城市热力管网设计规定
- 格式:docx
- 大小:54.35 KB
- 文档页数:13
城市热力网设计规范引言城市热力网是一种将中央供热与城市热能资源高效利用相结合的能源供应系统。
设计规范的制定对于保障城市热力网的正常运行和安全运行具有重要意义。
本文档旨在为城市热力网的设计和建设提供指导和参考,明确设计规范的要求,并提出设计中需要注意的技术要点。
1. 设计原则1.1 热能源的快速、高效和可靠供应是城市热力网设计的基本原则。
1.2 设计应充分考虑城市供热需求的变化,具备一定的供热调控能力。
1.3 设备的选型应综合考虑设备性能、运行成本和安全性能等因素。
1.4 设计应满足环保要求,减少能源消耗和污染物排放。
2. 设计要求2.1 热力网应能满足城市的最大供热负荷,并预留一定的冗余能力。
2.2 设计时应考虑未来的扩展需求,预留一定的设备及管网的容量。
2.3 热源的选址应尽量靠近供热区域,减少输运损耗和热能浪费。
2.4 管网的设计应合理布局,最小化管道长度,减少热能损失和压力损失。
2.5 管道的材质应具备耐腐蚀、耐高温和耐压等性能,确保运行安全可靠。
2.6 设计应充分考虑环境因素和气候条件对热力网的影响,采取相应的设计措施。
2.7 设计应满足国家和地方的相关标准和规范要求。
3. 设计流程3.1 需求分析:根据城市的供热需求和热能资源状况,确定热力网的规模和布局。
3.2 方案设计:综合考虑热源、热负荷、输热介质和管道布局等因素,制定供热方案。
3.3 管道设计:根据供热方案,设计管道的布局、直径和材质等。
3.4 设备选型:根据热负荷和运行参数,选择适当的锅炉、换热器和泵等设备。
3.5 安全设计:考虑热力网的安全性和防冻性能,制定相应的安全措施。
3.6 施工图设计:根据设计结果,绘制详细的施工图纸,并明确施工要求。
4. 技术要点4.1 热源的选型应综合考虑热能资源的稳定性、供热能力和经济性。
4.2 管网设计时应优化管道布局,减少压力损失和热能损失。
4.3 管道的材质应符合相关标准和规范要求,确保运行安全可靠。
城市热力网设计规范第一章总则第1.0.1条为节约能源,保护环境,促进生产,方便人民生活,加速发展我国城市集中供热事业,提高集中供热工程设计水平,特制订本规范。
第1.0.2条本规范适用于以热电厂或区域锅炉房为热源热泵新建或改建的城市热力网管道、中断泵站和用户热力站等工艺系统设计。
其它型式热源的城市热力网设计可参考本规范。
供热介质设计参数适用范围:一、热水热力网压力小于或等于2.5MPa,温度小于或等于200°C;二、蒸汽热力网压力小于等于1.6MPa, 温度小于或等于350°C。
第1.0.3条城市热力网设计应符合城市规划,做到技术先进,经济合理、安全适用,并注意美观。
第1.0.4条城市热力网设计除执行本规范外,在地震、湿陷性黄土、膨胀土等地区进行排水和煤气热力网工程设计时,尚应遵守现行的《室外给水排水和煤气热力工程抗震设计规范》TI32,《湿陷性黄土地区建筑规范》TJ25,《膨胀土地区建筑技术规范》GBJ112以及国家和有关专业部门颁发的有关标准、规范的规定。
第二章耗热量第一节热负荷第2.1.1条热力网支线及用户热力站设计时,采暖、通风、空调及生活热水热负荷,应采用经核实的建筑物设计热负荷。
第2.1.2条没有建筑物设计热负荷资料时,或热力网初步设计阶段,民用建筑的采暖、通风、空调及生活热水热负荷,可按下列方法计算:一、采暖热负荷Qn=q·A10-3 (2.1.2-1)式中Qn—采暖热负荷,kw;q—采暖热指标,W/m,可按表2.1.2-1取用;A—采暖建筑物的建筑面积,m2。
采暖热指标推荐值表2.1..2-1建筑物类型住宅居住区综合学校办公医院托幼旅馆商店食堂餐厅影剧院大礼堂体育馆热指标(W/m2)58-64 60-67 60-80 65-80 60-70 65-80 115-140 95-115 115-165注:热指标中包括约5%的管网损失在内。
二、通风、空调冬季新风加热热负荷Qtk=k1Q`n (2.1.2-2)式中Qtk—通风、空调新风加热热负荷,KW;Q`n—通风、空调建筑物的采暖热负荷,KW;k1—计算建筑物通风、空调新风加热热负荷的系数,可取0.3-0.5.三、采暖期生活热水平均热负荷Qsp=0.001163(mv(tr-t1))/T (2.1.2-3)式中Qsp—采暖期间生活热水平均热负荷,KW;m—用热水单位数(住宅为人数,公共建筑为每日人次数,床位数等);v —用热水单位每日热水量,L/d,按《建筑给水排水设计规范》GBJ15选用;tr—生活热水温度°C,按热水用量标准中规定的温度取用;t1—冷水计计算温度,取最低月平均水温,°C,无资料时按《建筑给水排水设计规范》GBJ15取用。
