遗传的细胞学基础医学知识
- 格式:ppt
- 大小:8.86 MB
- 文档页数:104
遗传学中的细胞遗传与代谢遗传细胞遗传和代谢遗传是遗传学中两个重要的概念,它们在遗传信息传递和生物体代谢过程中起着关键的作用。
本文将详细介绍细胞遗传与代谢遗传的概念、原理和应用。
一、细胞遗传的概念与原理细胞遗传是指遗传信息在细胞间的传递过程。
在有性繁殖中,个体的遗传信息通过生殖细胞传递给后代。
这一过程涉及到细胞分裂、染色体的遗传物质DNA的复制和分离,以及遗传物质的组合和重新分配等一系列细胞遗传学中的基本概念。
细胞遗传的原理主要包括:1. 细胞分裂:细胞分裂是细胞遗传的基础,包括有丝分裂和减数分裂两种形式。
有丝分裂是指细胞的核分裂过程,保留了遗传物质DNA的完整性;减数分裂则是有丝分裂的前奏,两次分裂的结果是四个单倍体的细胞。
2. 遗传物质DNA的复制和分离:在有丝分裂中,DNA通过复制过程产生两条完全相同的染色体,然后分离到两个子细胞中。
而在减数分裂中,DNA只进行一次复制,之后进行两次分裂和分离,使得遗传信息得以组合和重组。
3. 遗传物质的组合和重新分配:减数分裂中的染色体在重新组合时,通过配子的结合形成新的个体。
这种重新组合和分配遗传物质的过程,保证了后代个体的多样性和遗传稳定性。
二、细胞遗传在生物学中的应用1. 遗传疾病的研究:细胞遗传学的研究有助于识别染色体变异和遗传突变与遗传疾病之间的关联。
通过对细胞遗传的分析,可以确定染色体、基因和DNA的异常情况,从而诊断和研究遗传病的发病机制和治疗方法。
2. 基因工程和转基因技术:细胞遗传学为基因工程和转基因技术提供了理论和实践基础。
通过改变细胞中的遗传物质,使其具备特定的性状或功能,可以用于农业、医学和工业等领域。
3. 个体鉴定和亲子鉴定:细胞遗传学提供了一种确定个体身份和亲子关系的方法,DNA指纹技术的应用使得鉴定结果更加可靠和准确。
三、代谢遗传的概念与原理代谢遗传是指遗传信息在个体的代谢过程中的传递和表达。
个体的代谢活动受到其遗传物质的影响,包括基因组中的所有基因以及其所编码的酶和调节蛋白。
1、医学遗传学是应用遗传学的理论和方法研究人类遗传性疾病和人类疾病发生的遗传学问题的一门综合性学科。
2、遗传病是指遗传物质改变(基因突变或染色体畸变)所引起的疾病。
3、遗传病的类型:①单基因病;②多基因病(冠心病、高血压、生理性近视、消化性溃疡、精神分裂症、自闭症);③染色体病(唐氏综合征、猫叫综合征);④体细胞遗传病(肺癌、恶性肿瘤);(⑤线粒体遗传病:帕金森综合征)4、基因是合成一种有功能的多肽链或者RNA分子所必须的一段完整的DNA序列。
5、编码序列在DNA分子中是不连续的,被非编码序列分隔开,形成镶嵌排列的断裂形式,称为割裂基因。
6、割裂基因中内含子和外显子的关系不是完全固定不变的。
7、割裂基因结构中外显子-内含子的高度保守的接头形式叫做GT-AG法则。
8、侧翼序列是在第一个外显子和最末一个外显子外侧的一段非编码区,由前导区、尾部区和调控区组成。
均属于顺式作用元件。
9、启动子是RNA聚合酶结合并启动转录的特异DNA序列,位于基因转录起点上游的100bp 范围内。
TATA框或Hogness框:位于转录起始点上游-19~-27bp处,是高度保守的一段序列,与转录因子TF2结合,准确地识别转录的起始位置。
CAAT框:位于转录起始点上游-70~-80bp,也是一段保守序列,与转录因子CTF,其C端有激活转录的功能。
GC框:位于CAAT框两侧,顺序为GGCGGG,与转录因子SP1结合,N端有激活转录的作用。
10、增强子指能增强启动子转录活性的一段DNA序列。
作用特点:①通过启动子增强转录,明显提高转录效率;②具有远距离效应;③无明显方向性;④具有组织特异性。
增强子在任意位置有效。
11、终止子是给予RNA聚合酶转录终止信号的DNA保守序列。
