人教版A数学选修1综合测试题。
- 格式:doc
- 大小:855.50 KB
- 文档页数:4
第二学期人教A版选修1综合测试卷及详解时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点(3,-2)且与椭圆4x2+9y2=36有相同焦点的椭圆的方程是( )A.错误!未找到引用源。
+错误!未找到引用源。
=1B.错误!未找到引用源。
+错误!未找到引用源。
=1C.错误!未找到引用源。
+错误!未找到引用源。
=1D.错误!未找到引用源。
+错误!未找到引用源。
=1【解析】选 C.椭圆4x2+9y2=36的焦点坐标是(±错误!未找到引用源。
,0),设椭圆的标准方程是错误!未找到引用源。
+错误!未找到引用源。
=1,将(3,-2)代入得错误!未找到引用源。
+错误!未找到引用源。
=1,且a2-b2=5,解得b2=10,a2=15.因此所求椭圆的标准方程是错误!未找到引用源。
+错误!未找到引用源。
=1.2.(2014·乐山高二检测)函数y=(x-a)(x-b)在x=a处的导数为( )A.abB.-a(a-b)C.0D.a-b【解析】选D.因为y=x2-(a+b)x+ab,所以y′=2x-(a+b),所以y′|x=a= 2a-(a+b)=a-b.3.(2014·绵阳高二检测)下列各组命题中,满足“p∨q为真,p∧q为假,p为真”的是( )A.p:0=∅;q:0∈∅B.p:在△ABC中,若cos2A=cos2B,则A=B;q:y=sinx在第一象限是增函数C.p:a+b≥2错误!未找到引用源。
(a,b∈R);q:不等式|x|>x的解集是(-∞,0)D.p:圆(x-1)2+(y-2)2=1的面积被直线x=1平分;q:3≥2【解析】选C.A中,p,q为假命题,不满足“p∨q”为真;B中,p是真命题,则“p”为假,不满足题意;C中,p是假命题,q为真命题,“p∨q”为真,“p∧q”为假,“p”为真,故C正确;D中,p是真命题,不满足“p”为真.4.(2013·大理高二检测)椭圆错误!未找到引用源。
高中数学学习材料(灿若寒星 精心整理制作)模块测试卷时间:120分钟,满分150分一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的选项中,只有一项是符合题目要求的. 1.★★ 已知::31p x ->,24:0310x q x x ->+-,则P ⌝是q ⌝的( ) A .必要不充分条件B .充分不必要条件C .既不充分也不必要条件D .充要条件2. ★★方程221ax by +=表示双曲线的必要不充分条件是( )A .0ab <B .00a b <>且或a>0且b<0C . 5ab <D .0ab >3.★★★ 已知32y x px qx =--和图象与x 轴切于()1,0,则()f x 的极值情况是( )A .极大值为1()3f ,极小值为(1)fB .极大值为(1)f ,极小值为1()3fC .极大值为1()3f ,没有极小值D .极小值为(1)f ,没有极大值 4. ★★★已知动点(),P x y 满足等式()()22101234x y x y -+-=+,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .两相交直线5.★★★ 我们把离心率等于黄金比512+的椭圆称为“优美椭圆”,设曲线C 是优美椭圆,F ,A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于( )A .060B .075C .090D .01206. ★★★已知32()26f x x x m =-+(m 为常数),在[]2,2-上有最大值3,那么此函数在[]2,3-上的最小值为( ) A .37- B .29- C .5- D .11-7. ★★M 是N 的充分不必要条件,N 是P 的充要条件,Q 是P 的必要不充分条件,则Q 是M 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. ★★★已知命题p :()log 2(01)a y ax a a a =+>≠且的图象必过定点()1,1-,命题q :(3)y f x =-的图象关于原点对称,则函数()y f x =的图象关于点()3,0对称,则( )A .p q 且为真B .p q 或为假C .p 真q 假D .p 假q 真9. ★★★已知0a b >>,12,e e 分别为圆锥曲线22221x y a b +=和22221x y a b-=的离心率,则12lg lg e e +的值为( ) A .正数 B .负数 C .零 D .不确定10★★.函数3223125y x x x =--+在[]0,3上的最大值和最小值分别是( )A .5,15-B .5,4C .4,15--D .5,16-11.★★★ 已知直线1y kx =+与曲线3y x ax b =++切于点()1,3,则b 的值为( )A .3B .3-C .5D .5-12. ★★★设'()f x 是函数()f x 的导函数,'()y f x =的图象如图所示,则()y f x =的图象最有可能是( )二、填空题:本大题共4小题,第小题5分,共20分13★★.已知命题p :26x x -≥,q :,x Z ∈又已知“p 且q ”和“非q ”同时为假命题,则x 的值为 。
