综合 解一元二次方程—换元法电子教案
- 格式:doc
- 大小:113.50 KB
- 文档页数:9
数学课教案解一元二次方程【教案】主题:数学课教案——解一元二次方程引言:解一元二次方程是数学课程中的重要内容之一。
在实际的应用中,一元二次方程经常出现,并且具有广泛的应用领域。
本节课将着重介绍一元二次方程的基本概念和解题方法,通过练习巩固学生的掌握程度。
一、概念引入与讲解1.引入:“小明买了几个苹果,每个苹果的价格是x元,总共花费了y元。
如果已知x、y都是正整数,我们能否求出购买的苹果数量呢?”请同学们思考并回答。
2.讲解:通过这个问题引出一元二次方程的概念。
解一元二次方程的过程就是求解未知数的取值,使得等式两边相等。
一元二次方程的一般形式:ax^2+bx+c=0,其中a、b、c是已知系数,x是未知数。
二、解题方法的详细讲解1.列举具体的一元二次方程,分别讲解如何解题。
2.介绍因式分解法、配方法和求根公式等解题方法。
3.以实际应用问题为例,讲解如何将问题转化为一元二次方程,并进行解答。
三、解题练习与讲解1.提供一定数量的练习题,让学生自行解题并记录答案。
2.逐一讲解练习题的解法和注意事项,引导学生思考和巩固知识点。
四、拓展应用1.针对学生解题中遇到的难点,进行相关知识点的拓展讲解。
2.引导学生思考一元二次方程在实际生活中的应用场景,并提供相关案例讨论。
五、课堂总结与展望1.归纳本节课的重点内容,并进行总结。
2.展望下节课的学习内容,引发学生的兴趣和思考。
总结:通过本节课的学习,学生将掌握解一元二次方程的基本概念和解题方法,加深对一元二次方程的理解和应用。
通过实例和练习,学生能够灵活运用所学知识解决实际问题。
同时,本节课的教学内容不涉及政治等敏感话题,确保教学环境的积极和谐。
△b2△b2△b2解一元二次方程的换元法一、知识回顾1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。
一元二次方程的标准式:a是二次项系数,b是一次项系数,c是常数项2、一元二次方程根的判别式(二次项系数不为0):“”读作“德尔塔”,在一元二次方程中=△b2-4ac=-4ac>0<====>方程有两个不相等的实数根,即:x1,x2=-4ac=0<====>方程有两个相等的实数根,即:x1=x2=-4ac<0<====>方程没有实数根。
二、典型例题例1:(2004·金华)方程(x23)25(3x2)+2=0,如果设x23=y,那么原方程可变形为()A.y2-5y+2=0B.y2+5y-2=0C.y2-5y-2=0 D.y2+5y+2=0分析:此题主要利用换元法变形,注意变形时3-x2与x2-3互为相反数,符号要变化.解答:∵x2-3=y∴3-x2=-y用y表示x后代入(x2-3)2-5(3-x2)+2=0得:y2+5y+2=0.故选D.________________________________________________________________________ _________________例2:已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为()A.-5或1B.1C.5 D.5或-1分析:解题时把x2+y2当成一个整体来考虑,再运用因式分解法就比较简单解答:设x2+y2=t,t≥0,则原方程变形得(t+1)(t+3)=8,化简得:(t+5)(t-1)=0,解得:t1=-5,t2=1又t≥0∴t=1∴x2+y2的值为只能是1.故选B.________________________________________________________________________ _________________三、解题经验换元法在解特殊一元二次方程的时候用的特别多,也可以称为整体思想法,在数学中,整体思想是重要思想之一,因此我们要掌握。
2.2.5《解一元二次方程—换元法》典例解析与同步训练【知识要点】1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.【典例解析】例1.用适当方法解下列方程:(1)2x2﹣5x﹣3=0(2)16(x+5)2﹣9=0(3)(x2+x)2+(x2+x)=6.例题分析:本题考查了一元二次方程的几种解法:①公式法;②直接开平方法;③换元法(1)用公式法解一元二次方程,先找a,b,c;再求△;再代入公式求解即可;(2)用直接开平方法解一元二次方程,先将方程化为(x+5)2=,直接开方即可;(3)设t=x2+x,将原方程转化为一元二次方程,求解即可.解:(1)∵a=2,b=﹣5,c=﹣3,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣3)=25+24=49,∴x===,∴x1=3,x2=﹣;(2)整理得,(x+5)2=,开方得,x+5=±,即x1=﹣4,x2=﹣5,(3)设t=x2+x,将原方程转化为t2+t=6,因式分解得,(t﹣2)(t+3)=0,解得t1=2,t2=﹣3.∴x2+x=2或x2+x=﹣3(△<0,无解),∴原方程的解为x1=1,x2=﹣2.例2.