直升飞机飞行原理
- 格式:docx
- 大小:37.08 KB
- 文档页数:2
直升飞机飞行原理直升机是一种垂直起降的飞行器,它可以在空中悬停、向前、向后、向左、向右飞行,还可以进行定点停留、低高度飞行、复杂地形涂毒、运输货物等,是一种非常灵活多变的飞行器。
那么,直升机是如何实现这种“绕不过去”的飞行方式的呢?下面,我们来了解一下直升机的飞行原理。
一、空气动力学基础不论是飞机还是直升机,它们都要靠空气动力学来实现飞行。
空气动力学是研究空气对物体的作用的学科。
在空气中,物体移动时,空气会对其产生阻力、升力和推力等作用。
在直升机的飞行中,最主要的就是升力了。
升力是空气对直升机产生的向上的支持力,使其能够腾空而起。
而产生升力的关键,则是由于在直升机的旋转叶片上产生了一个向下的气流,这个气流将气体压缩,使其速度加快,压力降低,形成低压区。
而直升机上方的空气则形成高压区,从而产生了升力。
二、基本构造1.机身部分:直升机的主体部分,其中装置有驾驶室、乘客和货物舱、发动机等。
2.旋翼部分:直升机最重要的部分,由主旋翼和尾旋翼组成。
3.主旋翼:是直升机上的最重要的部分,主要产生升力和推进力。
它是一组大型的可旋转叶片,可以轮流地在上下、左右和前后方向调整。
4.尾旋翼:又称为方向舵,主要负责平衡和转向直升机。
5.起落架:支撑直升机在地面或者水面上的装置。
三、飞行原理我们知道,飞机在飞行中通过翼面产生升力和推力来维持飞行。
而直升机则是通过旋翼来产生升力和推力,从而可以实现垂直起降和各种方向的移动。
正常飞行时,主旋翼的旋转速度越快,升力就越大。
主旋翼在旋转时还产生了空气流,对于尾旋翼而言,这种空气流就相当于一束强劲的风,从而也可以产生升力和推力,平衡直升机并控制飞行方向。
直升机的旋翼不仅可以产生升力和推力,还可以调整飞行方向。
当主旋翼向右旋转时,直升机就会向左飞行,反之亦然。
而尾旋翼则可以扭转调整直升机的飞行方向。
在直升机的飞行过程中,由于旋翼旋转的高速气流形成较大的后向力,所以需要加装平衡重量使其平衡。
直升机与普通飞机区别及飞行简单原理:不可否认,直升机和飞机有些共同点。
比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。
(1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。
(2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。
根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。
(3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。
(4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。
三、平衡分析(对单旋翼式):(1)直升飞机的大螺旋桨旋转产生升力平衡重力。
直升飞机的桨叶大概有2—3米长,一般有5叶组成。
普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。
直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。
在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。
(2)直升飞机的横向稳定。
因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。
而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。
同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。
四、能量方式分析。
