第三章 飞机机身
- 格式:ppt
- 大小:2.72 MB
- 文档页数:31
第三章飞机的稳定性和操纵性3.1 飞机的稳定性在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。
这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。
飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。
例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。
因此,研究飞机的稳定性是研究飞机操纵性的基础。
所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。
3.1.1 纵向稳定性飞机的纵向稳定性是指飞机绕横轴的稳定性。
当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。
当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。
如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。
如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。
飞机的纵向稳定性也称为俯仰稳定性。
飞机的纵向稳定性由飞机重心在焦点之前来保证。
影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。
下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。
当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。
阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。
这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。
飞机在这个低头力矩作用下,使机头下沉。
经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。
同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。
这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。
客机航空知识点总结第一章:客机基本构造客机是一种用于载客的民航交通工具,通常由机翼、机身、发动机和起落架组成。
在客机的构造中,机翼是最重要的组成部分之一。
它负责产生升力,使得飞机可以在空中飞行。
机身是飞机的主要结构部分,需要承受飞机的整个重量、气动力和结构载荷。
发动机则是客机的动力来源,它产生推力,让飞机可以飞行。
起落架是客机的着陆设备,它支持飞机在地面行驶和起降。
第二章:客机的机翼结构和工作原理客机的机翼是一个关键的组成部分,它的结构和工作原理对于飞机的飞行性能至关重要。
一般来说,客机的机翼由前缘、后缘、翼面和翼剖面构成。
前缘是机翼的前部,通常是圆滑的,以减小气流的扰动。
后缘是机翼的后部,通常有襟翼和升降剖面。
翼面是机翼的上表面和下表面,它们的气流特性决定了飞机的升力和阻力。
翼剖面则是机翼的横截面,它的形状和结构对于机翼的升力和阻力有直接影响。
第三章:客机的机身结构和设计客机的机身是飞机的主要结构部分,它需要承载飞机的整个重量、气动力和结构载荷。
一般来说,客机的机身由机舱、货舱、货舱门、客舱门等部分组成。
机舱是机身的前部,通常安装有驾驶舱和乘客舱。
货舱是机身的中部,通常用于货物的运输。
货舱门用于装卸货物,客舱门用于乘客的进出。
客机的机身设计需要考虑飞机的气动特性、结构强度和重量分布等因素。
第四章:客机的发动机类型和工作原理客机的发动机是飞机的动力来源,它产生推力,让飞机可以飞行。
一般来说,客机的发动机可以分为活塞发动机和涡轮发动机两种类型。
活塞发动机是通过活塞往复运动产生推力,它通常用于小型飞机和直升机。
涡轮发动机是通过燃料燃烧产生高温高压气流,驱动涡轮旋转产生推力,它通常用于大型客机和喷气式飞机。
发动机的工作原理涉及到燃烧、压缩、膨胀和排气等多个过程,需要注意燃油的消耗、推力的产生和废气的排出等问题。
第五章:客机的起落架类型和工作原理客机的起落架是飞机的着陆设备,用于支持飞机在地面行驶和起降。
第三章飞机机身结构分析与设计为了确保飞机机身的安全性和可靠性,需要对其进行分析和设计。
飞机机身结构主要包括机身壳体、机翼、机尾等部分。
本章将从材料选择、结构设计、强度分析等方面进行讨论。
一、材料选择飞机机身的材料选择是非常重要的,直接关系到飞机的性能和安全性。
一般来说,飞机机身材料应具备以下特点:1.轻质高强度:飞机机身需要在重量限制条件下承受大的载荷,因此需要采用轻质高强度材料,如铝合金、钛合金等。
2.耐腐蚀性:飞机在大气条件下长时间运行,会受到潮湿、腐蚀等影响,因此材料需要具备较好的耐腐蚀性。
3.抗疲劳性:飞机机身会受到很多往复的载荷作用,因此材料需要具备良好的抗疲劳性能。
4.断裂韧性:飞机机身需要能够承受意外负荷和冲击,因此材料需要具备较好的断裂韧性。
5.低温性:飞机在高空工作时会遇到低温环境,材料需要具备较好的低温性能。
根据上述要求,一般采用铝合金作为飞机机身的主要材料,具有轻质、高强度、良好的抗腐蚀性和可塑性等优点。
在一些高性能飞机中,还会采用钢、钛合金等材料。
二、结构设计飞机机身的结构设计需要兼顾强度、刚度和轻量化等要求。
一般来说,机身结构可以分为长程结构和战斗结构两个方面。
1.长程结构:一般采用壳体结构,包括压力壳体和非压力壳体。
压力壳体一般是机身的主要承载结构,需要承受气动载荷和重力载荷。
非压力壳体主要是起到支撑作用,如救生筏支架等。
2.战斗结构:战斗结构一般包括机翼和机尾等部分。
机翼需要承受气动载荷和惯性载荷,并通过机身传递到其他部分。
机尾主要用于保护飞机的尾部、提供升力等功能。
在结构设计中,需要考虑载荷分布、结构布局、连接方式等因素。
同时,还需要对结构进行优化设计,以提高结构的强度、刚度和轻量化程度。
三、强度分析强度分析是飞机机身设计的重要步骤,主要是分析结构的强度和刚度等性能。
强度分析包括静力强度分析和疲劳强度分析。
1.静力强度分析:静力强度分析主要是对飞机机身在静态载荷下的强度进行分析。