解方程:(1)(x+3)(x﹣1)=5(2).例题分析:本题主要考查了解一元二次方程的方法和解分式方程.解一元二次方程时,要注意选择合适的解题方法,这样才会达到事半功倍的效果.还要注意换元思想的应用.(1)先去括号,将方程化为一般式,然后再运用二次三项式的因式分解法进行求解.(2)先设x2﹣x=y,采用换元法,然后解方程即可.解:(1)x2+2x﹣8=0,(x+4)(x﹣2)=0∴x1=﹣4,x2=2.(2)设x2﹣x=y∴原方程化为y﹣=1∴y2﹣2=y∴y2﹣y﹣2=0∴(y+1)(y﹣2)=0∴y1=﹣1,y2=2∴x2﹣x=﹣1或x2﹣x=2解x2﹣x=﹣1知:此方程无实数根.解x2﹣x=2知x1=2,x2=﹣1;∴原方程的解为:x1=2,x2=﹣1.例3.解下列方程:(1)2x2+5x﹣3=0(2)(3﹣x)2+x2=9(3)2(x﹣3)2=x(x﹣3)(4)(x﹣1)2﹣5(x﹣1)+6=0例题分析:本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后,方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的式子的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.(1)方程左边可以利用十字相乘法进行因式分解,因此应用因式分解法解答.(2)先移项,然后把x2﹣9因式分解为(x+3)(x﹣3),然后再提取公因式,因式分解即可.(3)先移项,然后用提取公因式法对左边进行因式分解即可.(4)把(x﹣1)看作是一个整体,然后套用公式a2±2ab+b2=(a±b)2,进行进一步分解,故用因式分解法解答.解:(1)因式分解,得(2x﹣1)(x+3)=0,所以2x﹣1=0或x+3=0,解得,x=或x=﹣3;(2)移项得,(3﹣x)2+x2﹣9=0,变形得,(x﹣3)2+(x+3)(x﹣3)=0,因式分解,得(x﹣3)[(x﹣3)+(x+3)]=0,解得,x=3或x=0;(3)移项得,2(x﹣3)2﹣x(x﹣3)=0,因式分解得,(x﹣3)[2(x﹣3)﹣x]=0,解得x=3或x=6;(4)化简得:(x﹣1﹣2)(x﹣1﹣3)=0即(x﹣3)(x﹣4)=0解得x=3或x=4.例4.阅读下面材料:解答问题为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将(x2﹣1)看作一个整体,然后设x2﹣1=y,那么原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,x2﹣1=1,∴x2=2,∴x=±;当y=4时,x2﹣1=4,∴x2=5,∴x=±,故原方程的解为x1=,x2=﹣,x3=,x4=﹣.上述解题方法叫做换元法;请利用换元法解方程.(x2﹣x)2﹣4(x2﹣x)﹣12=0.例题分析:此题考查了学生学以致用的能力,解题的关键是掌握换元思想.先把x2﹣x看作一个整体,设x2﹣x=y,代入得到新方程y2﹣4y﹣12=0,利用求根公式可以求解.解:设x2﹣x=y,那么原方程可化为y2﹣4y﹣12=0(2分)解得y1=6,y2=﹣2(4分)当y=6时,x2﹣x=6即x2﹣x﹣6=0∴x1=3,x2=﹣2(6分)当y=﹣2时,x2﹣x=﹣2即x2﹣x+2=0∵△=(﹣1)2﹣4×1×2<0∴方程无实数解(8分)∴原方程的解为:x1=3,x2=﹣2.(9分)例5.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.例题分析:应用换元法,把关于x的方程转化为关于y的方程,这样书写简便且形象直观,并且把方程化繁为简化难为易,解起来更方便.(1)本题主要是利用换元法降次来达到把一元四次方程转化为一元二次方程,来求解,然后再解这个一元二次方程.(2)利用题中给出的方法先把x2+x当成一个整体y来计算,求出y的值,再解一元二次方程.解:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无解.所以原方程的解为x1=﹣3,x2=2.【同步训练】一.选择题(共10小题)1.解方程(x﹣1)2﹣5(x﹣1)+4=0时,我们可以将x﹣1看成一个整体,设x﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,即x﹣1=1,解得x=2;当y=4时,即x﹣1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程(2x+5)2﹣4(2x+5)+3=0的解为()A.x1=1,x2=3 B.x1=﹣2,x2=3 C.x1=﹣3,x2=﹣1 D.x1=﹣1,x2=﹣22.用换元法解方程(x2+x)2+(x2+x)=6时,如果设x2+x=y,那么原方程可变形为()A.y2+y﹣6=0 B.y2﹣y﹣6=0 C.y2﹣y+6=0 D.y2+y+6=03.用换元法解方程(x2+x)2+2(x2+x)﹣1=0,若设y=x2+x,则原方程可变形为()A.y2+2y+1=0 B.y2﹣2y+1=0 C.y2+2y﹣1=0 D.y2﹣2y﹣1=04.