模块测试卷时间:120分钟,满分150分一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的选项中,只有一项是符合题目要求的. 1.★★ 已知::31p x ->,24:0310x q x x ->+-,则P ⌝是q ⌝的( ) A .必要不充分条件B .充分不必要条件C .既不充分也不必要条件D .充要条件2. ★★方程221ax by +=表示双曲线的必要不充分条件是( )A .0ab <B .00a b <>且或a>0且b<0C . 5ab <D .0ab >3.★★★ 已知32y x px qx =--和图象与x 轴切于()1,0,则()f x 的极值情况是( )A .极大值为1()3f ,极小值为(1)fB .极大值为(1)f ,极小值为1()3fC .极大值为1()3f ,没有极小值D .极小值为(1)f ,没有极大值4. ★★★已知动点(),P x y 满足等式34x y =+,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .两相交直线5.★★★ 的椭圆称为“优美椭圆”,设曲线C 是优美椭圆,F ,A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于( )A .060B .075C .090D .01206. ★★★已知32()26f x x x m =-+(m 为常数),在[]2,2-上有最大值3,那么此函数在[]2,3-上的最小值为( ) A .37- B .29- C .5- D .11-7. ★★M 是N 的充分不必要条件,N 是P 的充要条件,Q 是P 的必要不充分条件,则Q 是M 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. ★★★已知命题p :()log 2(01)a y ax a a a =+>≠且的图象必过定点()1,1-,命题q :(3)y f x =-的图象关于原点对称,则函数()y f x =的图象关于点()3,0对称,则( )A .p q 且为真B .p q 或为假C .p 真q 假D .p 假q 真9. ★★★已知0a b >>,12,e e 分别为圆锥曲线22221x y a b +=和22221x y a b-=的离心率,则12lg lg e e +的值为( ) A .正数 B .负数 C .零 D .不确定10★★.函数3223125y x x x =--+在[]0,3上的最大值和最小值分别是( )A .5,15-B .5,4C .4,15--D .5,16-11.★★★ 已知直线1y kx =+与曲线3y x ax b =++切于点()1,3,则b 的值为( )A .3B .3-C .5D .5-12. ★★★设'()f x 是函数()f x 的导函数,'()y f x =的图象如图所示,则()y f x =的图象最有可能是( )二、填空题:本大题共4小题,第小题5分,共20分13★★.已知命题p :26x x -≥,q :,x Z ∈又已知“p 且q ”和“非q ”同时为假命题,则x 的值为 。
高中数学学习材料马鸣风萧萧*整理制作徐闻第一中学高二综合测试数学(文科)试卷本卷分试题卷和答题卷两部分,满分150分.考试用时间120分钟. 注意事项:1.答试题卷前,考生务必将自己的姓名、班级、学校用蓝、黑墨水钢笔签字笔写在答卷上; 2.试题卷每小题得出答案后,请将答案填写在答题卷相应表格指定位置上. 答在试题卷上不得分;3.考试结束,考生只需将答题卷交回. 参考公式:用最小二乘法求线性回归方程系数公式1221ˆˆˆni ii ni i x y nx ybay bx x nx==-==--∑∑,一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在回归分析中,代表了数据点和它在回归直线上相 应位置的差异的是:( ) A .总偏差平方和 B .残差平方和 C .回归平方和 D .相关指数R 22.设a 是实数,且211ii a +++是实数,则=a ( ) A .21 B .1 C .23D .23.