城市热力网设计规范第一章总则第二章耗热量第三章供热介质第四章热力网型式第五章供热调节第六章水力计算第七章管网布置与敷设第八章管道机械强度计算第九章中继泵站与热力站第十章保温与防腐涂层第十一章城市热力网的供配电第十二章热工检测与控制第六章水力计算第一节设计流量第二节水力计算第三节压力工况第四节水泵选择第一节设计流量第6.1.1条采暖热负荷热水热力网设计流量应按下式计算:G n =3.6 [Qn/c(t1-t2)](6.1.1)式中 Gn—采暖热负荷热力网设计流量,(T/h);Qn—采暖热负荷,KW;C—水的比热容,KJ/Kg·°C,可取C=4.1868KJ/Kg·°Ct1—采暖室外计算温度下的热力网供水温度,°C;t2—采暖室外计算温度下的热力网采暖系统回水温度,°C。
第6.1.2条通风、空调热负荷热水热力网设计流量应按下式计算:Gtk =3.6Qtk/c(t1t-t2t) (6.1.2)式中Gtk—通风、空调热负荷热力网设计流量,(T/h);Qtk—通风、空调热负荷,KW;C—水的比热容,KJ/Kg·°C,可取C=4.1868KJ/Kg·°Ct1t—冬季通风、空调相应室外计算温度下的热力网供水温度,°C;t2t—冬季通风、空调相应室外计算温度下的热力网采暖系统回水温度,°C。
第6.1.3条闭式热力网生活热水热负荷热力网设计流量,应根据用户加热器的连接方式按下列方法计算:一、与采暖系统并联连接1、平均流量G sp =3.6Qsp/c(t`1-t`2)(6.1.3-1)式中Gsp——生活热水热负荷热力网设计流量,(T/h);Qn——采暖期生活平均热负荷,KW;C——水的比热容,KJ/Kg·°C,可取C=4.1868KJ/Kg·°Ct`1——闭式热力网采暖开始时的供水温度,°C;t`2——生活热水加热器上相应的回水温度,°C。
《城市热力网设计规范》供热网设计的基本原则:1.安全性原则:供热网络应保证供热管道和设备的结构安全,避免发生爆炸、泄漏等意外事故;电控设备、管网应设置监测和报警系统,及时发现和处理问题。
2.高效性原则:供热网络应最大限度地利用能源,提高供热效率,减少能源浪费;应根据城市发展情况和居民热负荷需求,合理设置热源和热力站布局,确保供热网的热平衡。
3.稳定性原则:供热网络应稳定可靠,能够适应气候变化和用能需求的变化,确保居民正常供热;同时,应具备良好的自动化控制系统,及时调节热源和管网的运行参数。
4.经济性原则:供热网络应综合考虑投资和运营成本,选择经济实用的供热方式和技术;应采用合理规模的热源和热力站,避免过度投资和过剩能力,同时保证供热质量。
主要内容:1.供热网络规划:根据城市规划和能源需求,确定供热网络的总体布局,包括选择热源和热力站的位置、热力站之间的管道布置等。
供热网络应与城市基础设施相衔接,不影响城市建设和交通运行。
2.管道设计:供热管道应符合一定的设计原则,如选择合适的管材、管径和厚度,合理设置管道的支撑和防腐措施。
供热管道的设计应考虑供热量、压力损失和泄漏等因素,确保管网的运行安全和稳定。
3.热力站设计:热力站是供热网络的核心设施,应合理选择热力站的规模和数量,确保满足供热负荷需求;热力站的设计应包括设备选择、管道布局、热交换和控制系统等,以实现高效、稳定的供热。
4.自动化控制系统设计:供热网络应配备自动化控制系统,实时监测和控制供热过程,保证热源和管网的运行参数稳定。
控制系统应具备远程监控、故障报警和数据分析等功能,提高供热网络的可操作性和管理效率。
5.安全监测和报警系统设计:供热网络的安全监测和报警系统应包括温度、压力、流量等参数的实时监测设备,以及故障报警和紧急处理机制。
系统应能及时发现和处理供热网的异常情况,保障供热网络的安全。
6.能源利用和节能设计:供热网应采用高效能源设备,如余热回收装置、低温供热技术等,以提高能源利用效率;同时,供热网络还应考虑节能措施,如供热管道的保温、回水温度的控制等,减少能源损耗。
城市热力网设计规范(一)总则1.0.1 为节约能源,保护环境,促进生产,改善人民生活,发展我国城市集中供热事业,提高集中供热工程设计水平,制定本规范。
1.0.2 本规范适用于供热热水介质设计压力小于或等于2.5MPa,设计温度小于或等于200℃;供热蒸汽介质设计压力小于或等于1.6MPa,设计温度小于或等于350℃的下列热力网的设计:1 由供热企业经营,以热电厂或区域锅炉房为热源,对多个用户供热,自热源至热力站的城市热力网;2 城市热力网新建、扩建或改建的管道、中继泵站和热力站等工艺系统设计。