根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。
在低速流动的空气中,参与转换的能量只有压力能和动能。
一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。
直升机垂直起降飞机原理直升机和垂直起降飞机是两种不同的飞行器,它们的原理也有所不同。
直升机原理:直升机的垂直起降能力是通过旋翼实现的。
直升机的旋翼由数个叶片构成,通过旋转产生升力,使得直升机能够在空中悬停、垂直起降和进行低速飞行。
旋翼的旋转由发动机提供动力,通过传动装置将动力传递给旋翼系统。
当旋翼旋转时,叶片上的升力和推力共同作用于直升机,使其升空或降落。
直升机通过叶片的改变来控制飞行方向和姿态。
直升机包括一个主旋翼和通常有一个小旋翼的尾旋翼。
主旋翼控制直升机的提升和前进,通过改变旋翼的旋转速度、旋翼的倾斜角度和位于旋翼外缘的副翼来达到这个目的。
尾旋翼用于抵消主旋翼的扭矩,以及提供方向控制。
直升机的优势是能够在狭小的地面区域进行垂直起降,非常适合在城市、山区等地形复杂的环境中使用。
但直升机的飞行速度相对较慢,推重比也较低。
垂直起降飞机原理:垂直起降飞机有多种不同的设计和原理,其中最典型的是喷气式垂直起降飞机(如F-35闪电II战斗机和哈里尔跳跃舰载机)和垂直起降无人机(如MQ-9嗜肉兽)。
这些飞机通常通过喷射推力来实现垂直起降,而不需要旋翼。
喷气式垂直起降飞机的原理是通过具有矢量喷口的引擎实现。
这种引擎可以改变喷气口的方向和角度,从而产生推力并改变飞机的方向。
垂直起降过程中,喷气式引擎的喷气口会朝下方喷气,产生向上的推力,使飞机悬停或升空。
在水平飞行时,喷气口会向后喷气,产生向前的推力,推动飞机前进。
垂直起降无人机通常采用叠加推力原理。
这种飞机通常配备多个无人机引擎和推进器,在起降阶段,多个引擎同时运行,产生垂直向上的推力。
在水平飞行时,引擎和推进器可以转向并运作,产生向前方的推力。
垂直起降飞机的优势是可以在短时间内从停机状态迅速起飞,具有快速反应能力和机动性。
然而,与直升机相比,它们通常需要更长的跑道或起降区域,且对机场设施和地面支持的要求更高。
总体而言,直升机和垂直起降飞机是两种不同原理的飞行器,它们分别适用于不同的任务需求和特定的操作环境。
直升机的空气动力学原理直升机的升力产生主要依靠主旋翼产生的升力,主旋翼又由主旋翼桨叶和发动机组成。
主旋翼桨叶一般采用三片叶片,通过主轴旋转,在空气中产生升力。
主旋翼桨叶在运动过程中,相对于直升机机身而言,具有迎风运动和顺风返流运动。
主旋翼桨叶迎风运动时,椭圆形的桨叶在进入迎风段时,攻角较大,形成向上的升力。
在桨叶前半部,流速较大,产生的升力大;桨叶后半部流速减小,升力减小。
此时,通过调节桨叶的攻角和旋转速度,使得桨叶的合力与重力平衡,从而实现直升机的悬停。
主旋翼桨叶顺风返流运动时,桨叶相对于机身运动速度逐渐增大,攻角减小。
在桨叶前半部,流速变小,产生的升力减小;桨叶后半部流速增加,升力增加。
此时,通过调节桨叶的攻角和旋转速度,使得升力与飞机的质量平衡,实现直升机的前进飞行。
此外,直升机的侧倾和横滚运动也是通过调节主旋翼桨叶的迎风运动和顺风返流运动来实现的。
侧倾运动是通过改变主旋翼桨叶的迎风运动时的攻角大小和方向,使得主旋翼桨叶产生侧向的力矩,从而使直升机发生侧倾运动。
横滚运动是通过改变主旋翼桨叶的迎风运动和顺风返流运动的相对大小,使得主旋翼桨叶的升力中心发生移动,从而使直升机发生横滚运动。
除了主旋翼的升力产生外,直升机还利用尾旋翼产生的反扭矩以及水平尾翼产生的水平稳定力来保持平稳飞行。
尾旋翼通过产生方向相反的旋转力矩,抵消主旋翼产生的旋转力矩,从而保持直升机的平衡。
水平尾翼通过产生向下的力来平衡主旋翼产生的俯仰力矩,从而保持直升机的水平稳定。
