1. 探测器探测器是电子探针的核心部分,它用于感测物体表面的形貌和特性。
常见的探测器包括扫描隧道显微镜探针(STM probe)、原子力显微镜探针(AFM probe)等。
•扫描隧道显微镜探针(STM probe)利用量子隧穿效应,在离物体表面极近的距离内实现原子分辨率的表面形貌和电子态的测量。
•原子力显微镜探针(AFM probe)利用探针与物体表面之间的相互作用力,通过探测力的变化来测量物体的形貌和材料特性。
2. 控制器控制器是用来控制探测器对物体进行测量和操作的部分。
它通常由一台计算机和相关的软件组成。
控制器可以实现探针在三维空间内的精确定位和移动,并通过控制电压、电流等参数来调节探针与物体之间的相互作用力。
3. 图像系统图像系统用于显示和记录探测器获取的数据,并提供对数据进行处理、分析和处理的功能。
常见的图像系统包括显示器、打印机、数据处理软件等。
三、电子探针的应用领域电子探针在科学研究、工业生产和医疗健康等领域有着广泛的应用。
1. 纳米科学和纳米技术电子探针在纳米科学和纳米技术领域中起着至关重要的作用。
它可以实时观测纳米材料的生长过程,研究纳米材料的物理、化学以及电子特性,对纳米材料的结构进行精确调控。
此外,电子探针还可以用于制备纳米器件、纳米传感器,推动纳米技术的发展。
2. 材料科学和工程电子探针在材料科学和工程领域中广泛应用于材料表面形貌的观测和材料性能的评估。
它可以对材料进行高分辨率的成像,揭示材料的微观结构和纳米级缺陷,帮助研究人员优化材料的性能,并加速材料的研发和工业化生产。
电子探针的测量原理是电子探针是一种常用的表面化学分析工具,它利用电子与物质的相互作用原理,通过对材料表面进行扫描和探测,得到样品的表面形貌信息以及元素组成和分布情况。
电子探针主要包括电子显微镜(SEM)和扫描电子显微镜(SEM)两种类型。
电子探针的测量原理主要基于以下几个方面:1. 康普顿散射:当高能电子与物质相互作用时,它们会发生散射。
康普顿散射是一种散射过程,其中电子与物质中的自由电子发生相互作用,从而改变电子的运动方向和能量。
通过测量散射电子的能量和散射角度,可以获得材料中电子的能带结构、晶格参数和原子间距等信息。
2. 透射电子显微镜(TEM):透射电子显微镜利用电子的波动性质,通过物质内部的透射来对样品进行分析。
电子束穿过样品后,会与样品中的原子进行相互作用,散射出去的电子被收集,并通过荧光屏显示成一幅图像。
通过观察透射电子的衍射图案,可以确定晶体结构和晶胞参数。
3. 荧光X射线:当电子束与样品相互作用时,样品中的原子会吸收能量并重新辐射出来。
其中一部分辐射是以荧光X射线的形式发射出来的。
通过测量荧光X 射线的能谱,可以确定样品中的化学元素以及它们的含量和分布。
4. 俄歇电子能谱(AES):俄歇电子能谱是一种基于能级跃迁的分析技术。
当高能电子与物质碰撞时,会将其中一部分能量转移到样品表面的原子或分子。
这些原子或分子会吸收能量并将其通过电离或激发的方式重新辐射出去。
通过测量这些重新辐射出来的俄歇电子的能量,可以获得样品表面的元素组成和化学状态信息。
综上所述,电子探针的测量原理是基于电子与物质相互作用的原理进行的。
通过测量电子的散射、透射、荧光X射线以及俄歇电子等参数,可以获得样品的表面形貌、晶格结构、元素组成和化学状态等信息。
这些信息对于材料科学、表面化学和纳米科学等领域具有重要的研究和应用价值。
电子探针实验报告电子探针实验报告引言:电子探针是一种用于研究物质微观结构和性质的重要工具,它通过探测物质中的电子行为来获取有关其性质和组成的信息。
本实验旨在探究电子探针的原理、应用以及实验方法,并通过实际操作来验证其有效性。
一、电子探针的原理电子探针利用电子的波粒二象性以及其与物质的相互作用来获取信息。
其原理主要包括以下几个方面:1. 粒子性:电子作为一种粒子,具有质量和电荷,可以通过加速器获得足够的能量,进而穿透物质表面,与物质内部相互作用。
2. 波动性:电子也具有波动性,其波长与其动能有关。
通过测量电子的波长,可以推断出物质的晶格结构和间距。
3. 散射:电子与物质相互作用时,会发生散射现象。