1.0.3 城市热力网设计应符合城市规划要求,做到技术先进、经济合理、安全适用,并注意美观。
1.0.4 在地震、湿陷性黄土、膨胀土等地区进行城市热力网设计时,除执行本规范外,尚应遵守现行的《室外给水排水和煤气热力工程抗震设计规范》(TJ 32)、《湿陷性黄土地区建筑规范》(GBJ 25)、《膨胀土地区建筑技术规范》(GBJ 112)以及国家相关强制性标准的规定。
3 耗热量3.1 热负荷3.1.1 热力网支线及用户热力站设计时,采暖、通风、空调及生活热水热负荷,宜采用经核实的建筑物设计热负荷。
3.1.2 当无建筑物设计热负荷资料时,民用建筑的采暖、通风、空调及生活热水热负荷,可按下列方法计算:1 采暖热负荷Qh=qhA·10-3 (3.1.2—1)式中Qh—采暖设计热负荷(kW);qh—采暖热指标(W/m2),可按表3.1.2—1取用;A—采暖建筑物的建筑面积(m2)。
2 通风热负荷QV=KVQh (3.1.2—2)式中QV——通风设计热负荷(kW);Qh——采暖设计热负荷(kw);KV——建筑物通风热负荷系数,可取0.3~0.5。
3 空调热负荷1) 空调冬季热负荷Qa=qaA·10 -3 (3.1.2—3)式中Qa——空调冬季设计热负荷(kW);qa ——空调热指标(W/m2),可按表3.1.2-2取用;A——空调建筑物的建筑面积(m2)。
城市热力网设计规范城市热力网设计规范是为城市建设和热力工程建设提供指导,确保设计和建设符合相关标准和要求,提供安全、高效、可靠的供热服务。
下面是城市热力网设计规范的主要内容:一、总体设计原则:1.满足城市的供热需求,保证供热面积和热负荷的匹配。
2.合理布局,确保供热站点间的均衡热负荷分配。
3.采用高效的管线网络布置,降低热能传输损失。
4.考虑未来的发展和扩展需求,预留足够的接口和容量。
二、热源站设计要求:1.热源站的选址要考虑燃料来源、环保要求和供热距离等因素。
2.热源站的设计要满足热负荷的需求,同时保证供热的安全和稳定。
3.选择合适的锅炉技术和燃料,达到高效节能的要求。
4.建设完善的燃气供应和储备系统,确保供热的可靠性。
三、管线设计要求:1.采用合适的材料,确保管线的耐高温、耐压和抗腐蚀性能。
2.根据热负荷和传输距离,选择合适的管径和管网布置。
3.严格遵守国家和地方的技术标准和规范,确保工程质量和安全性。
4.合理设置附件设施,如热力井、阀门、疏水阀等,方便维护和管理。
四、供热站设计要求:1.供热站的选址和布局要考虑到供热范围和供热站点的分布。
2.选择合适的换热器设备,保证供热的效率和稳定性。
3.建设完善的管网连接系统,确保供热的连续性和可靠性。
4.设置合理的监控和管理设备,确保供热的安全和管理的便利。
五、用户端设计要求:1.用户端的管道设计要满足供热和室内热负荷的需求,确保室温的舒适性。
2.论证合理的供热方式,如直供直返、直供直回等,既满足供热需求,又节约能源。
3.建设完善的室内供热设备和系统,如暖气片、壁挂炉等,确保供热的效果和安全。
4.提供完善的热量计量和计费系统,确保供热的公平和合理。
综上所述,城市热力网设计规范是为确保城市供热工程的安全、高效和可靠,提供了一系列的设计和施工要求。
只有在设计和建设过程中严格按照规范进行,才能够实现节能减排、环保可持续的供热目标。
城市供热规范供热管网和热力站的设计要求随着城市化进程不断加速,城市供热系统的建设变得越来越重要。
供热管网和热力站作为城市供热系统的核心组成部分,其设计要求至关重要。
本文将介绍城市供热规范对供热管网和热力站的设计要求,以确保供热系统的安全、高效运行。
1. 供热管网的设计要求1.1 管网布局:供热管网应根据城市的实际情况进行布局,合理规划主干干线、支线和终端用户之间的连接方式。
主干干线应尽量少穿越重要建筑物和交通干线,以减少对城市运行的影响。
1.2 管径设计:供热管网的管径应根据供热负荷和输配距离进行合理选择。
一般来说,较长的输配距离和大的供热负荷需要较大的管径,以保证供热能力和补偿压力损失。
1.3 管材选择:供热管网的管材应具有良好的耐压、耐腐蚀和导热性能。
常用的管材包括钢管、玻璃钢管和预隔热管等。
根据具体的工程要求和经济性,选择合适的管材以确保系统的可靠性和运行效果。
1.4 管道绝热:为了减少散热和能量损失,供热管道应进行绝热处理。
常用的绝热材料包括聚氨酯泡沫、硅酸铝和硅酸钙等。
绝热层材料应具有良好的绝热性能和耐久性,以保证供热管网的热损失率在规范范围内。
2. 热力站的设计要求2.1 布置和功能划分:热力站应根据城市布局和热源位置合理布置,便于供热管网的连接和管线的维护。
