第二章各向异性材料的应力应变关系解读
- 格式:pdf
- 大小:2.09 MB
- 文档页数:28
各向异性材料应力和变形特性分析各向异性材料是指具有不同的物理性质和力学性质的材料。
与各向同性材料相比,各向异性材料的应力和变形特性更加复杂和多样化。
了解和分析各向异性材料的应力和变形特性对于材料的设计和工程应用至关重要。
本文将介绍各向异性材料的应力和变形特性及其相关分析方法。
首先,我们需要了解各向异性材料的基本概念。
各向异性是指材料在不同方向上具有不同的物理性质和力学性质。
这些不同的性质可以通过晶体结构和分子排列方式来解释。
晶体结构的对称性和分子排列的有序性决定了材料在不同方向上的物理性质和力学性质的异同。
各向异性材料的一个常见例子是单晶材料,其晶体结构呈现出明显的对称性差异。
了解各向异性材料的应力和变形特性是从事材料设计和工程应用的重要基础。
在实际应用中,我们经常面对各向异性材料的力学性能问题,如应力分布、应变变化和材料的耐久性。
因此,理解和预测各向异性材料在受力过程中的行为对于材料工程师和设计师至关重要。
在分析各向异性材料的应力和变形特性时,我们通常使用弹性力学理论。
弹性力学理论可以描述材料在受力过程中的应力分布和变形特性。
应力是指材料中的力在单位面积上的作用效果。
变形是指材料在受力作用下产生的形状或体积的变化。
弹性力学理论可以通过建立数学模型来描述各向异性材料的应力和变形行为。
在弹性力学理论中,我们经常使用应力张量和应变张量来描述各向异性材料的应力和变形特性。
应力张量是描述材料中应力分布的矩阵。
它可以用来计算各向异性材料在不同方向上的应力值。
应变张量是描述材料中变形情况的矩阵。
它可以用来计算各向异性材料在不同方向上的应变值。
为了更好地分析各向异性材料的应力和变形特性,我们可以使用各向异性材料力学模型。
这些模型基于各向异性材料的晶体结构和分子排列方式,可以用来预测材料在受力过程中的行为。
常见的各向异性材料力学模型包括弹性模型、塑性模型和粘弹性模型等。
弹性模型是最常用的各向异性材料力学模型之一。
第二章 弹性力学基本理论及变分原理弹性力学是固体力学的一个分支。
它研究弹性体在外力或其他因素(如温度变化)作用下产生的应力、应变和位移,并为各种结构或其构件的强度、刚度和稳定性等的计算提供必要的理论基础和计算方法。
本章将介绍弹性力学的基本方程及有关的变分原理。
§2.1小位移变形弹性力学的基本方程和变分原理在结构数值分析中,经常用到弹性力学中的定解问题及与之等效的变分原理。
现将它们连同相应的矩阵形式的张量表达式综合引述于后,详细推导可参阅有关的书籍。
§2.1.1弹性力学的基本方程的矩阵形式弹性体在载荷作用下,体内任意一点的应力状态可由6个应力分量表示,它们的矩阵表示称为应力列阵或应力向量111213141516222324252633343536444546555666x x y y z z xy xy yz yz zx zx D D D D D D D D D D D D D D D D D D D D D σεσεσετγτγτγ⎧⎫⎡⎤⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎪⎪=⎢⎥⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎩⎭⎣⎦⎩⎭ (2.1.1) 弹性体在载荷作用下,将产生位移和变形,弹性体内任意一点位移可用3个位移分量表示,它们的矩阵形式为[]T u u v u v w w ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭(2.1.2)弹性体内任意一点的应变,可由6个应变分量表示,应变的矩阵形式为x y Tz xy z xy yz zx xy yz zx εεεσεεεγγγγγγ⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎡⎤==⎨⎬⎣⎦⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭(2.1.3)对于三维问题,弹性力学的基本方程可写成如下形式 1 平衡方程0xy x zx x f x y z τστ∂∂∂+++=∂∂∂ 0xy y zy y f xyzτστ∂∂∂+++=∂∂∂0yz zx zz f x y zττσ∂∂∂+++=∂∂∂ x f 、y f 和z f 为单位体积的体积力在x 、y 、z 方向的分量。
我所认识的应力与应变关系经过分析,我们已经得知弹塑性问题中有15个未知量,9个方程,因此它是一个超静定问题,为了求解这一问题必须引入应力应变,它们之间一定存在必然的联系,这种联系就是我们所了解的应力应变关系。