如果执行右边的程序框图,那么输出的S=( ) A.2450 B.2500 C.2550 D.26524.考察棉花种子经过处理跟生病之间的关系得到如下表数据:种子处理 种子未处理合计 得病 32 101 133 不得病61213274k=10S =k 50?≤2S S k=+1k k =+S输出结束开始是否合计 93 314 407根据以上数据,则( )A.种子经过处理跟是否生病有关B. 种子经过处理跟是否生病无关C.种子是否经过处理决定是否生病D. 以上都是错误的5.PA 是圆的切线,A 为切点,PBC 是圆的割线,且PB=的值为则PBBC PA ,21( ) A.2 B.21C.3 D.16. 一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是 ( )A .12B . 13C .14D .15 7.下列函数中,在区间(0,2π)上为增函数且以π为周期的函数是( ) A .x y 2cos -= B .x y sin = C .x y tan -= D .2sin x y = 8.复数)(,)1|1(|)2(2R a i a a a ∈--+--不是纯虚数,则有( )A . 0≠aB . 2≠aC . 2a 1≠-≠且aD .1-≠a9.若椭圆1522=+my x 的离心率510=e ,则m 的值为( ).A .3B .3或325 C .15 D .153515或 10.定义新运算⊕:当a b ≥时,a b a ⊕=;当a b <时, a b b ⊕=,则函数()(1)(2)f x x x x =⊕-⊕, []2,2x ∈-的最大值等于( )A .-1B .1C . 2D . 12 二、填空题(共5小题,每小题5分,满分20分) 11.复数z 满足=+=+z ,34)21(_那么i z i12.两个相似三角形的面积分别为92cm cm 和252cm ,它们的周长相差6cm ,则较大的三角形的周长为13. 研究身高和体重的关系时,求得相关指数≈2R ,可以叙述为“身高解释了76%的体重变化,而随机误差贡献了剩余的24%”所以身高对体重的效应比随机误差的效应大得多。
选修1-1模块综合测试(一)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若命题p :∀x∈R,2x 2+1>0,则¬p 是( ) A .∀x ∈R,2x 2+1≤0 B .∃x ∈R,2x 2+1>0 C .∃x ∈R,2x 2+1<0 D .∃x ∈R,2x 2+1≤0 解析:¬p :∃x ∈R,2x 2+1≤0. 答案:D2.不等式x -1x>0成立的一个充分不必要条件是( )A. -1<x <0或x >1B. x <-1或0<x <1C. x >-1D. x >1解析:本题主要考查充要条件的概念、简单的不等式的解法.画出直线y =x 与双曲线y =1x 的图象,两图象的交点为(1,1)、(-1,-1),依图知x -1x>0⇔-1<x <0或x >1 (*),显然x >1⇒(*);但(*)x >1,故选D.答案:D3.[2014·某某模拟]命题“若a >b ,则a +1>b ”的逆否命题是( ) A .若a +1≤b ,则a >b B .若a +1<b ,则a >b C .若a +1≤b ,则a ≤b D .若a +1<b ,则a <b解析:“若a >b ,则a +1>b ”的逆否命题为“若a +1≤b ,则a ≤b ”,故选C. 答案:C4.[2014·某某省日照一中模考]下列命题中,为真命题的是( ) A. ∀x ∈R ,x 2-x -1>0B. ∀α,β∈R ,sin(α+β)<sin α+sin βC. 函数y =2sin(x +π5)的图象的一条对称轴是x =45πD. 若“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,则a 的取值X 围为(-2,2)解析:本题主要考查命题的判定及其相关知识的理解.因为x 2-x -1=(x -12)2-54,所以A 错误;当α=β=0时,有sin(α+β)=sin α+sin β,所以B 错误;当x =4π5时,y =0,故C 错误;因为“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,所以“∀x ∈R ,x 2-ax +1>0”为真命题,即Δ<0,即a 2-4<0,解得-2<a <2,即a 的取值X 围为(-2,2).故选D.答案:D5.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12解析:设椭圆的另一焦点为F ,由椭圆的定义知 |BA |+|BF |=23,且|CF |+|AC |=23, 所以△ABC 的周长=|BA |+|BC |+|AC | =|BA |+|BF |+|CF |+|AC |=4 3. 