高中数学抛物线基础知识(详尽版)
- 格式:doc
- 大小:317.74 KB
- 文档页数:2
抛物线知识点总结_高三数学知识点总结一、抛物线的定义抛物线是平面上一个点沿着一条直线运动,同时受到一个恒定的垂直于直线的力的作用,这种轨迹叫做抛物线。
抛物线是由二次函数关系定义的曲线。
它是平面上一点到直线上一点的距离与这一点到定点的距离成比例的轨迹。
二、抛物线的标准方程1. 抛物线的标准方程为:y=ax^2+bx+c,其中a≠0。
2. 抛物线的顶点为(-b/2a, c-b^2/4a)。
三、抛物线的性质1. 抛物线的开口方向由二次项系数a的正负号决定。
若a>0,抛物线开口向上;若a<0,抛物线开口向下。
2. 抛物线的轴对称线为x=-b/2a,即抛物线的顶点为轴对称点。
3. 抛物线在顶点处的切线平行于x轴。
4. 抛物线的焦点可表示为(F, p),其中F是焦点坐标,p=1/4a是抛物线焦点到顶点的距离。
5. 抛物线的定点到焦点的距离等于焦距。
6. 过抛物线的顶点和焦点的直线称为抛物线的焦线,焦点为该直线的对称中心。
7. 对于平行于抛物线轴的直线,其交点到焦点距离都相等。
四、抛物线的方程求解1. 已知顶点和焦点求抛物线方程:设抛物线的焦点为(F, p),则抛物线的标准方程为:(y-p)^2=2px。
2. 已知焦点和直线求抛物线方程:设焦点为(F,p),直线为l:x=ay+b,则抛物线的标准方程为:y^2=2px3. 已知抛物线的焦点和焦距求抛物线方程:设抛物线的焦点为(F, p),焦距为2a,则抛物线的标准方程为:(y-p)^2=4ax。
4. 已知抛物线的焦点和顶点求抛物线方程:设抛物线的焦点为(F, p),顶点为(V, q),则抛物线的标准方程为:(y-q)^2=4a(x-v)。
5. 已知抛物线上3点求抛物线方程:设抛物线上3点为A(x1, y1),B(x2, y2),C(x3, y3),则通过抛物线的标准方程组成三元二次函数方程,再通过该方程求解。
五、抛物线的应用1. 计算机图形学中,抛物线可以用于生成曲线和图案。
抛物线的基本知识点高三抛物线是数学中一个非常重要的曲线,广泛应用于物理学、工程学、计算机图形学等领域。
在高三数学课程中,学生需要掌握抛物线的基本知识点。
本文将对抛物线的定义、性质以及相关公式进行介绍,帮助高三学生加深对抛物线的理解。
一、抛物线的定义抛物线是由平面上一个动点P和一个不在同一平面的定点F (称为焦点)所确定的动点P到定点F的距离等于动点P到一条定直线l(称为准线)的距离的集合。
抛物线的形状如同一个碗或者一个开口朝上的弓形。
在平面直角坐标系中,抛物线可以用二次方程的形式表示为y=ax^2+bx+c,其中a、b、c都是实数且a不等于零。
二、抛物线的性质1. 对称性:抛物线关于纵轴对称。
这意味着抛物线上的任意一点P(x,y)与焦点F(x',y')的横坐标之差等于准线上对称的点P'(x,-y)与焦点对应点F'(x',-y')的横坐标之差。
2. 相切与相交:若直线与抛物线相切,则其与准线的切点在一条直线上;若直线与抛物线相交,则其与准线的交点在一条直线上。
3. 焦距:抛物线焦点与准线间的距离称为焦距。
焦点到准线的距离等于焦点到抛物线上任意一点的距离。
4. 高度与开口方向:a的正负决定了抛物线的开口方向。
若a 大于零,则抛物线开口朝上;若a小于零,则抛物线开口朝下。
抛物线的最高点或最低点成为顶点,坐标为(-b/2a, -Δ/4a),其中Δ(b^2-4ac)称为判别式。
三、抛物线经过的特殊点抛物线经过三个特殊点:焦点F、定点A及顶点V。
焦点F的纵坐标等于a的倒数(即1/a),横坐标为0。
焦点到抛物线对称轴的距离为p=1/(4a)。