已知实数x满足x2+=0,那么x+的值是()A.1或﹣2 B.﹣1或2 C.1 D.﹣25.方程(x2﹣3)2﹣5(3﹣x2)+2=0,如果设x2﹣3=y,那么原方程可变形为()A.y2﹣5y+2=0 B.y2+5y﹣2=0 C.y2﹣5y﹣2=0 D.y2+5y+2=06.若实数x,y满足x2﹣2xy+y2+x﹣y﹣6=0,则x﹣y的值是()A.﹣2或3 B.2或﹣3 C.﹣1或6 D.1或﹣67.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为()A.﹣5或1 B.1 C.5 D.5或﹣18.如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()A.1 B.﹣4 C.1或﹣4 D.﹣1或39.正整数x,y满足(2x﹣5)(2y﹣5)=25,则x+y的值是()A.10 B.18 C.26 D.10或1810.若(a2+b2)(a2+b2﹣2)=8,则a2+b2=()A.﹣2 B.4 C.4或﹣2 D.﹣4或2二.填空题(共5小题)11.已知,关于x的方程x2+=1,那么x++1的值为_________.12.解方程(x2﹣5)2﹣x2+3=0时,令x2﹣5=y,则原方程变为_________.13.若a2﹣2ab+b2+2(a﹣b)+1=0,则a﹣b=_________.14.用换元法解方程:(x2﹣x)2﹣5(x2﹣x)+6=0,如果设x2﹣x=y,那么原方程变为_________.15.在解方程(x2﹣1)2﹣2x2﹣1=0时,通过换元并整理得方程y2﹣2y﹣3=0,则y=_________.三.解答题(共4小题)16.解方程:(x2﹣2x)2+(x2﹣2x)﹣2=017.如果a为不等于±2的整数,证明方程x4+ax+1=0没有有理根.18.对于有理数x,用[x]表示不大于x的最大整数,请解方程.19.用适当方法解下列方程(1)(2y﹣1)2=(2)x﹣=5x(﹣x)(3)(x﹣3)2+(x+4)2﹣(x﹣5)2=17x+24(4)(2x+1)2+3(2x+1)﹣4=0参考答案一.选择题(共10小题)1.解:(2x+5)2﹣4(2x+5)+3=0,设y=2x+5,方程可以变为y2﹣4y+3=0,∴y1=1,y2=3,当y=1时,即2x+5=1,解得x=﹣2;当y=3时,即2x+5=3,解得x=﹣1,所以原方程的解为:x1=﹣2,x2=﹣1.故选D.2.解:把x2+x整体代换为y,y2+y=6,即y2+y﹣6=0.故选A.3.解:设y=x2+x,得y2+2y﹣1=0.故选C.4.解:∵x2+=0∴∴[(x+)+2][(x+)﹣1]=0∴x+=1或﹣2.∵x+=1无解,∴x+=﹣2.故选D.5.解:∵x2﹣3=y∴3﹣x2=﹣y所以y2+5y+2=0.故选D.6.解:设x﹣y=m,则原方程可化为:m2+m﹣6=0,解得x1=2,x2=﹣3;故选B7.解:原方程变形得,(x2+y2)2+4(x2+y2)﹣5=0,(x2+y2+5)(x2+y2﹣1)=0,又∵x2+y2的值是非负数,∴x2+y2的值为只能是1.故选B.8.解:∵x、y为正整数,∴或或或解得,x=5,y=5,或x=3,y=15,∴x+y=10或18.故选D.10.解:设a2+b2=x,则有:x(x﹣2)=8即x2﹣2x﹣8=0,解得x1=﹣2,x2=4;∵a2+b2≥0,故a2+b2=x2=4;故选B二.填空题(共5小题)11.解:原方程可化为x2+()2+2x•+2(x+)+1=2+2x•(x++1)2=4x++1=±2.12.解:∵x2﹣5=y,∴x2=5+y,∴(x2﹣5)2﹣x2+3=y2﹣y﹣5+3=y2﹣y﹣2=0,故本题的答案是y2﹣y﹣2=0.13.解:设t=a﹣b,则原方程可化为:t2+2t+1=0,整理得:(t+1)2=0,解得:t=﹣1.∴a﹣b=﹣1.14.解:根据题意x2﹣x=y,把原方程中的x2﹣x换成y,所以原方程变化为:y2﹣5y+6=015.解:方程整理,得(x2﹣1)2﹣2(x2﹣1)﹣3=0故y=x2﹣1三.解答题(共4小题)16.解:设y=x2﹣2x原方程可变为:y2+y﹣2=0解方程得y=﹣2或1所以x2﹣2x=﹣2或1.当x2﹣2x=﹣2时,△<0,没实数根,当x2﹣2x=1时,解得x=1±.∴原方程的根是x1=1+,x2=1﹣.17.证明:若a=2或者﹣2,方程有有理根,当=2时,有理根x=﹣1;等于﹣2时,有理根x=1.这个根据配方法得来.x4±2x+1=0,即x4﹣x2+x2±2x+1=x2(x+1)(x﹣1)+(x±1)2=0,此等式有公因式,可得x=±1.而由题意知:a≠±2,即x≠±1.则有a=﹣=﹣x3﹣,其中x≠±1.a为整数,而a=﹣x3﹣,若x为整数且x≠±1,那么x3为整数,为小数,整数与小数之和或者差,皆为小数,故x不能是整数.若x为分数,那么设x=,其中c、b互质且为整数,b≠0.那么﹣x3﹣=﹣=﹣.由此代数式知:因为c、b互质,故此代数式的值不为整数.故当x为整数或者分数时,a为整数均不能成立.故当a为整数时,方程没有有理根.18.解:因为方程左边的第1、3项都是整数,所以3y是整数.注意到,代入方程,得到,.