通过测量散射角度和强度,可以了解物质的成分和结构。
二、电子探针的应用电子探针在材料科学、纳米技术、生物医学等领域具有广泛的应用。
以下是几个常见的应用案例:1. 材料分析:电子探针可以用于分析材料的成分和结构,如金属合金的成分分析、纳米材料的晶格结构分析等。
2. 表面形貌观察:电子探针可以用于观察物质表面的形貌,如纳米材料的形貌观察、生物细胞的表面形态观察等。
3. 薄膜测量:电子探针可以用于测量薄膜的厚度和成分,如薄膜的厚度测量、薄膜中元素分布的分析等。
三、电子探针实验方法本实验使用的电子探针为扫描电子显微镜(SEM),其操作方法如下:1. 样品制备:将待测样品制备成均匀的薄片或粉末,并固定在样品台上。
2. 调节参数:根据样品的性质和实验需求,调节加速电压、束流亮度等参数。
3. 扫描观察:将样品台放入SEM仪器中,通过控制电子束的扫描和探测系统,观察样品表面的形貌和特征。
4. 数据分析:根据SEM的观察结果,进行数据处理和分析,如测量样品尺寸、分析元素分布等。
四、实验结果与讨论本实验选择了一块金属合金样品进行观察和分析。
通过SEM观察,我们发现样品表面存在颗粒状的晶体结构,并且晶体之间存在一定的间隙。
通过测量晶体的尺寸和间距,我们可以推断出该金属合金的晶格结构和成分。
实验六电子探针结构原理及分析方法电子探针是一种常用的表面分析仪器,主要用于研究材料的表面形貌、表面成分和表面结构。
本实验主要介绍电子探针的结构原理及常用的分析方法。
一、电子探针的结构原理电子探针主要由以下组成部分构成:1.电子枪:电子枪是产生并加速电子束的装置。
它由阴极、阳极和栅极组成,通过电子枪产生的电场和磁场将电子束加速并定向到样品表面。
2.样品台:样品台是用于固定样品的平台,通常具有微调功能,可调整样品的位置和角度。
3.探头:探头是连接电子枪与样品的部分,主要由电子透镜和对象器组成。
4.电子探测器:电子探测器用于检测样品表面反射、散射或发射的电子,将其转化为电信号并进行放大和处理,最终形成图像或谱图。
5.显示器与计算机:将电子探测器输出的信号通过显示器显示,并通过计算机进行数据处理和图像生成。
电子探针的工作原理是利用电子束与样品表面相互作用产生的信号来分析样品的性质。
当电子束照射到样品表面时,会与样品中的原子、分子和晶体产生相互作用,引起样品表面的不同反应。
根据样品与电子束之间的相互作用类型,电子探针可以分为以下几种分析方法。
二、电子探针常用的分析方法1.电子能谱分析:电子能谱分析是电子探针的主要应用之一,它是通过测量样品反射或散射的电子能谱来研究样品的成分和结构。
电子能谱可以提供样品中元素的信息、元素化学状态、表面形貌等多种信息。
通过比对标准样品的能谱图,可以确定待测样品中的元素组成及含量。
2.扫描电镜观察:扫描电镜是利用电子束与样品表面相互作用产生的信号来观察样品表面形貌的方法。
相比传统的光学显微镜,扫描电镜具有更高的分辨率和更大的放大倍数。
通过调整扫描电镜的参数,可以获得样品表面的高分辨率图像,观察样品的形貌、纹理和微观结构。
3.能谱成像:能谱成像是将电子探针的能谱分析与扫描电镜观察相结合的一种方法。
通过在样品表面进行连续的电子能谱分析,可以获得样品表面不同位置的元素组成信息。
将这些信息与扫描电镜获得的图像相结合,就可以得到具有元素分布和形貌信息的能谱成像图像。
电子探针电子探针所谓电子探针是指用聚焦很细的电子束照射要检测的样品表面,用X射线分光谱仪测量其产生的特征X射线的波长和强度。
由于电子束照射面积很小,因而相应的X射线特征谱线将反映出该微小区域内的元素种类及其含量。
显然,如果将电子放大成像与X射线衍射分析结合起来,就能将所测微区的形状和物相分析对应起来(微区成分分析),这是电子探针的最大优点。
/bbs/redirect.php?fid=22&tid=3788&goto=nextnewset电子探针分析方法子探针分析方法利用电子探针分析方法可以探知材料样品的化学组成以及各元素的重量百分数。
分析前要根据试验目的制备样品,样品表面要清洁。
用波谱仪分析样品时要求样品平整,否则会降低测得的X射线强度。
