叶片式泵与风机的基本理论
- 格式:ppt
- 大小:3.44 MB
- 文档页数:79
泵与风机课程自学指导书第0章绪论一、本章的核心、重点及前后联系(一)本章的核心本章的核心问题是要求学生对泵与风机有一个初步认识,这个认识从三个角度:在火力发电厂中的重要作用;表征整体性能的基本性能参数;叶片泵的工作原理。
(二)本章重点本章的重点是基本性能参数的物理意义。
(三)本章前后联系通过本章的学习,使学生对泵与风机有一个初步了解,激发学习后续内容的兴趣,奠定学习后续内容的基础。
二、本章的基本概念、难点及学习方法指导(一)本章的基本概念本章的基本概念是泵与风机的基本性能参数:流量、扬程、全压、轴功率、效率、转速。
(二)本章难点及学习方法指导本章的难点是泵与风机的工作原理,可以通过网络搜索一些相关动画加深理解。
三、典型例题分析通过自学例0-1,明白实际运行时的工作参数可能和额定参数不一致,造成这种情形的原因是管路系统的影响。
该例题还为解决实际问题提供了分析思路。
四、思考题、习题及习题解答(一)思考题、习题1.试述泵与风机在火力发电厂中的作用。
2.简述泵与风机的定义及它们在热力发电厂中的地位?3.写出泵有效功率表达式,并解释式中各量的含义和单位。
4.风机全压和静压的定义式是什么?5.试求输水量q v=50m3/h时离心泵所需的轴功率。
设泵出口处压力计的读数为25.5×104Pa,泵入口处真空计的读数为33340Pa,压力计与真空计的标高差为△z=0.6m,吸水管与压水管管径相同,离心泵的总效率η=0.6。
6.离心式风机的吸入风道及压出风道直径均为500mm,送风量q v=18500m3/h。
试求风机产生的全压及风机入口、出口处的静压。
设吸入风道的总阻力损失为700Pa,压出风道的总阻力损失为400Pa(未计压出风道出口的阻力损失),空气密度ρ=1.2kg/m3。
7.有一普通用途的离心式风机,其全压p=2000Pa,流量qv=47100m3/h,全压效率η=0.76,如果风机轴和原动机轴采用弹性联轴器连接,试计算该风机的全压有效功率、轴功率,并选配电机。
《泵与风机》课程总结班级﹕热能0921姓名﹕王东学号﹕14指导老师﹕张鹏高《泵与风机》课程内容第一章、泵与风机概述泵与风机基础知识定义:泵与风机是一种外加原动机能量输送流体的机械。
通常将输送液体的机械称为泵,输送气体的机械称为风机。
右图为泵与风机示意图。
类别:按其作用,泵用于输送液体和气体,属于流体机械。
按其工作性质,泵与风机将原动机机械能转化为流体的动能和压能,属于能量转换机械。
作用:在火力发电厂中,泵与风机是最重要的辅助设备,担负着输送各种流体,以实现电力生产热力循环的作用。
泵与风机的性能及其参数性能参数:流量q m=ρq v扬程或全压.扬程H=e2-e1,全压p=ρgH功率。
有效功率P e=q v p/1000kw,轴功率P=P gŋd,式中Pg、ŋd—原动机的输出功率及原动机效率。
效率。
ŋ=P e/Px100%转速。
转速是指泵与风机叶轮每分钟的转数。
火电厂中常用种类:离心式泵与风机、轴流式泵与风机、混流式泵与风机、往复式泵与风机、齿轮泵、螺杆泵、罗茨风机、水环式真空泵和喷射泵。
部分风机工作原理离心式泵与风机的工作原理:叶轮高速旋转时产生的离心力使流体获得能量,即流体通过叶轮后,压能和动能都得到提高,从而能够被输送到高处或远处。
叶轮装在一个螺旋形的外壳内,当叶轮旋转时,流体轴向流入,然后转90度进入叶轮流道并径向流出。
叶轮连续旋转,在叶轮入口处不断形成真空,从而使流体连续不断地被泵吸入和排出。
如右图。
轴流式泵与风机工作原理:旋转叶片的挤压推进力使流体获得能量,升高其压能和动能。
往复式泵与风机工作原理:借活塞在汽缸内的往复作用使缸内容积反复变化,以吸入和排出流体。