应力应变关系即所谓的本构关系,是物质力学特性的反映,通常用本构方程来描述。
影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、、z 、、、只有一个不为零,六个应变分量x y xy yz zx εεεγγγ、、z 、、、只有一个自由变化,应力应变关系图1-1。
图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=,初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。
如果在进入塑性阶段卸载后再加载,例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥OA ,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。
此后再继续加载,应力应变关系沿ODEF 变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。
若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bauschinger 效应。
图1-1、应力应变关系图从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。
各向异性材料的应力分析材料科学与工程领域中,各向异性材料是一类具有不同物理性质和力学行为的材料。
相比于各向同性材料,各向异性材料在应力分析中具有更加复杂的特性。
本文将探讨各向异性材料的应力分析方法和相关理论。
首先,我们需要了解各向异性材料的基本特性。
各向异性材料是指其物理性质在不同方向上具有差异的材料。
这种差异可以体现在材料的弹性模量、热膨胀系数、导热性等方面。
在应力分析中,各向异性材料的主要特点是其应力-应变关系不再是简单的线性关系,而是具有非线性和非均匀性。
对于各向异性材料的应力分析,最常用的方法是使用张量分析。
张量是一种具有多个分量的数学对象,可以用来描述各向异性材料的物理性质和力学行为。
在应力分析中,我们通常使用应力张量和应变张量来描述材料的应力和应变状态。
应力张量是一个3x3的矩阵,表示材料内部的应力分布情况。
在各向异性材料中,应力张量的各个分量在不同方向上可能具有不同的取值。
例如,在一个各向异性材料中,沿x方向的应力分量可能与沿y方向和z方向的应力分量不同。
通过求解应力张量,我们可以得到材料内部的应力分布情况,从而进一步分析材料的强度和稳定性。
应变张量是一个3x3的矩阵,表示材料内部的应变分布情况。
在各向异性材料中,应变张量的各个分量也可能在不同方向上具有不同的取值。
通过求解应变张量,我们可以得到材料的变形情况,进而分析材料的可塑性和变形能力。
在实际的应力分析中,我们通常需要求解各向异性材料的弹性常数。
弹性常数描述了材料的弹性性质,包括杨氏模量、剪切模量和泊松比等。
对于各向异性材料,弹性常数的取值与材料的晶体结构和分子排列方式有关。
求解弹性常数是各向异性材料应力分析的关键步骤,可以通过实验测量或者计算模拟的方法得到。
除了张量分析和弹性常数的求解,各向异性材料的应力分析还涉及到一些其他的方法和理论。
例如,有限元分析是一种常用的数值计算方法,可以用来模拟各向异性材料的应力分布。
该方法通过将材料划分为许多小的单元,然后求解每个单元的应力和应变,最终得到整个材料的应力分布情况。
各向异性材料的应力应变关系各向异性材料是指在力学性能方面存在明显差异的材料,其应力应变关系是描述这种材料在外力作用下的变形规律。
与各向同性材料不同,各向异性材料的力学性能在不同的方向上有所不同,体现为不同的应力应变关系。
本文将介绍各向异性材料的应力应变关系,并探讨其应用。
各向异性材料的应力应变关系通常通过弹性常数矩阵来描述,即Hooke定律。
弹性常数矩阵是一个6x6的矩阵,其元素代表了材料在不同方向上的刚度。
根据物理对称性的不同,各向异性材料可以分为各种不同类型,包括各向异性、正交各向异性、轴对称各向异性和平面应力各向异性等。
以各向异性材料中最简单的铜单晶为例,其结构具有高度的各向异性。
在外力作用下,铜单晶沿着特定方向上的应力和应变不同于其他方向。
其应力应变关系可以通过线性弹性理论来描述。
假设应力和应变之间的关系为线性,即应力和应变之间满足线性比例关系,如下所示:σ=Cε其中,σ为应力矢量,C为弹性常数矩阵,ε为应变矢量。
对于各向异性材料,弹性常数矩阵C是一个对称矩阵,其中包含了各向异性材料在不同方向上的弹性模量和剪切模量等信息。