所以是整数,3y是10的倍数.令3y=10k,k是整数,代入得,其中,对于有理数x,x=x﹣[x].所以有,.当k取不同整数时,的情况如下表:<﹣=1=k的可能值是﹣1和3,相应的和y=10.代入验算得到或y=10.故答案:或y=10.19.解:(1)方程原式两边同乘以2得(2y﹣1)2=,∴2y﹣1=±,y=±;(2)移项、提取公因式得(x﹣)(5x+1)=0,解得x1=,x2=﹣;(3)去括号、移项、合并同类项得(x+3)(x﹣8)=0,解得x1=﹣3,x2=8;(4)解方程(2x+1)2+3(2x+1)﹣4=0可以用换元法和配方法,设2x+1为y,得y2+3y﹣4=0,利用配方法得(y+)2=4+,y+=±,得y=1或﹣4,设2x+1为y,则x1=0,x2=﹣.。
《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一教学设计思想解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。
直接开平方法很简单,在这里不做过多的介绍。
为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。
我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。
在解一元二次方程的几种方法中,均需要用到转化的思想方法。
如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。
在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。
教学目标知识与技能:1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。
2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。
过程与方法:1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。
2.在探究一元二次方程的过程中体会转化、降次的数学思想。
情感态度价值观:在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。
教学重难点重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。
难点:根据方程的特点灵活选择适当的方法解一元二次方程。
教学方法探索发现,讲练结合元二次方程教案篇二一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
《一元二次方程》的优秀教案《一元二次方程》的优秀教案一、教案的特点尽管各个学科课程都有各自的特点,教学形式和手段也不尽相同,但在培养学生成为德智体美全面发展、适应社会需求的高素质人才教育宗旨上是一致的,对教案的要求也是有共性的。
这些共性原则上可以概括为以下几点:1. 取材内容合理,切合课程宗旨,符合培养目标定位的要求,适应现实需要,讲述内容观点正确,有实际应用价值。
2.能够理论联系实际,通过典型事例研究分析,揭示学科相关基本理论、基本方法的实质和价值及明确的应用方向。
3.逻辑思路清晰,符合认识规律。
在教知识的过程中渗透教认识问题的方法,通过互动式教学安排和过程,能够使学生举一反三,培养学生自主学习习惯和能力。
4.不墨守成规,能继往开来,教案既是以往教学经验的总结,又是开拓知识新领域的钥匙,能够体现学科发展前沿的要求,具有一定的前瞻性,与时代发展相适应。
5.教学方法有创新。
不照本宣科,不满堂灌,给学生留有充分的余地,注重引导学生思考问题、研究问题、解决问题。
遵循精讲多练的原则,讲要抓住本质、引人入胜;练要有的放矢,调动学生自己解决实际问题的积极性,让学生在教师启发引导下,通过自身的探索,不但知道相关学科领域核心知识“是什么”和“为什么”,还要知道“做什么”、“怎样做”,培养学生勇于实践勇于探索的精神和能力。
6.教案不能面面俱到、大而全,而应该是在学科基本的知识框架基础上,对当前急需解决的问题进行研究、探索、阐述,能够体现教师对相关学科有价值的学术观点及研究心得。
不是我会什么讲什么、我想讲什么讲什么,而是社会需要什么、学生将来走向社会需要什么就注重讲什么,就带领学生研究什么。
总之,教案是针对社会需求、学科特点及教育对象具有明确目的性、适应性、实用性的教学研究成果的重要形式,教案应是与时俱进的。
二、《一元二次方程》的优秀教案(通用10篇)作为一名教学工作者,总归要编写教案,教案是备课向课堂教学转化的关节点。
一元二次方程教案教案一:一元二次方程的基本概念与解法一、教学目标:1. 知识与技能目标:(1) 学习一元二次方程的基本概念;(2) 掌握一元二次方程的解法:因式分解、配方法、求根公式等;(3) 学会运用一元二次方程解决实际问题。
2. 过程与方法目标:(1) 采用探究式学习方法,培养学生的自主探索和合作学习能力;(2) 运用配备实例、数学实践和游戏等多种方法,增加学生的学习兴趣;(3) 引导学生把数学应用于实际问题,培养学生的实际应用能力。