定点A与焦点F的距离等于准线l的距离,即等于p。
顶点V的横坐标为-a/2,纵坐标为c-Δ/4a。
四、抛物线相关公式1. 对称方程:若抛物线关于x轴对称,则方程为x=ay^2+by+c;若抛物线关于y轴对称,则方程为y=ax^2-bx+c。
完整版)抛物线知识点归纳总结抛物线是一种经典的二次函数图像,具有许多重要的特点和性质。
以下是对抛物线知识点的详细总结。
1.定义:抛物线是平面上一点P到定点F的距离等于点P到定直线上一点的距离的轨迹。
2.构成:抛物线由平面上的点集组成,由对称轴与焦点决定。
3. 表达式:一般形式的抛物线方程是y=ax^2 + bx + c,其中a、b、c是实数且a不等于0。
4.开口方向:抛物线开口方向由a的正负决定,如果a大于0,抛物线开口向上;如果a小于0,抛物线开口向下。
5.对称轴:抛物线的对称轴是一条与抛物线的开口方向垂直的直线,由方程x=-b/2a给出。
6. 焦点:抛物线的焦点是与抛物线上任意一点的距离相等的定点F,其坐标为((-b/2a), (4ac-b^2)/4a)。
7.直径:抛物线的直径是通过焦点且与抛物线相交于两点的直线。
8.非退化抛物线:当a不等于0时,抛物线是非退化的,并且它的对称轴是直线x=-b/2a。
9.顶点:抛物线的顶点是抛物线上最高或最低的点,它是通过对称轴的纵坐标最小(或最大)的点。
10.切线:抛物线上任意一点的切线是通过该点并且与抛物线仅有一个交点的直线。
11.弦:抛物线上的弦是通过抛物线上两个点并且与抛物线仅有两个交点的线段。
12. 与X轴交点:抛物线与X轴的交点可通过求解方程ax^2 + bx +c = 0得到。
13.与Y轴交点:抛物线与Y轴的交点是抛物线上当x=0时的点,即把x替换为0后求解方程得到。
14.对称性:抛物线具有关于对称轴对称的性质,即对称轴上的一点关于对称轴上的另一点的映射是自身。
15.焦点和直角三角形:抛物线上两点和焦点构成的三角形是直角三角形。
16.抛物线的图像:抛物线的图像是一个开口朝上或朝下的弧线,形状可以通过方程中的系数来确定。
17.抛物线的平移:抛物线可以通过平移来改变其位置,平移的方式是通过方程中的常数项来实现。
18.抛物线的拉伸/压缩:通过改变抛物线方程中的a的值,可以改变抛物线的宽度。
高二抛物线的知识点抛物线是高二数学中的重要知识点,它在实际生活中的应用非常广泛。
本文将介绍抛物线的定义、性质、标准方程以及它的几个重要应用。
一、抛物线的定义和性质抛物线是指平面上到定点与定直线距离相等的点的轨迹。
其中,定点叫做焦点,定直线叫做准线,焦点和准线之间的垂线称为准线上的高。
1. 抛物线的定义根据抛物线的定义可知,任意一点P到焦点F和准线l的距离相等,即PF = Pl。
这个性质决定了抛物线的形状。
2. 抛物线的性质(1)对称性:抛物线关于准线对称。
(2)焦点和准线的关系:焦点到准线的距离等于焦距的一半。
(3)顶点坐标:抛物线的顶点坐标为(h,k),其中h和k分别为抛物线的平移量。
二、抛物线的标准方程抛物线的标准方程为y = ax^2 + bx + c,其中a、b和c是常数,a不等于0。
标准方程的a决定了抛物线的开口方向,当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
通过顶点坐标(h,k)可以确定抛物线的平移量,进而得到抛物线的顶点形式方程。
三、抛物线的重要应用抛物线在现实生活中有着广泛的应用,下面我们将介绍几个常见的应用场景。
1. 抛物线在物理运动中的应用抛物线是自然界中许多物体运动的轨迹,比如抛物线运动、射击运动等。
例如,抛物线运动是指一个物体在受到水平初速度和竖直初速度的同时,受重力影响进行的运动,这类运动可以描述为抛物线的轨迹。