答案:C6.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A.x 22-y 24=1 B.x 24-y 22=1 C.y 24-x 22=1 D. y 22-x 24=1解析:与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ,由过点(2,-2),可解得λ=-2. 所以所求的双曲线方程为y 22-x 24=1.答案:D7.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支上到原点和右焦点距离相等的点有两个,则双曲线离心率的取值X 围是( )A .e > 2B .1<e < 2C .e >2D .1<e <2解析:由题意,以原点及右焦点为端点的线段的垂直平分线必与右支交于两个点,故c2>a ,∴c a>2.答案:C8.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为( )A. 1∶πB. 2∶πC. 1∶2D. 2∶1解析:设圆柱高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π(6-x 2π)2x =14π(x 3-12x 2+36x )(0<x <6),V ′=34π(x -2)(x -6). 当x =2时,V 最大.此时底面周长为6-x =4, (6-x )∶x =4∶2=2∶1. 答案:D9.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A. 3 B .2 C. 5D. 6解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax ,因为y =x 2+1与渐近线相切,故x2+1±bax =0只有一个实根,∴b 2a 2-4=0,∴c 2-a 2a 2=4, ∴c 2a2=5,∴e = 5. 答案:C10.[2014·某某五校联考]设函数f (x )=e x(sin x -cos x )(0≤x ≤2012π),则函数f (x )的各极小值之和为( )A. -e 2π1-e2012π1-e 2πB. -e 2π1-e1006π1-eπC. -e 2π1-e1006π1-e2πD. -e 2π1-e2010π1-e2π解析:f ′(x )=(e x)′(sin x -cos x )+e x(sin x -cos x )′=2e xsin x ,若f ′(x )<0,则x ∈(π+2k π,2π+2k π),k ∈Z ;若f ′(x )>0,则x ∈(2π+2k π,3π+2k π),k ∈Z .所以当x =2π+2k π,k ∈Z 时,f (x )取得极小值,其极小值为f (2π+2k π)=e2k π+2π[sin(2π+2k π)-cos(2π+2k π)]=e2k π+2π×(0-1)=-e2k π+2π,k ∈Z .因为0≤x ≤2012π,又在两个端点的函数值不是极小值,所以k ∈[0,1004],所以函数f (x )的各极小值构成以-e 2π为首项,以e 2π为公比的等比数列,共有1005项,故函数f (x )的各极小值之和为S 1005=-e 2π-e 4π-…-e2010π=e2π1-e2010π1-e2π.答案:D11.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32解析:∵抛物线C :y 2=8x 的焦点为F (2,0),准线为x =-2,∴K (-2,0). 设A (x 0,y 0),如下图所示,过点A 向准线作垂线,垂足为B ,则B (-2,y 0).∵|AK |=2|AF |,又|AF |=|AB |=x 0-(-2)=x 0+2, ∴由|BK |2=|AK |2-|AB |2,得y 20=(x 0+2)2, 即8x 0=(x 0+2)2,解得x 0=2,y 0=±4.∴△AFK 的面积为12|KF |·|y 0|=12×4×4=8,故选B.答案:B12.[2013·某某高考]如图,F 1、F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C. 32D.62解析:本题考查椭圆、双曲线的定义和简单的几何性质.设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0) ①,点A 的坐标为(x 0,y 0).由题意a 2+b 2=3=c 2②,|OA |=|OF 1|=3,∴⎩⎪⎨⎪⎧x 20+y 20=3x 20+4y 20=4,解得x 20=83,y 20=13,又点A 在双曲线C 2上,代入①得,83b 2-13a 2=a 2b2③,联立②③解得a =2,所以e =c a =62,故选D. 