大多真核生物为AATAAA,加上一段富含CG的回文序列。
12、DNA分子中发生单个碱基的改变,称为点突变。
一种嘌呤替换另一种嘌呤,或者一种嘌呤,或者一种嘧啶替换另一种嘧啶,叫做转换。
1.医学遗传学是用遗传学的理论和方法来研究人类病理性状的遗传规律及物质基础的学科2.遗传病的类型:单基因病多基因病染色体病体细胞遗传病线粒体遗传病3.遗传因素主导的遗传病单基因病和染色体病4.遗传和环境因素共同作用的疾病多基因病和体细胞遗传病5.环境因素主导的疾病非遗传性疾病6.遗传病由遗传因素参与引起的疾病,生殖细胞或受精卵的遗传物质(染色体或基因)异常所引起的疾病,具有垂直传递的特点7.染色质和染色体是同一物质在细胞周期不同时期的不同形态结构8.染色体的化学组成DNA 组蛋白RNA 非组蛋白9.染色体的基本结构单位是核小体10.染色质的类型:常染色质异染色质11.常染色质是间期核内纤维折叠盘曲程度小,分散度大,能活跃的进行转录的染色质特点是多位于细胞核中央,不易着色,折光性强12.异染色质是间期核内纤维折叠盘曲紧密,呈凝集状态,一般无转录活性的染色质特点:着色较深,位于细胞核边缘和核仁周围。
13.结构性异染色质是各类细胞的整个发育过程中都处于凝集状态的染色质14.兼性异染色质是特定细胞的某一发育阶段由原来的常染色质失去转录活性,转变成凝集状态的异染色质15.染色体的四级结构:一级结构:核小体;二级结构:螺线管;三级结构:超螺线管;四级结构:染色单体16.性别决定基因成为睾丸决定因子;Y染色体上有性别决定基因:SRY17.基因突变是指基因在结构上发生碱基对组成或排列顺序的改变18.点突变是基因(DNA链)中一个或一对碱基改变19.基因突变的分子机制:碱基替换移码突变动态突变20.碱基替换方式有两种:转换和颠换21.碱基替换可引起四种不同的效应:同义突变、错义突变、无义突变、终止密码突变22.移码突变:在DNA编码顺序中插入或缺失一个或几个碱基对从而使自插入或缺失的那一点以下的三联体密码的组合发生改变进而使其编码的氨基酸种类和序列发生改变23.整码突变:DNA链的密码子之间插入或缺失一个或几个密码子则合成肽链将增加或减少一个或几个氨基酸,但插入或丢失部位的前后氨基酸顺序不变动态突变:DNA分子中碱基重复序列或拷贝数发生扩增而导致的突变(脆性X综合症)24.系谱是指某种遗传病患者与家庭各成员相互关系的图解25.系谱分析法是通过对性状在家族后代的分离或传递方式来推断基因的性质和该性状向某些家系成员传递的概率26.先证者是指家系中被医生或研究者发现的第一个患病个体或具有某种性状的成员27.单基因遗传病:疾病的发生主要由一对等位基因控制,传递方式遵循孟德尔遗传率28.完全显性是指杂合子(Aa)患者表现出与显性纯合子(AA)患者完全相同的表型例如短指(趾)29.常染色体显性遗传病的典型系谱特点:①致病基因位于常染色体上,男女发病机会均等②连续几代都有患者(连续传代现象)③患者双亲必有一方是患者,但绝大多数为杂合子,患者的同胞中约有1/2患病④患者子女中,约有1/2患病5.双亲都无病时,儿女一般不患病,除了基因突变30.不完全显性也称半显性杂合子的表型介于显性纯合子与隐性纯合子的表型之间的遗传方式。
医学遗传学第一章绪论本章节重点:遗传病的概念、遗传病的类型一、医学遗传学的定义1、医学遗传学(medical genetics):是遗传学与医学相结合的一门学科,研究对象是与人类遗传有关的疾病,即遗传病(genetic disease)。
2、研究内容:遗传病的发生机理(Etiology)、传递方式(Passage)、诊断(Diagnosis)、治疗(Therapy)、预后(Prognosis)、再发风险(Recurrence)、预防方法(Preventive medicine),从而控制遗传病在一个家庭中的再发,降低在人群中的危害,增进人类的健康水平。