2. 抛物线在建筑设计中的应用抛物线的对称性和稳定性使得它在建筑设计中得到广泛应用。
例如,拱门的形状就是一个抛物线,它能够在一定程度上分散力量,达到结构稳定的目的。
3. 抛物线在天文学中的应用抛物线在天文学中也有重要的应用,比如描述行星、卫星和彗星的运动轨迹。
例如,行星绕太阳运动的轨迹可以近似为一个抛物线。
总结:抛物线是高二数学中的重要知识点,它的定义、性质、标准方程以及几个重要应用都是我们需要了解的内容。
通过掌握抛物线的知识,可以更好地理解和应用于实际问题中。
超详细抛物线知识点归纳总结抛物线是一个经典的二次曲线,它的形状类似于一个向上开口或向下开口的U 形曲线。
在数学和物理学中,抛物线具有许多重要的性质和应用。
下面是超详细的抛物线知识点总结:1. 基本定义:抛物线是平面上到定点(焦点)和定直线(准线)之距离相等的点的轨迹。
准线与抛物线的交点被称为顶点,准线上两个焦点和顶点的中垂线被称为对称轴。
2. 标准方程:一般抛物线的标准方程为 y = ax^2 + bx + c,其中 a、b、c 是常数。
通过变换可以将一般方程转化为其他形式,如顶点形式、焦点形式和准线形式。
3. 顶点形式:顶点形式的抛物线方程为 y = a(x-h)^2 + k,其中 (h,k) 是顶点的坐标。
通过平移和缩放可以将一般方程转化为顶点形式。
4. 焦点形式:焦点形式的抛物线方程为 (x-h)^2 = 4p(y-k),其中 (h,k) 是顶点的坐标,p 是焦距的一半。
焦点形式可以直接得到焦点坐标。
5. 准线形式:准线形式的抛物线方程为 y = px^2,其中 p 是焦距的一半。
准线形式的焦点在原点,并且准线是 x 轴。
6. 直径和焦距:抛物线的直径是通过顶点且与曲线相切的直线段。
焦距是焦点到准线的垂直距离。
7. 对称性:抛物线是关于对称轴对称的。
即曲线上任意一点关于对称轴对称的点,其到焦点和准线的距离相等。
8. 切线与法线:抛物线上任意一点处的切线是通过该点且与曲线相切的直线。
切线的斜率等于该点处的导数。
法线是与切线垂直的直线,其斜率是切线斜率的负倒数。
9. 焦点与直角焦点:焦点是到准线距离等于到抛物线上一点距离的点。
直角焦点是到准线距离等于到抛物线上一点距离的点,并且该点与焦点、准线之间的连线与准线垂直。
10. 焦半径:焦半径是焦点与抛物线上任意一点的连线与准线的夹角的二倍。
11. 焦散性质:抛物线的焦点到抛物线上任意一点的距离可以通过反射性质来得到。
即经过抛物线上某点的光线经过反射后都通过焦点。
高三抛物线的知识点归纳一、抛物线的定义及方程抛物线是二次函数的图像,它的一般方程可以表示为 y = ax^2 + bx+ c。
在这个方程中,a、b、c 是常数,其中 a 决定抛物线的开口方向和大小,b 影响抛物线沿着 x 轴的位置,而 c 则决定了抛物线与y 轴的交点。
二、抛物线的性质1. 开口方向:当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
2. 对称性:抛物线是轴对称图形,对称轴为直线 x = -b/(2a)。
3. 顶点:抛物线的最高点或最低点称为顶点,其坐标可以通过公式(-b/(2a), -Δ/(4a)) 计算得出,其中Δ = b^2 - 4ac 称为判别式。
4. 焦点和准线:对于开口向上或向下的抛物线,可以定义一个焦点和一条准线。
焦点位于距离顶点 a/(4a) 的位置,准线则是与抛物线对称轴平行且距离顶点 a/(2a) 的直线。
三、抛物线的应用1. 物理现象:在物理学中,抛物线常用于描述物体在重力作用下的抛射运动轨迹。
2. 工程建筑:在建筑设计中,抛物线形状常用于拱桥、穹顶等结构,以实现良好的力学性能。