热力站应具备供热、检修和控制等功能,并设有相应的加热设备、泵站和阀门等。
2.2 热源选择:热力站的热源可以采用锅炉、燃气轮机、余热发电机组等不同形式。
根据热负荷和环保要求,选择合适的热源设备,以保证供热系统的可靠性和高效性。
2.3 热力站的安装与运行:热力站的设备安装应符合相关标准和施工规范,确保设备的可靠性和安全性。
热力站应设有相应的监测系统,实时监测热源和管网的运行状态,及时采取措施进行调整和维护。
2.4 热力站的自动控制:热力站应配备先进的自动控制系统,实现对供热水温和压力等参数的精确调节和控制。
自动控制系统应具备良好的稳定性和可靠性,以提高供热系统的运行效率和安全性。
城市热力管网设计规定压力管道设计技术规定(城市热力管网)23引用标准下列标准中的条款通过本标准的引用而成为本标准的条款。
凡是不注日期的引用标准,其最新版本适用于本规定。
工业设备及管道绝热工程设计规范GB 50264建筑设计防火规范GB 50016城市供热管网工程施工及验收规范CJJ 28城市热力管网设计规范CJJ 34城市供热管网质量检验、评定CJJ/T 81城市供热系统安全运行技术规程CJJ/T 884供热介质选择3.1 对民用建筑物采暖、通风、空调及生活热水热负荷供热的城市热力管网应采用水作供热介质。
3.2 同时对生产工艺热负荷和采暖、通风、空调、生活热水负荷供热的城市热力管网供热介质按下列原则确定:a)当生产工艺热负荷为主要负荷,且必须采用蒸汽供热时,应采用蒸汽作供热介质;b)以水为供热介质能够满足生产工艺需要(包括在用户处转换为蒸汽),且技术经济合理时,应采用水作为供热介质;c) 当采暖、通风、空调热负荷为主要负荷、生产工艺又必须采用蒸汽供热,经技术经济比较认为合理时,可采用水和蒸汽两种供热介质。
5热力管网型式的确定4.1 热水热力管网型式的确定4.1.1 热水热力管网宜采用闭式双管制。
4.1.2 以热电厂为热源的热水热力管网,同时有工艺、采暖、通风、空调、生活热水多种热负荷,在生产工艺热负荷与采暖热负荷所需供热介质参数相差较大,或季节性热负荷占总热负荷比例较大,且技术经济合理时,可采用闭式多管制。
4.1.3 当热水热力管网具有水处理费用较低的丰富的补给水资源且技术经济合理时,可采用开式热力管网。
4.1.4 当热水热力管网具有与生活热水热负荷相适应的廉价低位能热源且技术经济合理时,可采用开式热力管网。
4.1.5 开式热水热力管网在生活热水热负荷足够大且技术经济合理时,可不设回水管。
4.2 蒸汽热力管网型式的确定4.2.1 蒸汽热力管网宜采用单管制。
4.2.2 当各用户间所需蒸汽参数相差较大或季节性热负荷占总热负荷比例大且技术经济合理时,蒸汽热力管网可采用双管或多管制。
城镇供热管网设计规范城镇供热管网设计规范城镇供热管网是指为城市居民提供供热服务的管道网络系统。
为了确保供热系统的运行安全、高效和可靠,需要制定一系列的设计规范。
以下是城镇供热管网设计规范的一些要点:1.管道布局规范:管道布局应尽量缩短热量传输路径,减少传热损失。
主要管道应设置在地下,避免与其他公共设施冲突。
管道之间的距离和间距应符合相关标准,以便进行维护和修理。
2.管道选择规范:管道材料应符合国家相关标准,具有耐高温、耐压、耐腐蚀等性能。
在选择材料时,还需要考虑管道的使用寿命、运行成本和环境影响等因素。
3.热力站规范:热力站是城镇供热管网的重要组成部分,设计时需要考虑热力站的规模、位置和布局。
在热力站设计中,还需要合理设置过滤设备、增压设备、阀门等,以确保热量传输的稳定和可靠。
4.管道绝热规范:为了减少能量损失,供热管道需要进行绝热处理。
绝热层材料应具有良好的绝热性能和耐久性。
绝热层的厚度应根据管道的直径、工作温度和环境条件等因素进行合理设计。
5.管道排水规范:在设计管道时,需要考虑管道的排水和防冻问题。
管道应有适当的坡度和排水装置,以便排除管道内部的积水和气体。
在寒冷地区,还需要采取防冻措施,以防止管道冻裂。
6.安全防护规范:供热管网应符合国家相关安全规范和标准要求,包括管道的承载能力、抗震性能、防火性能等。
管道的就近安装应避免与易燃物、易爆物等设备和管道接触。
7.监测和维护规范:供热管网应配备相应的监测设备,可以实时监测热力站、管道和用户的运行状态。
定期进行巡检和维护,及时发现和处理问题,确保供热系统的正常运行。
总之,城镇供热管网设计规范是确保供热系统正常运行和供热服务质量的重要保证。
设计师应遵循相关规范,采用合理的设计和施工技术,以确保供热系统的安全、高效和可靠。