3、什么是遗传?Genetics is the study of genes, heredity, and variation in living organisms.二、遗传病的定义1、关于遗传病的一些误解:家族性疾病(familial disease)就是遗传病、先天性疾病(congenital disease)就是遗传病2、遗传病(genetic disease):遗传物质改变所导致的疾病。
包括单基因病、多基因病、染色体病、体细胞遗传病。
三、遗传病的类型1、单基因病(single gene disorder):如果一种遗传病的发病仅仅涉及一对基因,这个基因称为主基因(major gene),其导致的疾病称为单基因病。
常染色体显性(AD)遗传病、常染色体隐性(AR)遗传病、X 连锁显性(XD)遗传病、X连锁隐性(XR)遗传病、Y连锁遗传病、线粒体病2、多基因病(polygenic disease):一些常见的疾病或畸形有复杂的病因,既涉及遗传基础,又需要环境因素的作用才发病,也称为多因子病(multifactorial disease,MF)。
遗传基础不是一对基因,而是涉及到许多对基因,这些基因称为微效基因(minor gene)。
3、染色体病(chromosome disease):由于染色体数目或结构的改变而导致的疾病称为染色体病。
第一章1、遗传病可以分成哪几类?基因病,染色体病,体细胞遗传病三大类。
基因病又可以分为单基因和多基因病。
染色体病又可分为结构畸变和数目畸变导致的遗传病。
2、简述先天性疾病与遗传性疾病的关系?遗传性疾病指生殖细胞或受精卵的遗传物质发生异常所引起的疾病;先天性疾病指婴儿出生时就表现出来的疾病。
3、简述遗传性疾病与家族性疾病的关系?遗传性疾病指生殖细胞或受精卵的遗传物质发生异常所引起的疾病;家族性疾病指表现出有家族聚集现象的疾病。
4、单基因遗传病的研究策略有哪些?功能克隆,位置克隆,连锁分析。
5、多基因一窜并的研究策略有哪些?患病同胞对法,患者家系成员法,数量性状位点分析,生物统计模型拟合。
6、试述遗传病的主要特点?遗传病一般具有垂直传递,先天性,家族性等主要特点,在家族中的分布具有一定的比例:部分遗传病也可能因感染而发生。
7、试述疾病的发生与遗传因素和环境因素的相互关系。
①完全有遗传因素决定发病;②基本上有遗传决定,但需要环境中一定诱因的作用;③遗传因素和环境因素对发病都有作用,在不同的疾病中,在遗传度各不相同;④发病完全取决于环境因素,与遗传基本上无关。
第二章1、基因的功能主要表现在哪两个方面?①以自身为模板准确的复制出遗传信息;②通过转录和翻译,指导蛋白质合成,从而表达各种遗传性状。
2、DNA分子和RNA分子不同之处?①碱基组成不同②戊糖不同③分子结构不同3、试述DNA分子的双螺旋结构特点。
①反向平行双股螺旋②磷酸和脱氧核酸位于外侧,构成基本骨架,碱基位于内侧,以氢键相连③嘌呤=嘧啶,A与T配对G与C配对。
4、人类基因组中的功能序列可以分为哪几类?可以分为四类:单一基因,基因家族,假基因,串联重复基因。
5、DNA复制有哪些特性?互补性。
半保留性,反向平行性,不对称性,不连续性。
6、结构基因组学主要包括那几张图?遗传图,物理图,转录图,序列图。
第三章1、基因突变有哪些一般特性?多向性,可逆性,有害性,稀有性,随机性,可重复性。
有关遗传的知识点总结遗传学的基本概念1. 基因:是控制遗传信息传递和表达的基本单位。
基因由DNA组成,是细胞内的功能性DNA片段,负责编码生物个体的遗传特征。
2. 染色体:染色体是基因的携带者,由DNA和蛋白质组成。
人类细胞中有23对染色体,其中一对是性染色体,决定性别的遗传信息。
3. 遗传物质:指DNA和RNA,是生命体遗传信息的传递者。