3. 艺术设计:在艺术领域,抛物线因其优美的曲线被广泛应用于雕塑和装饰品的设计。
四、解题技巧1. 确定方程:根据题目条件确定抛物线的一般方程 y = ax^2 + bx + c。
2. 计算顶点:通过公式 (-b/(2a), -Δ/(4a)) 快速求出抛物线的顶点坐标。
3. 判断交点:通过代入 x 值或 y 值,可以求出抛物线与 x 轴或 y轴的交点。
4. 应用对称性:利用抛物线的对称性简化计算,特别是在求解与抛物线相关的最值问题时。
五、例题分析例1:已知抛物线 y = 2x^2 - 4x + 3,求其顶点坐标和对称轴方程。
解:首先计算判别式Δ = b^2 - 4ac = (-4)^2 - 4*2*3 = 16 - 24= -8。
由于Δ < 0,该抛物线与 x 轴无交点。
引言概述:抛物线是高中数学中的重要内容,具有广泛的应用领域,包括物理、工程、经济等。
本文将对抛物线的相关知识进行归纳总结,从定义、性质、方程、焦点与准线、图形以及应用等多个方面进行详细的阐述。
正文内容:一、定义和性质1.抛物线的定义:抛物线是平面内一点到固定点和固定直线的距离之比等于常数的轨迹。
2.焦点与准线的关系:焦点是抛物线上所有点到准线的距离相等的点。
3.对称性:抛物线具有关于准线对称和关于纵轴对称的性质。
4.切线方程:抛物线上任意一点的切线方程为y=mx+c,其中m 是斜率,c是截距。
5.切线与法线的关系:切线与法线互为垂线且交于抛物线上的点。
二、方程和焦点、准线1.标准方程:抛物线的标准方程为y=ax^2+bx+c,其中a、b、c 是常数,a≠0。
2.顶点坐标:抛物线的顶点坐标为(b/2a,f(b/2a)),其中f(x)=ax^2+bx+c。
3.焦点坐标:抛物线的焦点坐标为(h,f(h+1/4a)),其中h=b/2a。
4.准线方程:抛物线的准线方程为y=f(h+1/4a)1/(4a)。
三、图形展示和性质分析1.抛物线的开口方向:a的正负决定抛物线的开口方向,a>0时开口向上,a<0时开口向下。
2.抛物线的焦点位置:焦点在抛物线的顶点上方,焦点的纵坐标为f(h+1/4a)+1/(4a)。
3.抛物线的对称轴:对称轴是通过抛物线的顶点和焦点的直线。
4.抛物线的顶点与焦点距离:顶点与焦点的距离等于抛物线的准线长。
四、应用领域1.物理学应用:抛物线可以描述自由落体运动、抛射运动等。
2.工程学应用:抛物线常用于建筑物的设计、桥梁的设计等。
3.经济学应用:抛物线可以用来表示成本、收入和利润的函数关系。
4.生物学应用:抛物线可用于描述某些生物体运动的轨迹。
5.计算机图像处理应用:抛物线可以用于图像处理算法中的平滑处理。
五、总结本文对抛物线的定义、性质、方程、焦点与准线、图形以及应用进行了详细的阐述。
高三抛物线知识点大全一、定义和性质抛物线是指平面上一个动点到一个固定点的距离和到一条固定直线的距离之差等于一个常数的轨迹图形。
具体而言,抛物线由一个焦点F和一条直线(直线称为准线,不过关于准线也可以成为直轴)组成。
二、基本方程抛物线的基本方程为:y² = 2px (p≠0)其中p为焦点到准线的距离(也称为焦距),p的绝对值表示抛物线开口的方向和大小。
三、焦点与准线之间的关系1. 焦点在抛物线的顶点上方并且与准线不相交。
2. 焦点与准线的距离等于顶点到准线的距离。
四、顶点的坐标抛物线的顶点坐标为(0,0)。
五、对称轴对称轴是指过抛物线顶点且垂直于准线的直线。
对称轴的方程为x = 0。
六、焦点的坐标焦点的坐标为(p,0)。
七、准线方程准线的方程为y = -p。
八、参数变换抛物线方程y² = 4ax可以通过参数变换的方式转化为y² = 2px 的形式。