一定性分析1 点分析用于测定样品上某个指定点的化学成分。
下图是用能谱仪得到的某钢定点分析结果。
能谱仪中的多道分析器可使样品中所有元素的特征X射线信号同时检测和显示。
不像波谱仪那样要做全部谱扫描,甚至还要更换分光晶体。
2 线分析用于测定某种元素沿给定直线分布的情况。
方法是将X射线谱仪(波谱仪或能谱仪)固定在所要测量的某元素特征X射线信号(波长或能量)的位置上,把电子束沿着指定的方向做直线轨迹扫描,便可得到该元素沿直线特征X射线强度的变化,从而反映了该元素沿直线的浓度分布情况。
改变谱仪的位置,便可得到另一元素的X射线强度分布。
下图为50CrNiMo 钢中夹杂Al2O3的线分析像。
可见,在Al2O3夹杂存在的地方,Al的X射线峰较强。
3 面分析用于测定某种元素的面分布情况。
方法是将X射线谱仪固定在所要测量的某元素特征X射线信号的位置上,电子束在样品表面做光栅扫描,此时在荧光屏上便可看到该元素的面分布图像。
显像管的亮度由试样给出的X射线强度调制。
图像中的亮区表示这种元素的含量较高。
下图为34CrNi3Mo钢中MnS夹杂物的能谱面分析图像。
(a)S的面分析像(b) Mn的面分析像二定量分析定量分析时,先测得试样中Y元素的特征X射线强度IY,再在同一条件下测出已知纯元素Y的标准试样特征X射线强度IO。
电子探针在找矿方面的应用一、电子探针-基本概念电子探针仪是 X射线光谱学与电子光学技术相结合而产生的。
1948年法国的R.卡斯坦制造了第一台电子探针仪。
1958年法国首先制造出商品仪器。
电子探针仪与扫描电子显微镜在结构上有许多共同处。
70年代以来生产的电子探针仪上一般都带有扫描电子显微镜功能,有的还附加另一些附件,使之除作微区成分分析外,还能观察和研究微观形貌、晶体结构等。
用波长色散谱仪(或能量色散谱仪)和检测计数系统,测量特征X射线的波长(或能量)和强度,即可鉴别元素的种类和浓度。
在不损耗试样的情况下,电子探针通常能分析直径和深度不小于1微米范围内、原子序数4以上的所有元素;但是对原子序数小于12的元素,其灵敏度较差。
常规分析的典型检测相对灵敏度为万分之一,在有些情况下可达十万分之一。
检测的绝对灵敏度因元素而异,一般为10-14~10-16克。
用这种方法可以方便地进行点、线、面上的元素分析,并获得元素分布的图象。
对原子序数高于10、浓度高于10%的元素,定量分析的相对精度优于±2%。
电子探针仪主要包括:探针形成系统 (电子枪、加速和聚焦部件等)、X射线信号检测系统和显示、记录系统、样品室、高压电源和扫描系统以及真空系统。
二、电子探针-结构特点电子探针X射线显微分析仪(简称电子探针)利用约1Pm的细焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。
电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。
电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。
电子探针主要由电子光学系统(镜筒),X射线谱仪和信息记录显示系统组成。
电子探针和扫描电镜在电子光学系统的构造基本相同,它们常常组合成单一的仪器。
电子光学系统该系统为电子探针分析提供具有足够高的入射能量,足够大的束流和在样品表面轰击殿处束斑直径近可能小的电子束,作为X射线的激发源。
实验6 电子探针(能谱仪)结构原理及分析方法一、实验目的与任务1) 结合电子探针仪实物,介绍其结构特点和工作原理,加深对电子探针的了解。
2)选用合适的样品,通过实际操作演示,以了解电子探针分析方法及其应用。
二、电子探针的结构特点及原理电子探针X射线显微分析仪(简称电子探针)利用约1Pm的细焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。
电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。
电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。