遗传规律1. 孟德尔遗传规律:孟德尔通过豌豆杂交实验,提出了基因的分离定律、自由组合定律和统计定律,奠定了现代遗传学的基础。
2. 确定遗传规律:染色体对基因的定位和分离规律。
例如,性连锁遗传,杂合子的分离和重组等规律。
3. 随机性:遗传过程中会有一定的随机性,例如基因重组的概率,基因突变的出现等。
遗传变异1. 突变:指染色体结构或基因序列的突然改变,是生物进化和遗传变异的主要原因。
2. 重组:在减数分裂过程中,染色体的交叉互换导致新的基因组合产生。
3. 杂合子形成:由两个不同亲本的基因组合而成的个体称为杂合子,杂合子的出现增加了遗传物质的多样性。
应用遗传学的领域1. 生物育种:利用遗传学的知识进行植物和动物的育种,提高产量和品质。
2. 医学遗传学:研究人类基因的结构和功能,分析基因与疾病的关系,进行遗传病的诊断和预防。
3. 法医遗传学:利用DNA鉴定技术对犯罪嫌疑人进行身份鉴定,进行亲子关系的鉴定等。
4. 进化遗传学:研究物种的起源和进化过程,揭示生物多样性的形成机制。
遗传学的发展趋势1. 基因工程:利用分子生物学技术进行基因的修饰和操纵,生产优良的转基因生物。
2. 基因组学:研究生物的全基因组结构和功能,揭示基因组的结构和组织特征。
3. 个性化医学:根据个体的基因信息制定个性化的治疗方案,提高疾病治疗的效果。
4. 环境遗传学:研究环境因素对遗传变异的影响,揭示环境和遗传因素的相互作用关系。
总之,遗传学是生命科学中一个重要的研究领域,随着科学技术的不断发展,遗传学将为人类生活和健康带来更多好处。
第一章绪论无第二章遗传的细胞学基础1.常染色质:间期核内纤维折叠盘曲程度小、分散度大、能活跃地进行转录的染色质。
2.异染色质:间期核内纤维折叠盘曲紧密、呈凝聚状态,一般无转录活性的染色质,又分为结构异染色质和兼性异染色质两大类。
3.兼性异染色质:是在特定细胞的某一发育阶段由原来的常染色质失去转录活性,转变成凝缩状态的异染色质,二者的转化可能与基因的表达调控有关。
4. Lyon假说:(1)雌性哺乳动物体细胞内仅有一条X染色体有活性,其他的X染色体在间期细胞核中螺旋化而呈异固缩状态的X染色质,在遗传上失去活性。
(2)失活发生在胚胎发育的早期(人胚第16天);在此之前所有体细胞中的X染色体都具有活性。
(3)X染色体的失活是随机的,但是是恒定的。
5.剂量补偿:由于正常女性体细胞中的1条X染色体发生了异固缩,失去了转录活性,这样就保证了男女性个体X染色体上的基因产物在数量上基本一致,这称为X染色体的剂量补偿。
第三章遗传的分子基础1.外显子和内含子:真核生物的基因为断裂基因,即结构基因是不连续排列的,中间被不编码的插入序列隔开,编码序列称为外显子,编码序列中间的插入序列称为内含子。
2.单一序列和高度重复序列:单一序列是在一个基因组中只出现一次或少数几次,大多数编码蛋白质和酶类的基因即结构基因为单一序列。
重复序列是指在基因组中有很多拷贝的DNA序列,有些重复序列与染色体的结构有关。
3.基因突变:是指基因在结构上发生碱基对组成或排列顺序的改变。
4.转换和颠换:转换是指一个嘌呤被另一个嘌呤所取代,或是一个嘧啶被另一个嘧啶所取代。
颠换指嘌呤取代嘧啶,或嘧啶取代嘌呤。
5.同义突变:是指碱基替换使某一密码子发生改变,但改变前后的密码子都编码同一氨基酸,实质上并不发生突变效应。
6.错义突变:是指碱基替换导致改变后的密码子编码另一种氨基酸,结果使多肽链氨基酸种类和顺序发生改变,产生异常的蛋白质分子。
7.无义突变:是指碱基替换使原来为某一个氨基酸编码的密码子变成终止密码子,导致多肽链合成提前终止。
医学遗传学重点归纳第一章人类基因与基因组第一节、人类基因组的组成1、基因就是遗传信息的结构和功能单位。