水环式真空泵工作原理:水环式真空泵叶片的叶轮偏心地装在圆柱形泵壳内。
泵内注入一定量的水。
叶轮旋转时,将水甩至泵壳形成一个水环,环的内表面与叶轮轮毂相切。
由于泵壳与叶轮不同心,右半轮毂与水环间的进气空间4逐渐扩大,从而形成真空,使气体经进气管进入泵内进气空间。
第八章叶片式泵与风机的理论第一节离心式泵与风机的叶轮理论离心式泵与风机是由原动机拖动叶轮旋转,叶轮上的叶片就对流体做功,从而使流体获得压能及动能。
因此,叶轮是实现机械能转换为流体能量的主要部件。
一、离心式泵与风机的工作原理泵与风机的工作过程可以用图2—l 来说明。
先在叶轮内充满流体,并在叶轮不同方向上取A、B、C、D 几块流体,当叶轮旋转时,各块流体也被叶轮带动一起旋转起来。
这时每块流体必然受到离心力的作用,从而使流体的压能提高,这时流体从叶轮中心被甩向叶轮外缘,,于是叶轮中心O处就形成真空。
界流体在大气压力作用下,源源不断地沿着吸人管向O 处补充,而已从叶轮获得能量的流体则流人蜗壳内,并将一部分动能转变为压能,然后沿压出管道排出。
由于叶轮连续转动,就形成了泵与风机的连续工作过程。
流体在封闭的叶轮中所获得的能(静压能):上式指出:流体在封闭的叶轮内作旋转运动时,叶轮进出口的压力差与叶轮转动角速度的平方成正比关系变化;与进出口直径有关,内径越小,外径越大则压力差越大,但进出口直径均受一定条件的限制;且与密度成正比关系变化,密度大的流体压力差也越大。
二、流体在叶轮内的运动及速度三角形为讨论叶轮与流体相互作用的能量转换关系,首先越大,但进出口直径均受一定条件的限制;且与密度成正比关系变化,密度大的流体压力差也越大。
二、流体在叶轮内的运动及速度三角形为讨论叶轮与流体相互作用的能量转换关系,首先要了解流体在叶轮内的运动,由于流体在叶轮内的运动比较复杂,为此作如下假设:①叶轮中叶片数为无限多且无限薄,即流体质点严格地沿叶片型线流动,也就是流体质点的运动轨迹与叶片的外形曲线相重合;②为理想流体,即无粘性的流体,暂不考虑由粘性产生的能量损失;③流体作定常流动。
流体在叶轮中除作旋转运动外,同时还从叶轮进口向出口流动,因此流体在叶轮中的运动为复合运动。
当叶轮带动流体作旋转运动时,流体具有圆周运动(牵连运动),如图2—3(a)所示。
回忆上次课所做的实验
被输送的是理想液体,液体在叶轮内流动不存在流动阻力;
:完全不可压缩的无粘滞性的流体。
不可压缩:流体中任一质量元在流动过程中体积都不会变化。
中各部分之间无摩擦阻力的作用。
:在流体占据的空间里,每一点都对应于一个表示该处流体流动速度的流速矢量,构成了流体在空间中的离心泵工作时,液体一方面随叶轮作旋转运动,同时又经叶轮流道向外流动,因此液体在叶轮内的流动情况是十分复杂的。
二、流体在叶轮中运动的速度三角形
理想流体在理想叶轮中的旋转运动应是等角速度的。
α表示绝对速度与圆周速度两矢量之间的夹角,
速度反方向延线的夹角,称之为流动角。
α及β的大小与叶片的形状有关。
速度三角形是研究叶轮内流体流动的重要工具,在分析泵的性能、确定叶轮进出口几何参数时都要用到它。
由速度三角形并应用余弦定理得到
当叶轮的直径和转速、叶片的宽度及理论流量一定时,离心泵的理论压头随叶片的形状而变。
实际上离心泵多采用的一种叶片。
理论压头居中;
产生的理论压头最大;
不断增大;但H
p 随β
2
的变化却不同,在β
2
<90度时,
所占的比例大致相当,在β
2>90时,H
p
所占比例较少,
一定,若、
前面讨论的是理想液体通过理想叶轮时的H
T∞-Q
T
的关系曲线上,叶轮的叶片数目是有限的,
因此,液体并非完全沿叶片弯曲形状运动,而且在流道中产生与旋转方向不一致的旋转运动,称为轴向涡流。
于是,实际的圆周都较理想叶轮的为小,致使泵的压头降低。