本实验这部分内容将参照第十四章,并结合实验室现有的电子探针,简要介绍与X射线信号检测有关部分的结构和原理。
三、实验方法及操作步骤电子探针有三种基本工作方式:点分析用于选定点的全谱定性分析或定量分析,以及对其中所含元素进行定量分析;线分析用于显示元素沿选定直线方向上的浓度变化;面分析用于观察元素在选定微区内浓度分布。
1.实验条件(1) 样品样品表面要求平整,必须进行抛光;样品应具有良好的导电性,对于不导电的样品,表面需喷镀一层不含分析元素的薄膜。
实验时要准确调整样品的高度,使样品分析表面位于分光谱仪聚焦圆的圆周上。
(2) 加速电压电子探针电子枪的加速电压一般为3~50kV,分析过程中加速电压的选择应考虑待分析元素及其谱线的类别。
原则上,加速电压一定要大于被分析元素的临界激发电压,一般选择加速电压为分析元素临界激发电压的2~3倍。
若加速电压选择过高,导致电子束在样品深度方向和侧向的扩展增加,使X射线激发体积增大,空间分辨率下降。
同时过高的加速电压将使背底强度增大,影响微量元素的分析精度。
(3) 电子束流特征X射线的强度与入射电子束流成线性关系。
为提高X射线信号强度,电子探针必须使用较大的入射电子束流,特别是在分析微量元素或轻元素时,更需选择大的束流,以提高分析灵敏度。
材料研究方法电子探针引言材料科学与工程领域的研究在推动技术进步和工业发展方面起着至关重要的作用。
为了更好地理解材料的物理和化学性质,科学家们使用了许多不同的研究方法。
其中,电子探针技术在材料研究中占据了重要地位。
本文将介绍电子探针在材料研究中的应用和其基本原理。
电子探针的定义电子探针是一种科学仪器,通过发射和探测电子束来提供材料表面、界面和体积的形貌和化学成分信息。
电子探针可以用于非常小尺寸的样品,提供高分辨率和高灵敏度的观测能力。
电子探针的构成和工作原理电子探针一般由以下几个部分组成:1.电子枪:发射电子束的装置。
2.准直系统:对发射的电子束进行准直和聚焦。
3.样品台:用于放置待研究的样品。
4.探测器:用于探测和测量与样品相互作用后的电子信号。
电子探针的工作原理如下:1.电子枪产生电子束,经过准直系统的准直和聚焦,使得电子束束径更加细小,提高了分辨率。
2.电子束照射到待研究的样品上,与样品发生相互作用。
3.样品与电子束相互作用后,电子探测器将探测到的电子信号转换为可读取的信号。
4.通过分析和处理探测到的电子信号,可以得到关于样品的形貌和化学成分等信息。
主要应用领域电子探针技术在材料科学研究领域有着广泛的应用。
下面列举了几个主要的应用领域:表面形貌观察通过电子探针技术可以对材料表面的形貌进行观察和分析。
高分辨率的电子探针在纳米尺度下可以观察到材料表面的微观形貌特征,例如晶体结构、表面缺陷和纳米颗粒等。
元素组成分析电子探针可以通过能量色散X射线光谱(EDS)分析样品的元素组成。
利用探测器对样品光谱进行测量,可以得到不同元素的含量和分布情况。
化学成分显微分析电子探针技术结合能谱成像(EDX)可以实现样品化学成分的显微分析。
通过扫描样品,并记录各点的EDS光谱,可以得到样品的元素分布情况和化学计量比。
界面分析电子探针技术还可以用于材料的界面分析。
通过将电子束照射在材料界面上,并分析探测到的反射电子信号,可以得到有关界面的信息,如结合强度和化学性质等。
第十四章电子探针显微分析前言:电子探针的功能主要是进行微区成分分析。
它是在电子光学和X射线光谱学原理的基础上发展起来的一种高效率分析仪器。
其原理是用细聚焦电子束入射样品表面,激发出样品元素的特征x射线,分析特征X射线的波长(或特征能量)即可知道样品中所含元素的种类(定性分析),分析X射线的强度,则可知道样品中对应元素含量的多少(定量分析)。
电子探针仪镜筒部分的构造大体上和扫描电子显微镜相同,只是在检测器部分使用的是X射线谱仪、专门用来检测X射线的特征波长或特征能量,以此来对微区的化学成分进行分析。
因此,除专门的电子探针仪外,有相当一部分电子探针仪是作为附件安装在扫描电镜或透射电镜镜筒上,以满足微区组织形貌、晶体结构及化学成分三位一体同位分析的需要。
一、电子探针仪的结构与工作原理图1为电子探针仪的结构示意图。