总结一下,直升机的空气动力学原理主要是通过主旋翼桨叶的旋转运动产生升力,通过调节桨叶的攻角和旋转速度来控制升力的大小和方向,从而实现直升机的悬停、垂直起降和平稳飞行。
同时,借助尾旋翼和水平尾翼产生的力矩和稳定力来保持直升机的平衡和稳定。
直升机的空气动力学原理是复杂且精细的,对于设计和控制直升机的飞行具有重要意义。
直升飞机制造原理及优缺点讲义一、直升机与普通飞机区别及飞行复杂原理:不可否认,直升机和飞机有些共同点。
比如,都是飞行在大气层中,都重于空气,都是应用空气动力的飞行器,但直升机有诸多独有特性。
〔1〕直升机飞行原理和结构与飞机不同飞机靠它的固定机翼发生升力,而直升机是靠它头上的桨叶〔螺旋桨〕旋转发生升力。
〔2〕直升机的结构和飞机不同,主要由旋翼、机身、发起机、起落装置和操纵机构等局部组成。
依据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。
〔3〕单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼发生的反作用力矩和控制直升机的转弯。
〔4〕直升机最显眼的中央是头上窄长的大刀式的旋翼,普通由2~5片桨叶组成一副,由1~2台发起机带动,其主要作用:经过高速的旋转对大气施加向下的庞大的力,然后应用大气的反作用力〔相当与直升飞机遭到大气向上的力〕使飞机可以颠簸的悬在空中。
二、平衡剖析〔对单旋翼式〕:〔1〕直升飞机的大螺旋桨旋转发生升力平衡重力。
直升飞机的桨叶大约有2—3米长,普通有5叶组成。
普通飞机是靠翅膀发生升力下降的,而直升飞机是靠螺旋桨转动,拨动空气发生升力的。
直升飞机下降时,螺旋桨越转越快,发生的升力也越来越大,当升力比飞机的重量还大时,飞机就下降了。
在飞行中飞行员调理高度时,就只需经过改动大螺旋桨旋转的速度就可以了。
〔2〕直升飞机的横向动摇。
由于直升飞机假设只要大螺旋桨旋,那么依据动量守衡,机身就也会旋转,因此直升飞机就必需要一个可以阻止机身旋转的装置。
而飞机尾部正面的小型螺旋桨就是起到这个作用,飞机的左转、右转或坚持动摇航向都是靠它来完成的。
同时为了不使尾桨碰到旋翼,就必需把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。
三、能量方式剖析。
依据能量守恒定律可知:能量既不会消逝,也不会无事生非,它只能从一种方式转化成为另一种方式。
在低速活动的空气中,参与转换的能量只要压力能和动能。
直升机滑跑起飞原理
直升机的滑跑起飞原理涉及到空气动力学和机械工程的知识。
直升机的起飞方式与固定翼飞机有很大的不同,它依靠旋翼产生升力来实现起飞。
首先,直升机的滑跑起飞过程包括以下几个步骤:
1. 开启发动机,直升机的起飞过程首先需要启动发动机,使其旋翼开始旋转。
2. 增加旋翼转速,为了产生足够的升力,直升机需要逐渐增加旋翼的转速,这通常通过调节发动机的油门来实现。
3. 制动解除,当旋翼转速达到所需数值后,直升机可以解除制动,开始滑行。
4. 滑跑,直升机在地面上进行滑跑,以增加空气动力学效应,减小所需的升力。
5. 起飞,当达到一定速度并产生足够的升力时,直升机可以腾
空起飞。
在滑跑起飞过程中,旋翼的工作原理起到了关键作用。
旋翼通
过改变螺旋桨的角度,可以产生升力和推力。
当旋翼旋转时,叶片
受到空气动力学力的作用,产生升力。
同时,通过改变叶片的角度,还可以产生推力,推动直升机前进。
此外,直升机的滑跑起飞还涉及到飞行员的技术和操作。
飞行
员需要根据飞机的速度、气流情况和机身姿态来控制飞机,使其顺
利起飞。
总的来说,直升机的滑跑起飞原理是通过旋翼产生升力和推力,以及飞行员的操作技术来实现的。
这涉及到空气动力学、机械工程
和飞行原理等多个领域的知识。
飞行原理直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。
旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。
旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。
直升机主旋翼反扭力的示意图没有一定的反扭力措施,直升机就要打转转 / 尾桨是抵消反扭力的最常见的方法直升机抵消反扭力的方案有很多,最常规的是采用尾桨。
主旋翼顺时针转,对机身就产生逆时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。
抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见 / 典型的贝尔 407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。
有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。
各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。
尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。
极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆。
尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。
为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性。
尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制。
直升飞机螺旋桨原理直升飞机是一种可以垂直起降的飞行器,而它的垂直起降能力主要依赖于螺旋桨的工作原理。
螺旋桨是直升飞机的动力装置,它通过产生推力来提供飞机的升力和推进力。
下面我们将详细介绍直升飞机螺旋桨的工作原理。
螺旋桨是直升飞机的“动力心脏”,它由多个叶片组成,每个叶片的形状和角度都经过精确设计。
当螺旋桨旋转时,叶片会受到空气的作用力,产生推力。
螺旋桨的叶片通常呈扁平状,这样可以减小空气的阻力,提高推进效率。
另外,螺旋桨的叶片角度也可以根据飞行状态进行调整,以提高飞机的性能。
螺旋桨的工作原理主要依靠空气动力学原理。
当螺旋桨旋转时,叶片的前缘受到空气的冲击,产生了升力。
同时,叶片的扭转设计可以使得螺旋桨产生推进力。
这种推进力和升力的综合作用,使得直升飞机能够在空中垂直起降,并且以一定速度前进。
螺旋桨的旋转速度也是直升飞机性能的关键因素之一。
旋转速度过快会造成空气动力学效应不稳定,影响飞行的平稳性;而旋转速度过慢则会影响飞机的升力和推进力。
因此,螺旋桨的设计需要在旋转速度、叶片形状和角度等方面进行精确的计算和测试。
除了旋转速度外,螺旋桨的直径也对飞机性能有着重要影响。
直升飞机需要产生大量的升力才能垂直起降,因此螺旋桨的直径越大,产生的升力也就越大。
但是,过大的直径也会增加飞机的阻力,影响飞行速度和操纵性。
因此,螺旋桨的直径需要在升力和阻力之间进行平衡考虑。
在直升飞机的设计中,螺旋桨的位置也是需要仔细考虑的。
螺旋桨通常位于飞机的顶部,这样可以避免受到地面效应的影响,提高飞机的稳定性和安全性。
此外,螺旋桨的位置还会对飞机的噪音和振动产生影响,因此需要进行综合考虑和优化设计。
总的来说,直升飞机螺旋桨的工作原理是基于空气动力学原理的,它通过产生推力和升力来提供飞机的动力和升降能力。
螺旋桨的设计需要考虑旋转速度、叶片形状和角度、直径和位置等多个因素,以实现飞机的高效、稳定和安全飞行。
直升飞机螺旋桨的工作原理是直升飞机能够实现垂直起降和水平飞行的关键之一,也是直升飞机技术发展的重要方向之一。
旋翼的空气动力特点直升机是一种由一个或多个水平旋转的旋翼提供向上升力和推进力而进行飞行的航空器。