对于各向异性材料,应力和应变之间的关系不再是一维的线性关系,而是一个多维的关系。
因此,需要使用弹性常数矩阵来准确描述材料的力学性能。
通常,各向异性材料通过试验测定弹性常数矩阵。
测定的方法可以有很多种,包括单轴加载、多轴加载和声波测量等。
通过得到的弹性常数矩阵,可以确定各向异性材料在不同方向上的应力应变关系。
在工程实践中,各向异性材料的应力应变关系具有广泛的应用。
例如,在材料设计中,可以通过调整材料的各向异性来实现特定的力学性能。
各向异性材料也被广泛应用于复合材料、纤维材料和生物材料等领域。
在这些领域中,材料的各向异性通常被用来提高其强度、韧性和耐久性等性能。
总之,各向异性材料的应力应变关系描述了材料在外力作用下的变形规律。
通过弹性常数矩阵来准确描述材料的力学性能。
各向异性材料的应力应变关系在材料设计和工程实践中具有重要的应用。
我所认识的应力和应变关系在这之前我认识了应力和应变的概念、性质以及从静力学和几何学的角度出发所得到的平衡方程和几何方程。
但是平衡方程仅反映了应力分量和外力分量的关系;几何方程仅建立了位移分量和应变分量的关系。
而谈到应力与应变的关系,对于可变形固体,在弹塑性力学中,在外力的作用下,其将发生变形。
变形分为两个阶段,弹性阶段和塑性阶段。
在弹性阶段,发生的弹性变形可以完全恢复,它是一个可逆过程。
此时,应力与应变的关系是一一对应的,是单值函数关系。
而在塑性阶段,所发生的塑性变形是不可以恢复的,是不可逆过程。
相对应的,塑性阶段的应力应变的关系是非线性关系,不存在一一对应的关系。
我所认识的应力和应变的关系就是本构关系。
本构关系也称为物理关系,它反应的是可变形材料的固有属性,实质上是一组联系力学参数和运动参数的方程式,也就是我们所说的本构方程。
在说应力与应变的关系之前,先说一下本构关系的相关影响因素,包括材料、环境、加载类型、以及加载速度。
即,),,(T t f εσ=。
另外,有各种各样的本构系,比如:弹性本构关系、塑性本构关系、粘弹性本构关系、粘塑性本构关系、各向同性本构关系、各向同性本构关系等等。
简单情况的本构关系:应力和应变的关系包括弹性和塑性的应力应变关系。
我们所说的是线性弹性体的应力应变关系,又分为简单应力状态和复杂应力状态。
在简单拉伸情况下,理想弹性材料的应力和应变的关系很简单,就是材料力学中的胡克定律: 。
而在塑性阶段,应力应变之间不再是简单的胡克定律,而是 。
另外,简单拉伸情况下的卸载定律是 。
在后继弹性阶段,也就是卸载后重新加载的材料会继续发生新的塑性变形,在此时的屈服称为后继屈服,相应的屈服点称为后继屈服点。
初始屈服和后继屈服的不同是:第一,应力的数值不一样,后继屈服的应力值更大;第二,屈服点的个数不一样。
初始屈服点只有一个,而后继屈服点会有好多个,则其对应的应力值也会有很多个。
最后,在卸载全部载荷后进行反向加载比如说把拉伸改成压缩,此时会产生Bauschinger 效应。
第四章应力和应变关系一. 内容介绍前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。
由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。
应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。
对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。
这是材料的固有特性,因此称为物理方程或者本构关系。
对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。
分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。
本章的任务就是建立弹性变形阶段的应力应变关系。
二. 重点1. 应变能函数和格林公式;2. 广义胡克定律的一般表达式;3. 具有一个和两个弹性对称面的本构关系;4. 各向同性材料的本构关系;3. 材料的弹性常数。
知识点应变能原理应力应变关系的一般表达式完全各向异性弹性体正交各向异性弹性体本构关系弹性常数各向同性弹性体应变能格林公式广义胡克定理一个弹性对称面的弹性体本构关系各向同性弹性体的应力和应变关系应变表示的各向同性本构关系§4.1 弹性体的应变能原理学习思路:弹性体在外力作用下产生变形,因此外力在变形过程中作功。
同时,弹性体内部的能量也要相应的发生变化。
借助于能量关系,可以使得弹性力学问题的求解方法和思路简化,因此能量原理是一个有效的分析工具。
本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。