城市热力网设计规范(五)类型:供暖标准规范8.2.9 地上敷设热力网管道穿越行人过往频繁地区,管道保温结构下表面距地面不应小于2.0m;在不影响交通的地区,应采用低支架,管道保温结构下表面距地面不应小于0.3。
8.2.10 管道跨越水面、峡谷地段时,在桥梁主管部门同意的条件下,可在永久性的公路桥上架设。
管道架空跨越通航河流时,应保证航道的净宽与净高符合《内河通航标准》(GB l39)的规定。
管道架空跨越不通航河流时,管道保温结构表面与50年一遇的最高水位垂直净距不应小于0.5m。
跨越重要河流时,还应符合河道管理部门的有关规定。
河底敷设管道必须远离浅滩、锚地,并应选择在较深的稳定河段,埋设深度应按不妨碍河道整治和保证管道安全的原则确定。
对于一至五级航道河流,管道(管沟)应敷设在航道底设计标高2m以下;对于其他河流,管道(管沟)应敷设在稳定河底1m以下。
对于灌溉渠道,管道(管沟)应敷设在渠底设计标高0.5m以下。
管道河底直埋敷设或管沟敷设时,应进行抗浮计算。
8.2.11 热力网管道同河流、铁路、公路等交叉时应垂直相交。
特殊情况下,管道与铁路或地下铁路交叉不得小于60度角;管道与河流或公路交叉不得小于45度角。
8.2.12 地下敷设管道与铁路或不允许开挖的公路交叉,交叉段的一侧留有足够的抽管检修地段时,可采用套管敷设。
8.2.13 套管敷设时,套管内不应采用填充式保温,管道保温层与套管间应留有不小于50mm的空隙。
套管内的管道及其他钢部件应采取加强防腐措施。
采用钢套管时,套管内、外表面均应做防腐处理。
8.2.14 地下敷设热力网管道和管沟应有一定坡度,其坡度不应小于0.002。
进入建筑物的管道宜坡向干管。
地上敷设的管道可不设坡度。
8.2.15 地下敷设热力网管道的覆土深度应符合下列规定:1 管沟盖板或检查室盖板覆土深度不应小于0.2m。
2 直埋敷设管道的最小覆土深度应考虑土壤和地面活荷载对管道强度的影响并保证管道不发生纵向失稳。
五、城镇供热管网设计规范》(CJJ34-2010) 30本规范适用于供热热水介质设计压力小于或等于2.5MPa,设计温度小于或等于200℃;供热蒸汽介质设计压力小于或等于1、6MPa,设计温度小于或等于350℃得下列城镇供热管网得设计:1 以热电厂或锅炉房为热源,自热源至建筑物热力入口得供热管网;2 供热管网新建、扩建或改建得管线、中继泵站与热力站等工艺系统。
热力网以热电厂或区域锅炉房为热源,自热源经市政道路至热力站得供热管网、(2、5MPa,200℃)2.1。
10 街区热水供热管网自热力站或用户锅炉房、热泵机房、直燃机房等小型热源至建筑物热力入口,设计压力小于或等于1.6MPa,设计温度小于或等于95℃,与热用户室内系统连接得室外热水供热管网。
2。
1.11无补偿敷设直管段不采取人为得热补偿措施得直埋敷设方式。
当无建筑物设计热负荷资料时,民用建筑得采暖、通风、空调及生活热水热负荷,可按下列方法计算:采暖热指标推荐值同02版区别,区分了未采取节能措施得热指标与采取节能措施得热指标。
热指标得供热管网热损失按5%考虑当凝结水回收时,用户热力站应设闭式凝结水箱并应将凝结水送回热源。
当热力网凝结水管采用无内防腐得钢管时,应采取措施保证凝结水管充满水凝结水管道宜采用具有防腐内衬、内防腐涂层得钢管或非金属管道。
非金属管道得承压能力与耐温性能应满足设计技术要求、热力网管沟内不得穿过燃气管道。
8。
2.21当热力网管沟与燃气管道交叉得垂直净距小于300mm时,必须采取可靠措施防止燃气泄漏进管沟。
8.5。
1 热力网管道干线、支干线、支线得起点应安装关断阀门。
10.1.3 站房设备间得门应向外开、热水热力站当热力网设计水温大于100℃,站房长度大于12m时,应设2个出口。
蒸汽热力站均应设置2个出口、安装孔或门得大小应保证站内需检修更换得最大设备出入。
多层站房应考虑用于设备垂直搬运得安装孔。
11。
3.5 阀门、法兰等部位宜采用可拆卸式保温结构、11.4。
城镇供热管网设计规范五、城镇供热管网设计规范》(CJJ34- ) 30本规范适用于供热热水介质设计压力小于或等于 2.5MPa,设计温度小于或等于200℃;供热蒸汽介质设计压力小于或等于1.6MPa,设计温度小于或等于350℃的下列城镇供热管网的设计:1 以热电厂或锅炉房为热源,自热源至建筑物热力入口的供热管网;2 供热管网新建、扩建或改建的管线、中继泵站和热力站等工艺系统。
热力网以热电厂或区域锅炉房为热源,自热源经市政道路至热力站的供热管网。
(2.5MPa,200℃)2.1.10 街区热水供热管网自热力站或用户锅炉房、热泵机房、直燃机房等小型热源至建筑物热力入口,设计压力小于或等于 1.6MPa,设计温度小于或等于95℃,与热用户室内系统连接的室外热水供热管网。