直升机具有大多数固定翼航空器所不具备的垂直升降、悬停、小速度向前或向后飞行的特点。
这些特点使得直升机在很多场合大显身手。
直升机与飞机相比,其弱点是速度低、耗油量较高、航程较短。
(1)产生向上的升力用来克服直升机的重力。
即使直升机的发动机空中停车时, 驾驶员可通过操纵旋翼使其自转,仍可产生一定升 力,减缓直升机下降趋势。
(2)产生向前的水平分力克服空气阻 力使直升机前进,类似于飞机上推进器的作用(例 如螺旋桨或喷气发动机)。
(3)产生其他分力及力矩对直升机; 进行控制或机动飞行,类似于飞机上各操纵面的作用。
旋翼由数片桨叶及一个桨毂组成。
工作时,桨叶与空气作相对 运动,产生空气动力;桨毂则是用来连接 桨叶和旋翼轴,以转动旋翼。
桨叶一般通过铰接方式与桨毂连接(如下图所示)。
旋翼的运动与固定翼飞机机翼的不,因为旋翼的桨叶除了随直升机一同作直线或曲线动外,还要绕旋翼轴旋转,因此桨叶空气动力现象要比机翼的复杂得多。
先来考察一下旋翼的轴向直线运动这就是直升机垂直飞行时旋翼工作的情况,它相当于飞机上螺旋桨的情况。
由于两者技术要求不同,旋翼的直径大且转速小;螺旋桨的直径小而转速大。
在分析、设计上就有所区别设一旋冀,桨叶片数为k,以恒定角速度Ω 绕轴旋转,并以速度 Vo沿旋转轴作直线运 动。
如果在想象中用一中心轴线与旋翼轴重合,而半径为 r的圆柱面把桨叶裁开(参阅图 2,1—3),并将这圆柱面展开成平面,就得到桨叶剖面。
既然这时桨叶包括旋转运动和直线运动,对于叶剖面来说,应有用向速度 (等于Ωr)和垂直于旋转平面的速度(等于 Vo), 而合速度是两者的矢量和。
显然可以看出(如图2.1—3),用不同半径的圆柱面所截出来的各个桨叶剖面,他们的合速度是不同的: 大小不同,方向也不相同。
如果再考虑到由于桨叶 运动所激起的附加气流速度(诱导速度) ),那么桨叶各个剖面与空气之间的相对速度就更加 不同。
直升飞机飞行原理
直升飞机是一种可以垂直起降的飞行器,由于其独特的飞行原理,使其具有广泛的应用领域,如军事、救援、消防、交通、旅游等。
下面将详细介绍直升飞机的飞行原理。
直升飞机的飞行原理可以归结为气动力学原理和机械原理两个方面。
一、气动力学原理
直升飞机的飞行依靠主旋翼和尾旋翼的升力和推力来实现。
主旋翼是由几片具有空气动力学曲线形状的旋翼叶片组成,通过相对于机身的旋转产生升力和推力。
尾旋翼则用来抵消主旋翼产生的反作用力,以保持机身的平衡。
1.主旋翼:主旋翼通过其旋转产生升力和推力。
当旋翼叶片快速旋转时,叶片上的气流会形成高气压区和低气压区。
高气压区的气流通过叶片的压力面,而低气压区的气流则通过叶片的吸力面,从而产生了升力。
升力的大小与旋翼的转速、叶片的角度和速度、空气密度等参数有关。
2.尾旋翼:尾旋翼位于直升飞机的尾部,主要起到平衡作用。
当主旋翼转动时,会产生反作用力,导致直升飞机产生旋转力矩。
为了抵消这一旋转力矩,尾旋翼也开始旋转,通过尾旋翼产生的推力来抵消反作用力,以保持机身的平衡。
二、机械原理
直升飞机的机械原理主要包括控制系统和动力系统两个方面。
1.控制系统:直升飞机的控制系统包括操纵杆、螺旋桨角度调整机构
和尾翼控制装置等。
通过操纵杆的操作,飞行员可以改变螺旋桨叶片的角
度和旋转的速度,从而调整和控制直升机的升力、推力和方向。
2.动力系统:直升飞机的动力系统通常由发动机、传动系统和转子系
统组成。
发动机负责提供动力,通常采用喷气发动机或涡轮发动机。
传动
系统将发动机产生的动力传递给旋翼和尾翼,以驱动它们的旋转。
转子系
统包括主旋翼和尾旋翼,负责产生升力和推力。
总结起来,直升飞机的飞行原理主要基于气动力学和机械动力学原理。
气动力学原理是通过主旋翼和尾旋翼的旋转来产生升力和推力,而机械原
理则是通过控制系统和动力系统来改变和调整直升飞机的姿态、升力和推力。
这种独特的飞行原理使得直升飞机在垂直起降和悬停等方面具有显著
的优势,使其在各个领域的应用变得更加广泛。