答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.函数y =13ax 3-12ax 2(a ≠0)在区间(0,1)上是增函数,则实数a 的取值X 围是________.解析:y ′=ax 2-ax =ax (x -1),∵x ∈(0,1),y ′>0,∴a <0. 答案:a <014.已知命题p :∃x ∈R ,x 2+2ax +a ≤0,若命题p 是假命题,则实数a 的取值X 围是__________.解析:p 是假命题,则¬p 为真命题,¬p 为:∀x ∈R ,x 2+2ax +a >0,所以有Δ=4a 2-4a <0,即0<a <1.答案:(0,1)15.[2014·某某质检]已知a ∈R ,若实数x ,y 满足y =-x 2+3ln x ,则(a -x )2+(a +2-y )2的最小值是________.解析:(a -x )2+(a +2-y )2≥x -a +a +2-y22=x +x 2-3ln x +222.设g (x )=x+x 2-3ln x (x >0),则g ′(x )=1+2x -3x=2x +3x -1x,易知g (x )在(0,1)上为减函数,在(1,+∞)上为增函数,故g (x )≥g (1)=2,(a -x )2+(a +2-y )2≥2+222=8.答案:816.[2013·某某省某某一中月考]F 1、F 2分别是双曲线x 216-y 29=1的左、右焦点,P 为双曲线右支上一点,I 是△PF 1F 2的内心,且S △IPF 2=S △IPF 1-λS △IF 1F 2,则λ=________.解析:本题主要考查双曲线定义及标准方程的应用.设△PF 1F 2内切圆的半径为r ,则S △IPF 2=S △IPF 1-λS △IF 1F 2⇒12×|PF 2|×r =12×|PF 1|×r -12λ×|F 1F 2|×r ⇒|PF 1|-|PF 2|=λ|F 1F 2|,根据双曲线的标准方程知2a =λ·2c ,∴λ=a c =45.答案:45三、解答题(本大题共6小题,共70分)17.(10分)已知全集U =R ,非空集合A ={x |x -2x -3<0},B ={x |(x -a )(x -a 2-2)<0}.命题p :x ∈A ,命题q :x ∈B .(1)当a =12时,p 是q 的什么条件?(2)若q 是p 的必要条件,某某数a 的取值X 围. 解:(1)A ={x |x -2x -3<0}={x |2<x <3}, 当a =12时,B ={x |12<x <94},故p 是q 的既不充分也不必要条件.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,故B ={a |a <x <a 2+2},∴⎩⎪⎨⎪⎧a ≤2a 2+2≥3,解得a ≤-1或1≤a ≤2.18.(12分)已知c >0,设p :y =c x为减函数;q :函数f (x )=x +1x >1c 在x ∈[12,2]上恒成立,若“p ∨q ”为真命题,“p ∧q ”为假命题,求c 的取值X 围.解:由y =c x为减函数,得0<c <1.当x ∈[12,2]时,由不等式x +1x ≥2(x =1时取等号)知:f (x )=x +1x 在[12,2]上的最小值为2,若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1且c ≤12,所以0<c ≤12.若p 假q 真,则c ≥1且c >12,所以c ≥1.综上:c ∈(0,12]∪[1,+∞).19.(12分)[2014·海淀期末]已知函数f (x )=(x +a )e x,其中a 为常数. (1)若函数f (x )是区间[-3,+∞)上的增函数,某某数a 的取值X 围; (2)若f (x )≥e 2在x ∈[0,2]时恒成立,某某数a 的取值X 围. 解:(1)f ′(x )=(x +a +1)e x,x ∈R .因为函数f (x )是区间[-3,+∞)上的增函数,所以f ′(x )≥0,即x +a +1≥0在[-3,+∞)上恒成立. 因为y =x +a +1是增函数,所以满足题意只需-3+a +1≥0,即a ≥2. (2)令f ′(x )=0,解得x =-a -1,f (x ),f ′(x )的变化情况如下:f (0)≥e 2,解得a ≥e 2,所以此时a ≥e 2;②当0<-a -1<2,即-3<a <-1时,f (x )在[0,2]上的最小值为f (-a -1), 若满足题意只需f (-a -1)≥e 2,求解可得此不等式无解, 所以a 不存在;③当-a -1≥2,即a ≤-3时,f (x )在[0,2]上的最小值为f (2),若满足题意只需f (2)≥e 2,解得a ≥-1,所以此时a 不存在.