2.1.11无补偿敷设直管段不采取人为的热补偿措施的直埋敷设方式。
当无建筑物设计热负荷资料时,民用建筑的采暖、通风、空调及生活热水热负荷,可按下列方法计算:采暖热指标推荐值同02版区别,区分了未采取节能措施的热指标和采取节能措施的热指标。
热指标的供热管网热损失按5%考虑当凝结水回收时,用户热力站应设闭式凝结水箱并应将凝结水送回热源。
当热力网凝结水管采用无内防腐的钢管时,应采取措施保证凝结水管充满水凝结水管道宜采用具有防腐内衬、内防腐涂层的钢管或非金属管道。
非金属管道的承压能力和耐温性能应满足设计技术要求。
热力网管沟内不得穿过燃气管道。
8.2.21 当热力网管沟与燃气管道交叉的垂直净距小于300mm时,必须采取可靠措施防止燃气泄漏进管沟。
8.5.1 热力网管道干线、支干线、支线的起点应安装关断阀门。
10.1.3 站房设备间的门应向外开。
热水热力站当热力网设计水温大于100℃,站房长度大于12m时,应设2个出口。
蒸汽热力站均应设置2个出口。
安装孔或门的大小应保证站内需检修更换的最大设备出入。
多层站房应考虑用于设备垂直搬运的安装孔。
11.3.5 阀门、法兰等部位宜采用可拆卸式保温结构。
城镇供热管网设计规范城镇供热管网设计规范是指对城镇供热管网设计过程中所需要遵循的规定和要求。
其目的是保证供热管网系统的安全、可靠和经济运行,提高供热效率,节约能源,减少对环境的影响。
一、总体设计原则1.按照“合理布局、紧凑配置、集中供热、分散热源”的原则进行设计。
2.优先采用地下管廊、管沟等隐藏敷设方式,确保管网的安全运行。
3.考虑到未来的扩建和改造,应预留足够的应急和备用能力。
二、管线布置设计1.根据城市规划和供热需求,合理确定管道走向和布置。
2.管线应尽量避免穿越建筑物,交通干线等敏感区域。
3.管线布置应尽量保持平整,避免大坡度和弯曲,减少流阻和损失。
三、管道材料选择1.管道材料应符合国家标准和行业规范。
2.优先选用耐腐蚀、耐高温、无毒、无味的材料,确保热力传输的安全和健康。
3.管道绝热性能要好,选择导热系数低的材料,减少热量损失。
四、管网压力设计1.根据供热区域、管道长度、流量等参数确定管网的设计压力。
2.管网的最大设计压力应能满足最不利的工况要求,保证系统的稳定运行。
五、管线敷设设计1.根据地形、地貌、地质条件等因素,选择合理的敷设方式。
2.采用埋地敷设时,应保证管道埋深符合相关规定,减轻地表影响。
3.管线敷设应考虑到与其他设施的关联,避免与其他管线、电缆等交叉干扰。
六、防腐设计1.根据管道材料的特点和环境条件,确定相应的防腐蚀措施。
2.内外壁衬塑料、涂层等材料,保护管道免受腐蚀影响。
3.对于特殊条件下的管道,如高温、高压等,应采取加固和防腐措施。
七、热力站设计1.根据供热范围、热负荷和热源情况,合理确定热力站的数量和规模。
2.热力站的布置应方便管理和运维,合理利用现有的城市规划和建筑设施。
3.热力站的主要设备和系统应符合国家标准和行业规范,确保供热的安全和稳定。
综上所述,城镇供热管网设计规范是确保城镇供热系统安全、可靠和经济运行的重要保障。
只有按照规范要求进行设计,才能有效提高供热效率,节约能源,减少对环境的影响,提高市民的生活质量。
压力管道设计技术规定(城市热力管网)为了节约能源,保护环境,促进生产,改善人民生活,发展我国城市集中供热事业,提高集中供热工程设计水平和城市热力管道设计质量,特制定本文件。
1 范围本标准规定了城市热力管网的设计本标准适用于由供热企业经营,以热电厂或区域锅炉房为热源,对多个用户供热,自热源至热力站的城市热力管网;也适用于城市热力管网新建、扩建或改建的管道、中继泵站和热力站等工艺系统管道设计;也适用于热水热力管网供热介质设计压力小于或等于2.5MPa,设计温度小于或等于200℃;蒸汽热力管网供热介质设计压力小于或等于1.6MPa,设计温度小于或等于350℃。
2引用标准下列标准中的条款通过本标准的引用而成为本标准的条款。
凡是不注日期的引用标准,其最新版本适用于本规定。
工业设备及管道绝热工程设计规范 GB 50264建筑设计防火规范 GB 50016城市供热管网工程施工及验收规范 CJJ 28城市热力管网设计规范 CJJ 34城市供热管网质量检验、评定 CJJ/T 81城市供热系统安全运行技术规程 CJJ/T 883供热介质选择3.1 对民用建筑物采暖、通风、空调及生活热水热负荷供热的城市热力管网应采用水作供热介质。