其中参数变换公式如下:x = at²y = 2at九、焦距与顶点到准线的距离的关系焦距绝对值的平方等于抛物线顶点到准线的距离。
十、焦点和顶点到准线距离的关系焦点与顶点到准线的距离之比等于1:2。
十一、切线斜率抛物线上一点处的切线斜率等于该点的横坐标除以2p。
十二、离心率离心率是一个用于衡量抛物线形状的指标,定义为焦点到准线的距离与焦距之比,即e = √(1 + (1/p^2))。
十三、焦点和准线的位置关系焦点在准线之上时,抛物线开口朝上;焦点在准线之下时,抛物线开口朝下。
十四、抛物线与直线的关系1. 抛物线与x轴交点:若y = 0时,解方程y² = 2px,可求得两个交点。
2. 抛物线与y轴交点:若x = 0时,解方程y² = 2px,可求得一个交点。
十五、抛物线与直线的切点将直线方程代入抛物线方程,解方程组可以求得抛物线与直线的切点。
十六、抛物线的焦半径焦半径是指从焦点引出一个与抛物线相切的直线段。
抛物线知识点总结一、抛物线的定义抛物线是一种特殊的二次曲线,它的数学定义是平面上一点到定点和直线的距离相等,这个定点就是抛物线的焦点,直线就是抛物线的准线。
在直角坐标系中,抛物线的标准方程为:y=ax2+bx+c,其中a≠0。
二、抛物线的性质1. 焦点和准线:抛物线的焦点和准线是抛物线的两个重要属性。
焦点是定点,准线是直线,它们共同决定了抛物线的形状和特性。
2. 对称性:抛物线是关于x轴对称的。
3. 切线和法线:抛物线上的任意一点,它的切线和法线都是经过这个点,且与x轴垂直。
4. 定理一:抛物线的焦点到准线的距离等于焦点到抛物线上任意一点的距离。
5. 定理二:抛物线上任意一点到焦点的距离等于该点到准线的距离。
6. 焦距:抛物线上所有点到焦点的距离的最小值称为抛物线的焦距。
7. 平行于准线的矩形,被含在抛物线内部并且对称。
8. 定理三:抛物线的离心率等于1。
三、抛物线的方程1. 标准方程:y=ax2+bx+c,其中a≠0。
2. 顶点坐标:抛物线的顶点坐标为(-b/2a, c-b2/4a)。
3. 焦点坐标:抛物线的焦点坐标为(-b/2a, c-b2/4a+1/4a)。
4. 焦距:抛物线的焦距为1/|4a|。
四、抛物线的应用抛物线作为一种重要的数学曲线,在各种应用中都有着广泛的应用,如物理、工程、建筑等领域。
1. 物理:在物理学中,抛物线曲线被广泛应用于描述抛体运动的轨迹。
比如,抛体在空中的飞行轨迹、抛物线发射器等都涉及到抛物线的运动规律。
2. 工程:在建筑工程和土木工程中,抛物线曲线常常被用于设计拱形结构或者桥梁的曲线轨迹。
抛物线的弧形轨迹具有良好的支撑性能和稳定性,因此在工程设计中得到了广泛应用。
3. 航天航空:在航天航空技术中,抛物线曲线也被用于设计火箭轨迹和飞行器的运动路径。
比如,抛物线曲线可以描述卫星的发射和轨道运行规律。
4. 光学:在光学中,抛物线曲线也被应用于设计反射镜和折射镜的形状。
抛物线反射镜可以将平行光线汇聚到一个焦点上,因此在光学仪器和望远镜中得到了广泛应用。
高中数学-抛物线知识点抛物线是数学中的重要概念,广泛应用于几何学和物理学中。
本文将介绍高中数学中与抛物线相关的知识点。
1. 抛物线的定义和特征- 抛物线是由平面上一动点P和一定点F以及到F的距离与到直线l的距离相等的所有点P的轨迹形成的曲线。
- 抛物线的特征是对称性,即关于对称轴对称。
对称轴是通过焦点F的垂直于直线l的直线。
- 抛物线的焦点F与对称轴的交点称为焦点,对称轴上的任意一点P到直线l的距离称为焦距。
2. 抛物线的方程- 抛物线的一般方程是y = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0。