综上讨论,所某某数a 的取值X 围为[e 2,+∞).20.(12分)已知椭圆x 29+y 25=1,F 1、F 2分别是椭圆的左、右焦点,点A (1,1)为椭圆内一点,点P 为椭圆上一点.求|PA |+|PF 1|的最大值.解:由椭圆的定义知|PF 1|+|PF 2|=2a =6, 所以|PF 1|=6-|PF 2|,这样|PA |+|PF 1|=6+|PA |-|PF 2|.求|PA |+|PF 1|的最大值问题转化为6+|PA |-|PF 2|的最大值问题, 即求|PA |-|PF 2|的最大值问题, 如图在△PAF 2中,两边之差小于第三边,即|PA |-|PF 2|<|AF 2|,连接AF 2并延长交椭圆于P ′点时, 此时|P ′A |-|P ′F 2|=|AF 2|达到最大值, 易求|AF 2|=2,这样|PA |-|PF 2|的最大值为2, 故|PA |+|PF 1|的最大值为6+ 2.21.(12分)已知椭圆M 的对称轴为坐标轴,且抛物线x 2=-42y 的焦点是椭圆M 的一个焦点,又点A (1,2)在椭圆M 上.(1)求椭圆M 的方程;(2)已知直线l 的方向向量为(1,2),若直线l 与椭圆M 交于B 、C 两点,求△ABC 面积的最大值.解:(1)由已知抛物线的焦点为(0,-2),故设椭圆方程为y 2a 2+x 2a 2-2=1.将点A (1,2)代入方程得2a 2+1a 2-2=1,整理得a 4-5a 2+4=0,解得a 2=4或a 2=1(舍去). 故所求椭圆方程为y 24+x 22=1.(2)设直线BC 的方程为y =2x +m , 设B (x 1,y 1),C (x 2,y 2),代入椭圆方程并化简得4x 2+22mx +m 2-4=0, 由Δ=8m 2-16(m 2-4)=8(8-m 2)>0, 可得m 2<8.由x 1+x 2=-22m ,x 1x 2=m 2-44,故|BC |=3|x 1-x 2|=3×16-2m22.又点A 到BC 的距离为d =|m |3,故S △ABC =12|BC |·d =m216-2m24≤142×2m 2+16-2m22= 2.因此△ABC 面积的最大值为 2.22.(12分)[2014·某某质检]已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值;(3)当a =1时,若直线l :y =kx -1与曲线y =f (x )没有公共点,求k 的最大值. 解:(1)由f (x )=x -1+a e x ,得f ′(x )=1-aex ,又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=0,即1-ae =0,解之得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x=a ,x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.(3)当a =1时,f (x )=x -1+1e x .令g (x )=f (x )-(kx -1)=(1-k )x +1ex ,则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.当k >1时,g (0)=1>0,g (1k -1)=-1+1e 1k -1<0, 又函数g (x )的图象在定义域R 上连续,由零点存在定理,可知g (x )=0至少有一实数解,与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1.当k =1时,g (x )=1e x >0,知方程g (x )=0在R 上没有实数解.所以k 的最大值为1.。
综合检测卷(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.i 是虚数单位,复数1-3i1-i 的共轭复数是( )A .2+iB .2-iC .-1+2iD .-1-2i2.演绎推理“因为对数函数y =log a x (a >0且a ≠1)是增函数,而函数y =log 12x 是对数函数,所以y =log 12x 是增函数”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .大前提和小前提都错误 3.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③回归方程y ^=b ^x +a ^必过(x ,y );④有一个2×2列联表中,由计算得K 2=13.079,则有99.9%的把握确认这两个变量间有关系. 其中错误的个数是( ) A .0 B .1 C .2 D .34.