由图可知,电子探针的镜筒及样品室和扫描电镜并无本质上的差别,因此,要使一台仪器兼有形貌分析和成分分析两个方面的功能,往往把扫描电子显微镜和电子探针组合在一起。
图1 电子探针的结构示意图电子探针的信号检测系统是X射线谱仪,用来测定特征波长的谱仪叫做波长分散谱仪(WDS)或波谱仪。
用来测定X射线特征能量的谱仪叫做能量分散谱仪(EDS)或能谱仪。
(一)波长分散谱仪(波谱仪WDS)1、工作原理在电子探针中X射线是由样品表面以下一个微米乃至纳米数量级的作用体积内激发来的,如果这个体积中含有多种元素,则可以激发出各个相应元素的特征波长X射线。
若在样品上方水平放置一块具有适当晶面间距d的晶体,入射X射线的波长、入射角和晶面间距二者符合布拉格方程2dsinθ=λ时,这个特征波长的X射线就会发生强烈衍射,见图2。
因为在作用体积中发出的X射线具有多种特征波长,且它们都以点光源的形式向四周发射,因此对一个特征波长的X射线来说只有从某些特定的入射方向进入晶体时,才能得到较强的衍射束。
图2示出不同波长的X射线以不同的入射方向入射时产生各自衍射束的情况。
电子探针在找矿方面的应用
一、电子探针-基本概念
电子探针仪是 X射线光谱学与电子光学技术相结合而
产生的。
1948年法国的R.卡斯坦制造了第一台电子探针
仪。
1958年法国首先制造出商品仪器。
电子探针仪与扫
描电子显微镜在结构上有许多共同处。
70年代以来生产
的电子探针仪上一般都带有扫描电子显微镜功能,有的还
附加另一些附件,使之除作微区成分分析外,还能观察和
研究微观形貌、晶体结构等。
用波长色散谱仪(或能量色散谱仪)和检测计数系统,
测量特征X射线的波长(或能量)和强度,即可鉴别元素
的种类和浓度。
在不损耗试样的情况下,电子探针通常能
分析直径和深度不小于1微米范围内、原子序数4以上的
所有元素;但是对原子序数小于12的元素,其灵敏度较
差。
常规分析的典型检测相对灵敏度为万分之一,在有些
情况下可达十万分之一。
检测的绝对灵敏度因元素而异,
一般为10-14~10-16克。
用这种方法可以方便地进行点、
线、面上的元素分析,并获得元素分布的图象。
对原子序数高于10、浓度高于10%的元素,定量分析的相对精度优于±2%。
电子探针仪主要包括:探针形成系统 (电子枪、加速和聚焦部件等)、X射线信号检测系统和显示、记录系统、样品室、高压电源和扫描系统以及真空系统。
二、电子探针-结构特点
电子探针X射线显微分析仪(简称电子
探针)利用约1Pm的细焦电子束,在样品表
层微区内激发元素的特征X射线,根据特
征X射线的波长和强度,进行微区化学成
分定性或定量分析。
电子探针的光学系统、
真空系统等部分与扫描电镜基本相同,通
常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。
电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。
电子探针主要由电子光学系统(镜筒),X射线谱仪和信息记录显示系统组成。
电子探针和扫描电镜在电子光学系统的构造基本相同,它们常常组合成单一的仪器。
电子光学系统
该系统为电子探针分析提供具有足够高的入射能量,足够大的束流和在样品表面轰击殿处束斑直径近可能小的电子束,作为X射线的激发源。
为此,一般也采用钨丝热发射电子枪和2-3个聚光镜的结构。
为了提高X射线的信号强度,电
子探针必须采用较扫描电镜更高的入射电子束流(在10-9-10-7A范围),常用的加速电压为10-30 KV,束斑直径约为0.5μm。
电子探针在镜筒部分与扫描电镜明显不同之处是由光学显微镜。
它的作用是选择和确定分析点。
其方法是,先利用能发出荧光的材料(如ZrO2)置于电子束轰击下,这是就能观察到电子束轰击点的位置,通过样品移动装置把它调到光学显微镜目镜十字线交叉点上,这样就能保证电子束正好轰击在分析点上,同时也保证了分析点处于X射线分光谱仪的正确位置上。
在电子探针上大多使用的光学显微镜是同轴反射式物镜,其优点是光学观察和X射线分析可同时进行。
放大倍数为100-500倍。
