等式的基本性质
- 格式:ppt
- 大小:314.00 KB
- 文档页数:6
从等式到方程一、等式的基本性质1、等式的两边同加(或同减)同一个数,结果仍然相等; 即:若则,b a =.c b c a ±=±2、等式的两边同乘同一个数,结果仍然相等; 即:若.,bc ac b a ==则3、等式的两边同除以一个数(不为零),结果仍然相等。
即:若cb c a c b a =≠=则且,0,4、等式的对称性: 即:若a b b a ==则,5、等式的传递性:(等量代换) 即:若c a c b b a ===则,,典型例题1、(考查等式的性质及其变形)判断下列说法,并说明理由。
(1)若c b b a +=+,则c a =; (2)若bc ab =,则c a =; (3)若bcb a=,则c a =;(4)若b c b a -=-,则c a =;(5)若1=xy ,则yx 1=;(6)若y xy =,则1=x 。
(7)若31x =,则31=x 。
(8)若z y y x 3,2==,则32x z =。
说明:①在使用等式的性质3时,一定要注意除数不为0的条件,②还要注意题目中的隐含条件,比如1=xy 隐含着0≠y ;而y xy =中则没有。
例 2 用适当的数或整式填空,使所得结果仍是等式,并说明是根据哪条性质以及怎样变形的:(1)如果853=+,那么-=83 ; (2)如果632=-x ,那么+=62x ;(3)如果123--=x x ,那么+x 3 1-=;(4)如果521=x ,那么=x ; (5)如果21231-=-x x ,那么-x 31 +-=21 ;(6)如果2)32(4=-x ,那么32-x = ;(7)如果22-=-y x ,那么=x ; (8)如果32y x =,那么=x 3 .说明:本题是等式性质的应用,可以结合小学加减乘除的逆运算来加深理解。
二、方程:含有未知数的等式叫方程。
1、一元一次方程:只含有一个未知数,且未知数的指数是一次的整式方程。
5.2 等式的基本性质学习目标1. 了解等式的两条性质。
2. 会用等式的性质解简单的(用等式的一条性质)一元一次方程。
知识详解1. 等式的性质1等式两边都加上(或减去)同一个数(或式子),结果仍相等。
如果a=b ,那么a ±c=b ±c2. 等式的性质2等式的两边都乘以或都除以同一个不为零的数或式,所得结果仍是等式。
如果a=b ,那么ac=bc 或(0)a b c c c=≠ 【典型例题】例1:如果x=-3,y=x ,那么y 的值为( )A.3B.-3C. 13D.-13【答案】B【解析】直接将x 的值代入原方程y=x 可得。
例2:下列各式中,是一元一次方程的是( )A.x+y=x-2B.x+y=5C.4x=0D.6x+5【答案】C【解析】由一元一次方程的定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程.C.4x=0是一元一次方程。
例3:方程2x+1=5,那么6x+1等于( )A.13B.19C.25D.无解【答案】A【解析】先解方程2x+1=5,得x=2;把x=2代入6x+1得6x+1=6×2+1=13.【误区警示】易错点1:等式与代数式的区别1. 下列式子中哪些是等式,哪些是代数式?(1)2+3=5;(2)3x-1=0;(3)2x-1>0;(4)7x-2;(5)2x -2x-1=0;(6)2m =0【答案】(1)、(2)、(5)、(6)是等式;(4)是代数式;(3)既不是等式,也不是代数式,是不等式。
【解析】等式与代数式的重要区别是等式有等号,而代数式仅是一个含有字母的式子。
易错点2:等式的性质2. 利用等式的性质解下列方程:(1)2x-4=0;(2)3x+15=8【答案】(1)两边同时加上4,得2x=4.两边同时除以2,得x=2.(2)两边同时减去15,得3x=8-15,即3x=-7.两边都除以3(或两边都乘以13),得x=-7×13,即x=-73. 【解析】解方程即是利用等式的性质,通过两边加减乘除变形为x=a 的形式。