2、基因组是是细胞内一套完整遗传信息的总和,人类基因组包含核基因组和线粒体基因组单拷贝序列串联重复序列按dna序列的拷贝数相同,人类基因组高度重复序列反向重复序列重复序列短分散核元件中度重复序列长分散核元件3、多基因家族是指由某一祖先经过重复和所变异产生的一组基因。
4、假基因就是基因组中存有的一段与正常基因相近但无法抒发的dna序列。
第二节、人类基因的结构与功能1、基因的结构包含:(1)蛋白质或功能rna的基因编码序列。
(2)就是抒发这些结构基因所须要的启动子、增强子等调控区序列。
2、割裂基因:大多数真核细胞的蛋白质编码基因是不连续的编码序列,由非编码序列将编码序列隔开,形成割裂基因。
3、基因主要由外显子、内含子、启动子、增强子、沉默子、终止子、隔绝子共同组成。
4、外显子大多为结构内的编码序列,内含子则不为编码序列。
5、每个内含子5端的两个核苷酸都是gt,3端的两个核苷酸都是ag,这种连接方式称为gt--ag法则。
6、外显子的数目等同于内含子数目提1。
7、启动子分成1类启动子(含有gc碱基对,调控rrna基因的编码)、2类启动子(具备tata盒特征结构)、3类启动子(包含a、b、c盒)。
第三节、人类基因组的多态性1、人类基因组dna多态性存有多种类型,包含单核苷酸多态性、填入\\缺位多态性、拷贝数多态性。
第二章、基因突变变异就是指生物体在一定内外环境因素的促进作用和影响下,遗传物质出现某些变化。
基因突变即可出现在生殖细胞,也可以出现在体细胞。
第一节、基因突变的类型一、碱基置换:就是指dna分子多核苷酸链中的某一碱基或碱基对被另碱基或碱基对转让、替代的变异方式,通常又称点变异。
包含:1、同义突变:替换发生后,虽然碱基组成发生变化,但新旧密码子具有完全相同的编码意义。
同义突变并不产生相应的遗传学表观效应。
第二章遗传的细胞学基础染色质(chromatin):间期细胞核内能被碱性染料染色的物质。
由DNA,组蛋白,非组蛋白及少量rna组成,是间期细胞遗传物质存在的形式。
染色质有利于遗传信息的复制和表达。
染色体(chromosome):在有丝分裂或减数分裂过程中,由染色质聚缩而成的棒状结构,是DNA螺旋化的的最高形式。
染色体有利于遗传物质的平均分配。
染色质的类型:常染色质:细胞间期核内纤维折叠盘曲程度小,分散度大,染色较浅且具有转录活性。
异染色质:细胞间期核内纤维折叠盘曲程度紧密,分散度小,呈凝集状态,染色较深且不具有转录活性。
异染色质包括:结构异染色质:指各类细胞的全部发育过程中都处于凝缩状态。
大多数位于着丝粒区、端粒区、次缢痕及y染色体长臂远端三分之二区段,一般不具有转录活性。
兼性异染色质:只在某些特定细胞类型或一定发育阶段,细胞原来的常染色质凝缩并丧失基因转录活性变为异染色质。
性染色质:是x/y染色体某一区段的DNA形成的特殊染色结构。
一定是异染色质。
x染色质:也叫x小体或Barr小体。
Lyon假说:实质:失活的x染色体。
特点:随机,永久,完全失活。
x染色质的数目等于x染色体的数目-1。
x染色体失活的意义--剂量补偿作用。
女性x连锁基因杂合子表达异常。
女性嵌合体。
后世补充:失活的X染色体并非整条,结构异常的X染色体优先失活。
y染色质:由y染色体长臂远端三分之二区段在男性间期细胞核中所形成的异染色质。
y染色体的数目等于y染色质的数目。
人类染色体的形态结构:着丝粒(主缢痕),长臂q,短臂p,端粒,副缢痕,随体。
人类染色体的类型:中央着丝粒,亚中央着丝粒,近端着丝粒。
核型:一个体细胞中的全部染色体按其大小,形态特征顺序排列所构成的图像。
核型分析:将待测细胞的核型进行染色体数目,形态特征的分析。
确定其是否与正常核型完全一致。
核型的记录格式(非显带):染色体总数+(,)+性染色体构成。
例如46,xx。
丹佛体制分组:A-G(形态依次减小)。
基础医学知识点一、细胞生物学细胞是生命的基本单位,包括原核细胞和真核细胞。
细胞膜是细胞的外包层,可以控制物质的进出。