X射线谱仪
电子束轰击样品表面将产生特征X射线,不同的元素有不同的X射线特征波长和能量。
通过鉴别其特征波长或特征能量就可以确定所分析的元素。
利用特征波长来确定元素的仪器叫做波长色散谱仪(波谱仪),利用特征能量的就称为能量色散谱仪(能谱仪)。
1、波谱仪
波谱仪的关键在于怎样实现将未知的特征谱线与已知元素Z联系起来?为此设想有一种晶面间距为d的特定晶体(我们
称为分光晶体),当不同特征波长λ的X射线照射其上时,如果满足布拉格条件(2dsinθ=λ)将产生衍射。
显然,对于任意一个给定的入射角θ仅有一个确定的波长λ满足衍射条件。
这样我们可以事先建立一系列θ角与相应元素的对应关系,当某个由电子束激发的X特征射线照射到分光晶体上时,我们可在与入射方向交成2θ角的相应方向上接收到该波长的X射线信号,同时也就测出了对应的化学元素。
只要令探测器连续进行2θ角的扫描,即可在整个元素范围内实现连续测量。
由分光晶体所分散的单一波长X射线被X射线检测器接受,常用的检测器一般是正比计数器。
当某一X射线光子进入计数管后,管内气体电离,并在电场作用下产生电脉冲信号。
下图示出了电子探针中X射线记录和显示装置方框图。
可以看出,从计数器输出的电信号要经过前置放大器和主放大器,放大成0-10V左右的电压脉冲信号,这个信号再送到脉冲高度分析器。
2、能谱仪
来自样品的X光子通过铍窗口进入锂漂移硅固态检测器。
每个X光子能量被硅晶体吸收将在晶体内产生电子空穴对。
不同能量的X光子将产生不同的电子空穴对数。
例如,Fe的Kα辐射可产生1685个电子空穴对,而Cu为2110。
知道了电子空穴对数就可以求出相应的电荷量以及在固定电容(1μμF)上的电压脉冲。
多道脉冲高度分析器中的数模转换器首先把脉冲信号转换成数字信号,建立起电压脉冲幅值与道址的对应关系(道址号与X光子能量间存在对应关系)。
常用的X光子能量范围在0.2-20.48keV,如果总道址数为1024,那么每个道址对应
的能量范围是20eV。
X光子能量低的对应道址号小,高的对应道址号大。
根据不同道址上记录的X光子的数目,就可以确定各种元素的X射线强度。
它是作为测量样品中各元素相对含量的信息。
然后,在X-Y记录仪或阴极射线管上把脉冲数与脉冲高度曲线显示出来,这就是X光子的能谱曲线。
三、电子探针-工作原理分析
电子探针示意图电子探针有三种基本工作方式:点
分析用于选定点的全谱定性分析或定量分析,以及对
其中所含元素进行定量分析;线分析用于显示元素沿
选定直线方向上的浓度变化;面分析用于观察元素在
选定微区内浓度分布。
由莫塞莱定律可知,各种元素的特征X射线都具有
各自确定的波长,通过探测这些不同波长的X射线来
确定样品中所含有的元素,这就是电子探针定性分析
的依据。
而将被测样品与标准样品中元素Y的衍射强
度进行对比,就能进行电子探针的定量分析。
当然利
用电子束激发的X射线进行元素分析,其前提是入射
电子束的能量必须大于某元素原子的内层电子临界电
离激发能。
四、电子探针-功能及特色
电子探针可以对试样中微小区域(微米级)的化学组成进行定性或定量分析。
可以进行点、线扫描(得到层成分分布信息)、面扫描分析(得到成分面分布图像)。
还能全自动进行批量(预置9999测试点)定量分析。
由于电子探针技术具有操作迅速简便(相对复杂的化学分析方法而言)、实验结果的解释直截了当、分析过程不损坏样品、测量准确度较高等优点,故在冶金、地质、电子材料、生物、医学、考古以及其它领域中得到日益广泛地应用,是矿物测试分析和样品成分分析的重要工具。
五、电子探针-主要用途
电子探针又称微区X射线光谱分析仪、X射线显微分析仪。
其原理是利用聚焦的高能电子束轰击固体表面,使被轰击的元素激发出特征X射线,按其波长及强度对固体表面微区进行定性及定量化学分析。
主要用来分析固体物质表面的细小颗粒或微小区域,最小范围直径为1μm左右。
分析元素从原子序数3(锂)至
92(铀)。
绝对感量可达10-14至10-15g。
近年形成了扫描电镜—显微分析仪的联合装置,可在观察微区形貌的同时逐点分析试样的化学成分及结构。
广泛应用于地质、冶金材料、水泥熟料研究等部门。