二、教学重难点:1. 教学重点:(1) 一元二次方程的基本概念和解法;(2) 运用一元二次方程解决实际问题。
2. 教学难点:(1) 运用一元二次方程解决实际问题的能力;(2) 掌握一元二次方程解的判别式和求根公式。
三、教学过程:1. 导入新课:(1) 教师介绍一元二次方程的应用背景,例如:投射运动、阳光房设计等,激发学生的兴趣。
(2) 提问:学过一元一次方程了吧?有没有遇到形如 x^2 的方程?这样的方程有何特点?(3) 引导学生总结一元二次方程与一元一次方程的异同点。
2. 讲述一元二次方程的基本概念:(1) 定义:包含一个未知数的二次式形成的等式称为一元二次方程。
(2) 形式:一元二次方程的一般形式为 ax^2 + bx + c = 0,其中a ≠ 0,a、b、c 是已知实数,x 是未知数。
3. 解一元二次方程的方法:(1) 因式分解法:将一元二次方程化简为两个一元一次方程并求解。
(2) 配方法:通过变量的替换,使方程成为完全平方的形式,再进行求解。
(3) 求根公式法:利用求根公式推导,求出一元二次方程的根。
4. 运用一元二次方程解决实际问题:(1) 引导学生通过实例分析,掌握将实际问题转化成一元二次方程解决的方法。
(2) 设计练习题或教师给出实际问题,学生自主解决。
5. 小结和评价:(1) 教师帮助学生总结一元二次方程的基本概念与解法;(2) 进行课堂评价,检查学生的理解和掌握程度。
北京版数学八年级下册《一元二次方程的解法的综合运用》教学设计一. 教材分析《一元二次方程的解法的综合运用》是北京版数学八年级下册的一个重要内容。
本节内容主要让学生掌握一元二次方程的解法,并能够灵活运用解法解决实际问题。
教材通过引入具体案例,引导学生运用一元二次方程的解法进行分析,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经学习过一元二次方程的基本概念和解法,对一元二次方程有一定的了解。
但是,学生在实际运用一元二次方程解决实际问题时,可能会遇到一些困难。
因此,教师在教学过程中要注重引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.让学生掌握一元二次方程的解法,包括因式分解法、配方法、求根公式等。
2.培养学生运用一元二次方程解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.教学重点:一元二次方程的解法及其应用。
2.教学难点:如何引导学生将一元二次方程的解法灵活运用到实际问题中。
五. 教学方法1.案例教学法:通过引入具体案例,引导学生运用一元二次方程的解法进行分析,培养学生的应用能力。
2.小组讨论法:学生进行小组讨论,培养学生的团队合作能力和逻辑思维能力。
3.引导发现法:教师引导学生发现问题、解决问题,激发学生的学习兴趣和主动性。
六. 教学准备1.教材:北京版数学八年级下册。
2.案例素材:选取与学生生活相关的实际问题作为教学案例。
3.教学多媒体:PPT、黑板等。
七. 教学过程1.导入(5分钟)教师通过引入一个实际问题,激发学生的学习兴趣,引导学生思考如何运用一元二次方程的解法解决问题。
2.呈现(10分钟)教师展示案例,并提出问题。
学生根据已有知识,尝试解答问题,教师引导学生进行分析。
3.操练(10分钟)教师引导学生进行小组讨论,让学生运用一元二次方程的解法进行案例分析。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)教师选取几个类似的案例,让学生独立进行解答。
《一元二次方程》教案列方程10025023600x x -)(-)=(. 整理、化简得 7535002x x+=-.问题 2 要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?分析:设有x 支队伍参赛,每支队伍都要与其他的x -1支队伍各赛一场,所以共计x (x -1)场比赛.但是由于A 队对B 队的比赛与B 队对A 队的比赛是同一场比赛,所以还应将全部比赛的场次除以2,即如果每两个队之间都要比赛一场,则共有12x x-()场比赛.列方程 1282x x-()=,整理、化简得 562x x=- .知能演练提升一、能力提升1.方程x2-2(3x-2)+(x+1)=0的一般形式是()A.x2-5x+5=0B.x2+5x+5=0C.x2+5x-5=0D.x2+5=02.下列是方程3x2+x-2=0的解的是()A.x=-1B.x=1C.x=-2D.x=23.已知实数a,b满足a2-3a+1=0,b2-3b+1=0,则关于一元二次方程x2-3x+1=0的根的说法正确的是()A.x=a,x=b都不是该方程的解B.x=a是该方程的解,x=b不是该方程的解C.x=a不是该方程的解,x=b是该方程的解D.x=a,x=b都是该方程的解4.关于x的方程x2+4kx+2k2=4的一个解是-2,则实数k的值为()A.2或4B.0或4C.-2或0D.-2或2=6,其中一元二5.已知方程:x2+x=y,√5x-7x2=8,x2+y2=1,(x-1)(x-2)=0,x2-1x次方程的个数为.6.