- 抛物线的顶点坐标为(-b/2a, c - b^2/4a)。
- 抛物线的判别式Δ = b^2 - 4ac,通过判别式的值可以判断抛物线的开口方向和与x轴的交点个数。
3. 抛物线的图像和性质- 当a > 0时,抛物线开口向上,当a < 0时,抛物线开口向下。
- 抛物线的顶点是极小值点或极大值点,具有最值性质。
- 抛物线的对称轴与x轴的交点是抛物线的零点,也是方程的实根。
- 抛物线的导数表示斜率,斜率为0时对应抛物线的顶点。
4. 抛物线的应用- 抛物线可用于描述物体在一定条件下的运动轨迹,如炮弹抛体运动、射击训练等。
- 抛物线的最值性质可应用于优化问题,如求解最大最小值等。
- 抛物线的几何性质可应用于建筑设计、桥梁设计等。
以上是高中数学中关于抛物线的基本知识点。
抛物线作为基础的数学概念,为其他数学和物理学知识的研究奠定了坚实基础。
参考资料:- 高中数学教材- 数学知识网站。
.
抛物线基础知识
标准方程的求法:若已知对称轴在坐标轴上而不知开口方向,可简单设为22,ax y ay x ==,避免讨论。
.
1. 直线与抛物线的位置关系
直线,抛物线,,消y 得:
(1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时,
Δ>0,直线l 与抛物线相交,两个不同交点;Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。
(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :
b kx y += 抛物线
,)0(>p
①
联立方程法:⎩⎨⎧=+=px
y b kx y 22
⇒0)(22
22=+-+b x p kb x k 设交点坐标为
)
,(11y x A ,
)
,(22y x B ,则有
>∆,以及
2
121,x x x x +,还可进一步求出
b x x k b kx b kx y y 2)(212121++=+++=+,2212122121)())((b x x kb x x k b kx b kx y y +++=++=
在涉及弦长,中点,对称,面积等问题时,常用此法,比如 (1)相交弦AB 的弦长
2122122124)(11x x x x k x x k AB -++=-+=a
k ∆+=2
1
或
2122122124)(1111y y y y k y y k AB -++=-+
=a
k ∆+=2
1
(2)中点),(00y x M , 2
2
10
x x x +=
,
2
2
10y y y +=
(3)点差法:设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得
1212px y = 22
22px y =
将两式相减,可得)(2))((212121x x p y y y y -=+-
,
2
121212y y p
x x y y +=
--
a.
在涉及斜率问题时,2
12y y p k AB
+=
b. 在涉及中点轨迹问题时,设线段
AB 的中点为),(00y x M ,0
2
12
121222y p
y p y y p x x y y ==+=--,
即0
y p k AB
=,
同理,对于抛物线)0(22
≠=p py x
,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有
p
x p x p x x k AB 0
021222==+=
(注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)。