3.2 同时对生产工艺热负荷和采暖、通风、空调、生活热水负荷供热的城市热力管网供热介质按下列原则确定:a)当生产工艺热负荷为主要负荷,且必须采用蒸汽供热时,应采用蒸汽作供热介质;b)以水为供热介质能够满足生产工艺需要(包括在用户处转换为蒸汽),且技术经济合理时,应采用水作为供热介质;c) 当采暖、通风、空调热负荷为主要负荷、生产工艺又必须采用蒸汽供热,经技术经济比较认为合理时,可采用水和蒸汽两种供热介质。
4热力管网型式的确定4.1 热水热力管网型式的确定4.1.1 热水热力管网宜采用闭式双管制。
4.1.2 以热电厂为热源的热水热力管网,同时有工艺、采暖、通风、空调、生活热水多种热负荷,在生产工艺热负荷与采暖热负荷所需供热介质参数相差较大,或季节性热负荷占总热负荷比例较大,且技术经济合理时,可采用闭式多管制。
4.1.3 当热水热力管网具有水处理费用较低的丰富的补给水资源且技术经济合理时,可采用开式热力管网。
4.1.4 当热水热力管网具有与生活热水热负荷相适应的廉价低位能热源且技术经济合理时,可采用开式热力管网。
4.1.5 开式热水热力管网在生活热水热负荷足够大且技术经济合理时,可不设回水管。
4.2 蒸汽热力管网型式的确定4.2.1 蒸汽热力管网宜采用单管制。
4.2.2 当各用户间所需蒸汽参数相差较大或季节性热负荷占总热负荷比例大且技术经济合理时,蒸汽热力管网可采用双管或多管制。
4.2.3 蒸汽热力管网的热负荷分期增长时,可采用双管或多管制。
4.2.4 蒸汽供热系统应创造条件采用间接换热系统,当被加热介质泄露不会产生危害时,其凝结水应全部回收并设置凝结水管道。
4.2.5 当凝结水回收时,用户热力站应设闭式凝结水箱,用水泵将凝结水送回热源。
4.3 多热源供热的确定4.3.1 供热建筑面积大于1000m2的供热系统应采用多热源供热,各热源热力干线应连通。
在技术经济合理时,热力管网干线可连接成环状管网。
4.3.2 对供热可靠性有特殊要求的用户,有条件时应由两个热源供热,或者设自备热源。
5热力管网布置与管道敷设5.1 管网布置5.1.1 城市热力管网的布置应在城市规划的指导下,考虑热负荷分布,热源位置,与各种地上、地下管道及构筑物、园林绿地的关系和水文、地质条件等多种因素,经技术经济比较确定。
5.1.2 城市热力管网管道的位置应符合下列规定:a)城市道路上的热力管网管道应平行于道路中心线,并宜敷设在车行道以外的地方,同一条管道应只沿街道的一侧敷设;b)穿过工厂区的城市热力管网管道应敷设在易于检修和维护的位置;c) 通过非建筑区的热力管网管道应沿公路敷设;d)热力管网管道选线时宜避开土质松软地区、地震断裂带、滑坡危险地带以及高地下水位区等不利地段。
5.1.3管径等于或小于300mm的热力管网管道,可以穿过建筑物的地下室或用开槽施工法自建建筑物下专门敷设的通行管沟内穿过。
用暗挖法施工穿过建筑物时不受管径限制。
5.1.4 热力管网管道可以和自来水管道、电压10KV以下的电力电缆、通讯线路、压缩空气管道、压力排水管道和重油管道一起敷设在综合管沟内。
但热力管道应高于自来水管道和重油管道,并且自来水管道应做到绝热层和防水层。
5.1.5 地上敷设的城市热力管网管道可以和其他管道敷设在同一管架上,但应便于检修,且不得架设在腐蚀性介质管道的下方。
5.2 管道敷设5.2.1 管道敷设形式应符合以下要求:a) 城市街道上和居民区的热力管网管道宜采用地下敷设。
当地下敷设困难时,可采用地上敷设,但设计时应注意美观;b) 工厂区的热力管网管道,宜采用地下敷设;c) 热水热力管网管道地下敷设时,应优先采用直埋敷设;d) 热水或蒸汽管道采用管沟敷设时,应首选不通行管沟敷设;e) 热水或蒸汽管道穿越不允许开挖检修的地段时,应采用通行管沟敷设;当采用通行管沟困难时,可采用半通行管沟敷设;f) 蒸汽管道采用管沟敷设困难时,可采用保温性能良好、防水性能可靠、保护管耐腐蚀的预制保温管直埋敷设,其设计寿命应不低于25年。
5.2.2 管沟敷设有关尺寸应符合表5-1的规定5.2.3 工作人员经常进入的通行管沟应有照明设备和良好的通风。
人员在管沟内工作时,空气温度不得超过40℃。
通行管沟应设事故人孔。
设有蒸汽管道的通行管沟,事故人孔间距应不大于100m;热水管道的通行管沟,事故人空间距应不大于400m。
对于整体混凝土结构的通行管沟,每隔200m宜设一个安装孔。
5.2.4 地下敷设热力管网管道的管沟外表面,直埋敷设热水管道或地上敷设管道的保温结构表面与建筑物、构筑物、道路、铁路、电缆、架空电线和其他管道的最小水平净距、垂直净距应符合表5-2的规定。