中国古代数学家杨辉的《田亩比数乘除捷法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为.(“步”是非标准计量单位)7.小刚在写作业时,一不小心,方程3x2-□x-5=0的一次项系数被墨水盖住了,但从题目的答案中,他知道方程的一个解为x=5,请你帮助小刚求出被覆盖的数.8.根据下列问题,列出关于x的方程,并将其化成ax2+bx+c=0(a≠0)的形式.(1)两个连续偶数的积为168,求较小的偶数x;(2)一个直角三角形的两条直角边的长的和是20,面积是25,求其中一条直角边的长x.9.已知关于x的一元二次方程ax2+bx+c=0,且a,b,c满足√a-1+(b-2)2+|a+b+c|=0,求满足条件的一元二次方程.★10.已知实数a是方程x2-x-1=0的一个根,求-a3+2a2+5 021的值.★11.有这样一道题目:把方程12x 2-x=2化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.现在把上面的题目改编成下面的两个小题,请回答问题:(1)下列式子中有哪些是方程12x 2-x=2化为一元二次方程的一般形式? .(填序号)①12x 2-x-2=0,②-12x 2+x+2=0,③x 2-2x=4,④-x 2+2x+4=0,⑤√3x 2-2√3x-4√3=0. (2)方程12x 2-x=2化为一元二次方程的一般形式后,它的二次项系数、一次项系数和常数项之间具有什么关系?知能演练·提升 一、能力提升 1.A 2.A 3.D 4.B 5.2 6.x (x+12)=8647.解x=5是关于x 的方程3x 2-ax-5=0的一个解,有3×52-5a-5=0,解得a=14,即被覆盖的数是14.8.解 (1)x (x+2)=168,化成ax 2+bx+c=0(a ≠0)的形式为x 2+2x-168=0. (2)12x (20-x )=25,化成ax 2+bx+c=0(a ≠0)的形式为x 2-20x+50=0.9.分析 关键是理解算术平方根、完全平方数和绝对值的意义,即√a -1≥0,(b-2)2≥0,|a+b+c|≥0.只有使各项都为0时,其和才为0.解 由√a -1+(b-2)2+|a+b+c|=0,得{a -1=0,b -2=0,a +b +c =0,解得{a =1,b =2,c =-3.由于a 是二次项系数,b 是一次项系数,c 是常数项,故所求方程为x 2+2x-3=0. 10.分析 由方程根的定义可知a 2-a-1=0,利用条件的变形对所求代数式中的字母逐渐降次,不难求得最后的结果.解 由方程根的定义知a 2-a-1=0, 从而a 2=a+1,a 2-a=1,故-a 3+2a 2+5 021=-a (a+1)+2a 2+5 021=a 2-a+5 021=1+5 021=5 022.11.解(1)①②④⑤;(2)若设它的二次项系数为a(a≠0),则一次项系数为-2a、常数项为-4a(或说:这个方程的二次项系数∶一次项系数∶常数项=1∶(-2)∶(-4)).。
2.2.5《解一元二次方程—换元法》典例解析与同步训练【知识要点】1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.【典例解析】例1.用适当方法解下列方程:(1)2x2﹣5x﹣3=0(2)16(x+5)2﹣9=0(3)(x2+x)2+(x2+x)=6.例题分析:本题考查了一元二次方程的几种解法:①公式法;②直接开平方法;③换元法(1)用公式法解一元二次方程,先找a,b,c;再求△;再代入公式求解即可;(2)用直接开平方法解一元二次方程,先将方程化为(x+5)2=,直接开方即可;(3)设t=x2+x,将原方程转化为一元二次方程,求解即可.解:(1)∵a=2,b=﹣5,c=﹣3,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣3)=25+24=49,∴x===,∴x1=3,x2=﹣;(2)整理得,(x+5)2=,开方得,x+5=±,即x1=﹣4,x2=﹣5,(3)设t=x2+x,将原方程转化为t2+t=6,因式分解得,(t﹣2)(t+3)=0,解得t1=2,t2=﹣3.∴x2+x=2或x2+x=﹣3(△<0,无解),∴原方程的解为x1=1,x2=﹣2.例2.解方程:(1)(x+3)(x﹣1)=5(2).例题分析:本题主要考查了解一元二次方程的方法和解分式方程.解一元二次方程时,要注意选择合适的解题方法,这样才会达到事半功倍的效果.还要注意换元思想的应用.(1)先去括号,将方程化为一般式,然后再运用二次三项式的因式分解法进行求解.(2)先设x2﹣x=y,采用换元法,然后解方程即可.解:(1)x2+2x﹣8=0,(x+4)(x﹣2)=0∴x1=﹣4,x2=2.(2)设x2﹣x=y∴原方程化为y﹣=1∴y2﹣2=y∴y2﹣y﹣2=0∴(y+1)(y﹣2)=0∴y1=﹣1,y2=2∴x2﹣x=﹣1或x2﹣x=2解x2﹣x=﹣1知:此方程无实数根.解x2﹣x=2知x1=2,x2=﹣1;∴原方程的解为:x1=2,x2=﹣1.例3.