根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。
探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。
如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。
因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。
材料力学线弹性材料知识点总结材料力学是工程学科中的重要分支,它研究物质在外力作用下的力学性质和变形行为。
其中,线弹性材料是一类具有线弹性特性的材料,其力学性能相对简单,因此被广泛应用于各个领域。
在本篇文章中,将对线弹性材料的相关知识进行总结和归纳。
I. 弹性模量弹性模量是衡量材料抵抗单位面积应力的能力,常用符号为E。
根据胡克定律,线弹性材料的应力和应变之间存在线性关系,即应力等于弹性模量与应变的乘积:σ = Eε。
II. 线弹性材料的应力应变关系线弹性材料的应力应变关系可以用杨氏模量和泊松比来描述。
杨氏模量表示材料在拉伸或压缩时的刚度,泊松比则表示材料在轴向受力时的横向收缩程度。
1. 杨氏模量杨氏模量是衡量材料单位应变下的应力增量,常用符号为E。
一般情况下,材料越硬,杨氏模量越大,说明材料具有较高的刚度。
2. 泊松比泊松比是衡量材料在轴向受力时横向收缩程度的比例系数,常用符号为ν。
泊松比的取值范围在0和0.5之间,其中,当材料不发生体积变化时,泊松比为0.5;当材料完全不会发生横向收缩时,泊松比为0。
III. 应力应变曲线应力应变曲线是反映材料在外力作用下应力和应变的关系的曲线图。
对于线弹性材料,应力应变曲线呈线性关系,分为弹性阶段和屈服阶段。
1. 弹性阶段在弹性阶段,材料的应变与应力之间存在线性关系,即材料会随着外力的撤离而恢复最初的形状。
该阶段的应力应变曲线为直线,呈比例关系。
2. 屈服阶段当材料受到较大的外力时,会超出其弹性限度,材料将出现应力和应变不再成比例的情况,即开始进入屈服阶段。
屈服阶段的应力应变曲线为弯曲线,曲线上的点称为屈服点。
IV. 各向同性与各向异性各向同性和各向异性是描述材料力学性质的两个重要概念。
1. 各向同性材料各向同性材料是指材料的性质在各个方向上具有相同的特性。
这意味着,在任何方向上施加的外力和应变对材料的响应都是相同的。
大部分金属和合金都属于各向同性材料。
2. 各向异性材料各向异性材料是指材料的性质在不同的方向上具有差异。
我所认识的应力与应变的关系我所认识的本构关系可以从三个不同的受力条件下进行分析,第一是在弹性变形下的应力与应变的关系,第二是在屈服条件下的应力与应变的关系,第三是在塑性条件下的应力与应变的关系,而对应力与应变的关系的研究也可以归结为对本构关系的研究。
首先,弹塑性力学分别从静力学和几何学的角度出发,导出了平衡方程的和几何方程,这些方程均与物体的材料性质(物理性质)无关,因而适用于任何连续介质。
但仅仅依靠平衡方程和几何方程来解决实际中的工程问题是不够的。
由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的联系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的关系,所以平衡方程与几何方程式两类完全相互独立的方程,他们之间还缺乏必要的联系。
对于所求解的问题来讲,因为您未知量的数目多于任何一类方程的个数,所以无法利用这两类方程求的全部未知量。
平衡方程:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂222222000t w Z z y x t v Y z y x t u X z y x z zy zx yz y yx xz xy x ρσττρτστρττσ (1) 几何方程:⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=x w z u z w z v y w y v y u x v x u zx z yz y xy x γεγεγε (2) 为了求解具体的力学问题,还必须引进一些关系式,这些关系式即所谓的本构关系。
本构关系反映可变形体材料的固有特此那个,故也称为物理关系,它实际上是一组联系力学参数和运动学参数的方程式,即所谓的本构方程。
本构方程实际上就是一组反映可变形体材料应力和应变之间关系的方程。
在单向应力状态下,理想弹性材料的应力和应变之间的关系极其简单。
这就是在材料力学中寻出的如下形式的胡克定律:x x E εσ= (3)胡克定律是一个实验定律,在式(1.1)中的E 是材料性质有关的弹性常数,称为弹性模量和杨氏模量。