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系为( ) A .P >Q B .P =QC .P <QD .由a 的取值确定5.复数21-i 等于( )A .1+iB .1-iC .-1+iD .-1-i6.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除7.i 为虚数单位,复平面内表示复数z =-i2+i 的点在( )A .第一象限B .第二象限C .第三象限D .第四象限8.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )算得,K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”9.若大前提:任何实数的平方都大于0,小前提:a ∈R ,结论:a 2>0,那么这个演绎推理出错在( )A .大前提B .小前提C .推理形式D .没有出错10.阅读下图所示的程序框图,运行相应的程序,输出的s 值等于( )A .-3B .-10C .0D .-211.设x ,y ,z 都是正数,则三个数x +1y ,y +1z ,z +1x的值( )A .都小于2B .至少有一个不大于2C .至少有一个不小于2D .都大于212.已知x >0,由不等式x +1x≥2x ·1x =2,x +4x 2=x 2+x 2+4x 2≥3 3x 2·x 2·4x2=3,…,可以推出结论:x +a xn ≥n +1(n ∈N *),则a 等于( ) A .2n B .3n C .n 2D .n n二、填空题(本大题共4小题,每小题5分,共20分)13.若复数z =cos θ-sin θi 所对应的点在第四象限,则θ为第________象限角. 14.通过类比长方形,由命题“周长为定值l 的长方形中,正方形的面积最大,最大值为l 216”,可猜想关于长方体的相应命题为________________________________________________________________________________________________.15.已知某车间加工零件的个数x 与所花费时间y (h)之间的回归直线方程为y ^=0.01x +0.5,则加工600个零件大约需要________ h.16.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤: ①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°相矛盾,因此∠A =∠B =90°不成立;②所以一个三角形中不能有两个直角;③假设∠A ,∠B ,∠C 中有两个角是直角,不妨设∠A =∠B =90°. 正确顺序的序号排列为________.三、解答题(本大题共6小题,共70分)17.(10分)已知复数z =a 2-7a +6a 2-1+(a 2-5a -6)i(a ∈R ),试求实数a 取什么值时,z 分别为(1)实数;(2)虚数;(3)纯虚数.18.(12分)已知a >5,求证:a -5-a -3<a -2-a .19.(12分)为了研究教师工作积极性和对待教育改革态度的关系,随机抽取了278名教师进行问卷调查,所得数据如下表:0.001的前提下认为态度与工作积极性有关?20.(12分)已知△ABC 的三边长为a 、b 、c ,且其中任意两边长均不相等.若1a ,1b ,1c成等差数列. (1)比较b a 与 cb的大小,并证明你的结论. (2)求证:B 不可能是钝角.21.(12分)某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:(1)画出散点图;(2)求线性回归方程;(3)试预测广告费支出为10百万元时,销售额多大?22.(12分)观察以下各等式:tan 30°+tan 30°+tan 120°=tan 30°·tan 30°·tan 120°,tan 60°+tan 60°+tan 60°=tan 60°·tan 60°·tan 60°,tan 30°+tan 45°+tan 105°=tan 30°·tan 45°·tan 105°.分析上述各式的共同特点,猜想出反映一般规律的等式,并加以证明.。