解下列方程:(1)2x2+5x﹣3=0(2)(3﹣x)2+x2=9(3)2(x﹣3)2=x(x﹣3)(4)(x﹣1)2﹣5(x﹣1)+6=0例题分析:本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后,方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的式子的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.(1)方程左边可以利用十字相乘法进行因式分解,因此应用因式分解法解答.(2)先移项,然后把x2﹣9因式分解为(x+3)(x﹣3),然后再提取公因式,因式分解即可.(3)先移项,然后用提取公因式法对左边进行因式分解即可.(4)把(x﹣1)看作是一个整体,然后套用公式a2±2ab+b2=(a±b)2,进行进一步分解,故用因式分解法解答.解:(1)因式分解,得(2x﹣1)(x+3)=0,所以2x﹣1=0或x+3=0,解得,x=或x=﹣3;(2)移项得,(3﹣x)2+x2﹣9=0,变形得,(x﹣3)2+(x+3)(x﹣3)=0,因式分解,得(x﹣3)[(x﹣3)+(x+3)]=0,解得,x=3或x=0;(3)移项得,2(x﹣3)2﹣x(x﹣3)=0,因式分解得,(x﹣3)[2(x﹣3)﹣x]=0,解得x=3或x=6;(4)化简得:(x﹣1﹣2)(x﹣1﹣3)=0即(x﹣3)(x﹣4)=0解得x=3或x=4.例4.阅读下面材料:解答问题为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将(x2﹣1)看作一个整体,然后设x2﹣1=y,那么原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,x2﹣1=1,∴x2=2,∴x=±;当y=4时,x2﹣1=4,∴x2=5,∴x=±,故原方程的解为x1=,x2=﹣,x3=,x4=﹣.上述解题方法叫做换元法;请利用换元法解方程.(x2﹣x)2﹣4(x2﹣x)﹣12=0.例题分析:此题考查了学生学以致用的能力,解题的关键是掌握换元思想.先把x2﹣x看作一个整体,设x2﹣x=y,代入得到新方程y2﹣4y﹣12=0,利用求根公式可以求解.解:设x2﹣x=y,那么原方程可化为y2﹣4y﹣12=0(2分)解得y1=6,y2=﹣2(4分)当y=6时,x2﹣x=6即x2﹣x﹣6=0∴x1=3,x2=﹣2(6分)当y=﹣2时,x2﹣x=﹣2即x2﹣x+2=0∵△=(﹣1)2﹣4×1×2<0∴方程无实数解(8分)∴原方程的解为:x1=3,x2=﹣2.(9分)例5.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.例题分析:应用换元法,把关于x的方程转化为关于y的方程,这样书写简便且形象直观,并且把方程化繁为简化难为易,解起来更方便.(1)本题主要是利用换元法降次来达到把一元四次方程转化为一元二次方程,来求解,然后再解这个一元二次方程.(2)利用题中给出的方法先把x2+x当成一个整体y来计算,求出y的值,再解一元二次方程.解:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无解.所以原方程的解为x1=﹣3,x2=2.【同步训练】一.选择题(共10小题)1.解方程(x﹣1)2﹣5(x﹣1)+4=0时,我们可以将x﹣1看成一个整体,设x﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,即x﹣1=1,解得x=2;当y=4时,即x﹣1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程(2x+5)2﹣4(2x+5)+3=0的解为()A.x1=1,x2=3 B.x1=﹣2,x2=3 C.x1=﹣3,x2=﹣1 D.x1=﹣1,x2=﹣22.用换元法解方程(x2+x)2+(x2+x)=6时,如果设x2+x=y,那么原方程可变形为()A.y2+y﹣6=0 B.y2﹣y﹣6=0 C.y2﹣y+6=0 D.y2+y+6=03.用换元法解方程(x2+x)2+2(x2+x)﹣1=0,若设y=x2+x,则原方程可变形为()A.y2+2y+1=0 B.y2﹣2y+1=0 C.y2+2y﹣1=0 D.y2﹣2y﹣1=04.已知实数x满足x2+=0,那么x+的值是()A.1或﹣2 B.﹣1或2 C.1 D.﹣25.方程(x2﹣3)2﹣5(3﹣x2)+2=0,如果设x2﹣3=y,那么原方程可变形为()A.y2﹣5y+2=0 B.y2+5y﹣2=0 C.y2﹣5y﹣2=0 D.y2+5y+2=06.若实数x,y满足x2﹣2xy+y2+x﹣y﹣6=0,则x﹣y的值是()A.﹣2或3 B.2或﹣3 C.﹣1或6 D.1或﹣67.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为()A.﹣5或1 B.1 C.5 D.5或﹣18.如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()A.1 B.﹣4 C.1或﹣4 D.﹣1或39.