表5-2热力管网管道与建筑物(构筑物)或其他管道的最小距离注2:当热力管网管道的埋设深度大于建(构)筑物基础深度时,最小水平净距应按土壤内摩擦角计算确定;注3:热力管网管道与电力电缆平行敷设时,电缆处的土壤温度与月平均土壤自然温度比较,全年任何时候对于电压10kV的电缆不高于10℃,对于电压35kV-110kV的电缆不高于5℃时,可减小表5-2中所列的距离;注4:在不同深度并列敷设各种管道时,各种管道间的水平净距不应小于其深度差;注5:热力管网管道检查室、方形补偿器壁龛与燃气管道最小水平净距应符合表5-2的规定;注6:在条件允许时,可采取有效技术措施并经有关单位同意后,可以减小表5-2中规定的距离,或采用埋深较大的暗挖法、盾构法施工。
5.2.5 地上敷设热力管网管道穿越行人过往频繁地区,管道保温结构下表面距地面不应小于2.0m;在不影响交通的地区,应采用低支架,管道保温结构下表面距地面不应小于0.3m。
5.2.6 燃气管道不得进入热力管网管沟。
当自来水,排水管道或电缆与热力管网管道交叉必须穿入热力管网管沟时,应加套管或用厚度不小于100mm的混凝土防护层与管沟隔开,同时不得妨碍热力管道的检修及地沟排水。
套管应伸出管沟以外,每侧不应小于1.0m。
热力管网管道与燃气管道交叉,当垂直净距小于300mm时,燃气管道应加套管,套管两端应超出管沟1.0m以上。
5.2.7 热力管网管道进入建筑物或穿过构筑物时,管道穿墙处应封堵严密。
5.2.8 地上敷设的热力管网管道同架空输电线或电气化铁路交叉时,管道的金属部分应接地,接地电阻应不大于10欧姆。
5.2.9 热力管网管道跨越水面,峡谷地段时,在桥梁主要部门同意的条件下,可在永久性的公路桥上架设。
5.2.10 热力管网管道架空跨越通航河流时,应保证航道的净宽与净高符合《全国内河通航标准》的规定;当热力管网管道架空跨越不通航河流时,管道保温结构表面与50年一遇的最高水位垂直净距不应小于0.5m5.2.11 河底敷设热力管网管道必须远离浅滩、锚地、选择在较深的稳定河段,埋设深度应按不妨碍河道整治和保证管道安全的原则确定:a)对于一至五级航道河流,管道(管沟)应敷设在航道底设计标高2.0m以下;b) 对于其他河流,管道(管沟)应敷设在稳定河底1.0m以下;c) 对于灌溉渠道,管道(管沟)应敷设在渠底设计标高0.5m以下;d) 管沟敷设或直埋敷设管道河底敷设时,应进行抗浮计算。
5.2.12 热力管网管道同河流、铁路、公路等交叉时应垂直交叉。
特殊情况下,管道与铁路或地下铁路交叉不得小于60°角;管道与河流或公路交叉不得小于45°角。
5.2.13 地下敷设的热力管网管道与铁路或不允许开挖的公路交叉,交叉段的一侧留有足够的抽管检修地段时,可采用套管敷设。
5.2.14 热力管网管道套管敷设时,套管内不应采用填充式保温,管道保温层与套管间应留有不小于50mm的空隙。
套管内的管道应采取加强级防腐措施;采用钢套管时,套管内外均应做防腐处理。
5.2.15 地下敷设热力管网管道和管沟应设坡度,其坡度不小于0.002,进入建筑物的管道坡向干管。
地上敷设的管道可不设坡度。
5.2.16 地下敷设热力管网管道的覆土深度应符合以下规定:a)管沟盖板或检查室盖板覆土深度不应小于0.2m。
b)直埋敷设管道的最小覆土深度应考虑土壤和地面活荷载对管道强度的影响并保证管道不发生纵向失稳。
应满足CJJ/T81的规定要求。
5.3 阀门的设置5.3.1 热力管网管道干线、支干线、支线的起点应安装关断阀门。
5.3.2 热水热力管网干线应装设分段阀门。
分段阀门的间距宜为:输送干线2000m-3000m;输配干线1000m-1500m。
蒸汽热力管网可不设分段阀门。
5.3.3 多热源供热系统热源间的连通干线,环状管网环线的分段阀应采用双向密封阀门。
5.3.4 工作压力大于或等于1.6MPa且公称大于或等于500mm的管道上的闸阀应设旁通阀。
旁通阀的直径为阀门直径的十分之一。
5.3.5 公称直径大于或等于500mm的阀门,宜采用电动驱动装置。
5.3.6 热水、凝结水管道的高点应安装放气装置;低点应安装放水装置。
5.3.7 蒸汽管道的低点和垂直升高的管段前应设起动疏水和经常疏水装置。
同一坡向的管段,顺坡情况下每隔400m-500m,逆坡时每隔200m-300m应设起动疏水和经常疏水装置。
5.3.8 公称直径大于或等于500mm热水热力管网干管在低点、垂直升高管段前、分段阀门前宜设阻力小的永久性除污装置。
5.4 管道热补偿5.4.1热力管网管道受温度的变形应充分利用管道的转角管段进行自然补偿,当选用管道补偿器时,应根据敷设条件采用维修工作量小、工作可靠和价格较低的补偿器。