细胞质是细胞内的液体,包含细胞器和细胞骨架。
细胞核是细胞中的控制中心,包含DNA和RNA。
细胞的分裂可以通过有丝分裂和无丝分裂两种方式进行。
二、遗传学遗传学研究基因的传递和表达。
基因是决定个体遗传特征的基本单位,由DNA组成。
基因型是指个体的基因组成,表现型是指基因在个体外部表现出来的特征。
遗传的方式有显性遗传和隐性遗传,常见的遗传病如血友病和先天性心脏病。
三、生理学生理学研究生命活动的机理和规律。
人体的生理学研究包括神经生理学、心血管生理学、呼吸生理学、消化生理学等。
神经系统是人体的控制中枢,包括中枢神经系统和周围神经系统。
心血管系统负责输送氧气和营养物质到身体各个部位。
呼吸系统负责氧气的吸入和二氧化碳的排出。
消化系统负责食物的摄取、消化和吸收。
四、病理学病理学研究疾病的发生、发展和变化。
疾病可以分为遗传性疾病和后天性疾病。
常见的病理学变化有炎症、肿瘤和坏死。
炎症是机体对损伤或感染的一种非特异性反应。
肿瘤是机体细胞的异常增殖,可以分为良性肿瘤和恶性肿瘤。
坏死是机体组织细胞受到严重损害而死亡。
五、药理学药理学研究药物的作用机制和效果。
药物可以分为药理学作用和毒理学作用。
药物的作用可以通过激活或抑制靶标分子来实现,常见的作用方式有激动剂、拮抗剂和酶抑制剂。
药物的剂量和给药途径会影响药物的药效和毒性。
六、微生物学微生物学研究微生物的分类、结构和功能。
微生物可以分为细菌、真菌、病毒和寄生虫。
细菌是一类单细胞的微生物,可以根据形状和染色性质进行分类。
真菌是一类多细胞的微生物,可以通过孢子繁殖。
病毒是一种非细胞的微生物,必须寄生在宿主细胞内才能繁殖。
寄生虫是一类多细胞的微生物,可以寄生在人体或动物体内。
七、免疫学免疫学研究机体对抗外界病原体的免疫反应。
机体的免疫系统包括先天性免疫和获得性免疫。
孟德尔遗传定律的细胞学基础1. 孟德尔与遗传的起源说到遗传学,大家脑海里最先蹦出来的肯定是那个留着小胡子、身材略微发福的老头——孟德尔。
没错,这位可爱的和尚可不是普通人,他可是遗传学的开创者。
孟德尔在19世纪中期,静悄悄地在修道院里做着实验,研究豌豆的遗传。
想象一下,那个时候没有显微镜、没有基因测序,他却靠着一颗好奇的心和耐心,揭开了遗传的神秘面纱。
1.1 豌豆的秘密他观察到,豌豆的性状就像魔术一样,可以一代代地传递下去。
什么颜色、什么形状,都是有迹可循的。
他把豌豆种子分成了几类,像是白色、紫色、圆形、皱巴巴的,结果发现有些性状是显性的,有些则是隐性的。
显性的性状就像是舞台上的主角,总是闪闪发光,而隐性的就像是后台的配角,偶尔冒个头,但总是要等到特定的机会才能上场。
1.2 规律的发现接着,孟德尔慢慢总结出几个规律,比如“分离定律”和“自由组合定律”。
分离定律就像是分手时的协议,双方各自带走一部分,最终形成新的组合;而自由组合定律则是说,性状组合就像是拼图,不同的拼块可以搭配出各种各样的图案。
这种规律简直让人拍手叫绝,让人觉得遗传真是个有趣的游戏。
2. 细胞的舞台好啦,光说孟德尔可不够,咱们还得聊聊细胞。
你可知道,所有的遗传信息其实都藏在细胞的核里,那可真是个“藏宝箱”。
细胞就像是一个小小的工厂,每天忙着生产蛋白质,而这些蛋白质又是遗传信息的执行者,负责把孟德尔的“剧本”演绎出来。
2.1 DNA的角色在细胞核里,有一种叫DNA的神奇物质,简直就是遗传的“字典”。
DNA的结构就像是一个双螺旋的楼梯,每一步都承载着遗传的信息。
就像一个超级复杂的程序,决定了你是高个子、矮个子,还是有一头秀发。
DNA中的基因就像是一个个小角色,默默地在剧本中发挥着自己的作用。
2.2 细胞分裂而细胞在繁殖的时候,就像是复制一份剧本。
细胞分裂分为两个主要阶段:有丝分裂和减数分裂。
有丝分裂就像是复制一本书,分成两本一模一样的;而减数分裂则是像在拍摄电影,拍摄出不同的角色,确保遗传多样性。