正整数x,y满足(2x﹣5)(2y﹣5)=25,则x+y的值是()A.10 B.18 C.26 D.10或1810.若(a2+b2)(a2+b2﹣2)=8,则a2+b2=()A.﹣2 B.4 C.4或﹣2 D.﹣4或2二.填空题(共5小题)11.已知,关于x的方程x2+=1,那么x++1的值为_________.12.解方程(x2﹣5)2﹣x2+3=0时,令x2﹣5=y,则原方程变为_________.13.若a2﹣2ab+b2+2(a﹣b)+1=0,则a﹣b=_________.14.用换元法解方程:(x2﹣x)2﹣5(x2﹣x)+6=0,如果设x2﹣x=y,那么原方程变为_________.15.在解方程(x2﹣1)2﹣2x2﹣1=0时,通过换元并整理得方程y2﹣2y﹣3=0,则y=_________.三.解答题(共4小题)16.解方程:(x2﹣2x)2+(x2﹣2x)﹣2=017.如果a为不等于±2的整数,证明方程x4+ax+1=0没有有理根.18.对于有理数x,用[x]表示不大于x的最大整数,请解方程.19.用适当方法解下列方程(1)(2y﹣1)2=(2)x﹣=5x(﹣x)(3)(x﹣3)2+(x+4)2﹣(x﹣5)2=17x+24(4)(2x+1)2+3(2x+1)﹣4=0参考答案一.选择题(共10小题)1.解:(2x+5)2﹣4(2x+5)+3=0,设y=2x+5,方程可以变为y2﹣4y+3=0,∴y1=1,y2=3,当y=1时,即2x+5=1,解得x=﹣2;当y=3时,即2x+5=3,解得x=﹣1,所以原方程的解为:x1=﹣2,x2=﹣1.故选D.2.解:把x2+x整体代换为y,y2+y=6,即y2+y﹣6=0.故选A.3.解:设y=x2+x,得y2+2y﹣1=0.故选C.4.解:∵x2+=0∴∴[(x+)+2][(x+)﹣1]=0∴x+=1或﹣2.∵x+=1无解,∴x+=﹣2.故选D.5.解:∵x2﹣3=y∴3﹣x2=﹣y所以y2+5y+2=0.故选D.6.解:设x﹣y=m,则原方程可化为:m2+m﹣6=0,解得x1=2,x2=﹣3;故选B7.解:原方程变形得,(x2+y2)2+4(x2+y2)﹣5=0,(x2+y2+5)(x2+y2﹣1)=0,又∵x2+y2的值是非负数,∴x2+y2的值为只能是1.故选B.8.解:∵x、y为正整数,∴或或或解得,x=5,y=5,或x=3,y=15,∴x+y=10或18.故选D.10.解:设a2+b2=x,则有:x(x﹣2)=8即x2﹣2x﹣8=0,解得x1=﹣2,x2=4;∵a2+b2≥0,故a2+b2=x2=4;故选B二.填空题(共5小题)11.解:原方程可化为x2+()2+2x•+2(x+)+1=2+2x•(x++1)2=4x++1=±2.12.解:∵x2﹣5=y,∴x2=5+y,∴(x2﹣5)2﹣x2+3=y2﹣y﹣5+3=y2﹣y﹣2=0,故本题的答案是y2﹣y﹣2=0.13.解:设t=a﹣b,则原方程可化为:t2+2t+1=0,整理得:(t+1)2=0,解得:t=﹣1.∴a﹣b=﹣1.14.解:根据题意x2﹣x=y,把原方程中的x2﹣x换成y,所以原方程变化为:y2﹣5y+6=015.解:方程整理,得(x2﹣1)2﹣2(x2﹣1)﹣3=0故y=x2﹣1三.解答题(共4小题)16.解:设y=x2﹣2x原方程可变为:y2+y﹣2=0解方程得y=﹣2或1所以x2﹣2x=﹣2或1.当x2﹣2x=﹣2时,△<0,没实数根,当x2﹣2x=1时,解得x=1±.∴原方程的根是x1=1+,x2=1﹣.17.证明:若a=2或者﹣2,方程有有理根,当=2时,有理根x=﹣1;等于﹣2时,有理根x=1.这个根据配方法得来.x4±2x+1=0,即x4﹣x2+x2±2x+1=x2(x+1)(x﹣1)+(x±1)2=0,此等式有公因式,可得x=±1.而由题意知:a≠±2,即x≠±1.则有a=﹣=﹣x3﹣,其中x≠±1.a为整数,而a=﹣x3﹣,若x为整数且x≠±1,那么x3为整数,为小数,整数与小数之和或者差,皆为小数,故x不能是整数.若x为分数,那么设x=,其中c、b互质且为整数,b≠0.那么﹣x3﹣=﹣=﹣.由此代数式知:因为c、b互质,故此代数式的值不为整数.故当x为整数或者分数时,a为整数均不能成立.故当a为整数时,方程没有有理根.18.解:因为方程左边的第1、3项都是整数,所以3y是整数.注意到,代入方程,得到,.所以是整数,3y是10的倍数.令3y=10k,k是整数,代入得,其中,对于有理数x,x=x﹣[x].所以有,.当k取不同整数时,的情况如下表:k ≤﹣2 =﹣1 =0 =1 =2 =3 >31﹣k﹣<﹣1=﹣=1===0 <﹣1k的可能值是﹣1和3,相应的和y=10.代入验算得到或y=10.故答案:或y=10.19.解:(1)方程原式两边同乘以2得(2y﹣1)2=,∴2y﹣1=±,y=±;(2)移项、提取公因式得(x﹣)(5x+1)=0,解得x1=,x2=﹣;(3)去括号、移项、合并同类项得(x+3)(x﹣8)=0,解得x1=﹣3,x2=8;(4)解方程(2x+1)2+3(2x+1)﹣4=0可以用换元法和配方法,设2x+1为y,得y2+3y﹣4=0,利用配方法得(y+)2=4+,y+=±,得y=1或﹣4,设2x+1为y,则x1=0,x2=﹣.。