学期综合测评(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若函数f (x )的导数为-2x 2+1,则f (x )可以等于( ) A .-2x 3+1 B .x +1 C .-4x D .-23x 3+x答案 D解析 选项A 中函数的导数为f ′(x )=-6x 2;选项B 中函数的导数为f ′(x )=1;选项C 中函数的导数为f ′(x )=-4;选项D 中函数的导数为f ′(x )=-2x 2+1.故选D.2.给出下列三个命题:①“全等三角形的面积相等”的否命题; ②“若lg x 2=0,则x =-1”的逆命题;③“若x ≠y 或x ≠-y ,则|x |≠|y |”的逆否命题. 其中真命题的个数是( )A .0B .1C .2D .3答案 B解析 对于①,否命题是“不全等的三角形的面积不相等”,它是假命题;对于②,逆命题是“若x =-1,则lg x 2=0”,它是真命题;对于③,逆否命题是“若|x |=| y |,则x =y 且x =-y ”,它是假命题,故选B.3.若集合P ={1,2,3,4},Q ={x |x ≤0或x ≥5,x ∈R },则P 是綈Q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 ∵Q ={x |x ≤0或x ≥5,x ∈R }, ∴綈Q ={x |0<x <5,x ∈R }, ∴P ⇒綈Q ,但綈Q ⇒/P ,∴P 是綈Q 的充分不必要条件,选A.4.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 答案 C解析 因为全称命题p :∀x ∈M ,p (x )的否定綈p 是特称命题:∃x 0∈M ,綈p (x 0),所以綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0,故选C.5.已知命题p :∃x 0∈R ,x 0-2>lg x 0,命题q :∀x ∈R ,sin x <x ,则( )A .命题p ∨q 是假命题B .命题p ∧q 是真命题C .命题p ∧(綈q )是真命题D .命题p ∨(綈q )是假命题 答案 C解析 对于命题p :取x =10,则有10-2>lg 10, 即8>1,故命题p 为真命题; 对于命题q ,取x =-π2,则sin x =sin ⎝ ⎛⎭⎪⎫-π2=-1, 此时sin x >x ,故命题q 为假命题,因此命题p ∨q 是真命题,命题p ∧q 是假命题, 命题p ∧(綈q )是真命题,命题p ∨(綈q )是真命题, 故选C.6.我们把离心率之差的绝对值小于12的两条双曲线称为“相近双曲线”.已知双曲线C :x 24-y 212=1,则下列双曲线中与C 是“相近双曲线”的为( ) A .x 2-y 2=1 B .x 2-y 22=1C .y 2-2x 2=1 D.y 29-x 272=1 答案 B解析 双曲线C 的离心率为2,对于A ,其离心率为2,不符合题意;对于B ,其离心率为3,符合题意;对于C ,其离心率为62,不符合题意;对于D ,其离心率为3,不符合题意.故选B.7.从双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 1引圆x 2+y 2=a 2的切线,切点为T .延长F 1T交双曲线右支于P 点,若M 为线段F 1P 的中点,O 为坐标原点,则|MO |-|MT |与b -a 的大小关系为( )A .|MO |-|MT |>b -aB .|MO |-|MT |=b -aC .|MO |-|MT |<b -aD .不确定 答案 B解析 ∵F 1T 是圆的切线, ∴OT ⊥TF 1,∵|OF 1|=c ,|OT |=a ,∴|F 1T |=|OF 1|2-|OT |2=c 2-a 2=b . 设接双曲线的右焦点为F 2, 连接PF 2,则|OM |=12|PF 2|,又∵|F 1M |=|MP |,|PF 1|-|PF 2|=2a , ∴12|PF 1|-12|PF 2|=a , ∴|PM |-|OM |=a , ∴b +|TM |-|OM |=a , ∴|OM |-|TM |=b -a ,故选B.8.函数y =x 2e x的单调递减区间是( ) A .(-1,2)B .(-∞,-1)与(1,+∞)C .(-∞,-2)与(0,+∞)D .(-2,0) 答案 D解析 y ′=(x 2e x )′=2x e x +x 2e x =x e x (x +2).∵e x >0,∴x e x(x +2)<0,即-2<x <0,故函数y =x 2e x的单调递减区间是(-2,0).故选D.9.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )答案 C解析 因为f (x )在x =-2处取得极小值,所以在x =-2附近的左侧f ′(x )<0,当x <-2时,xf ′(x )>0;在x =-2附近的右侧f ′(x )>0,当-2<x <0时,xf ′(x )<0,故选C.10.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱底面周长与高的比为( )A .1∶2B .1∶πC .2∶1D .2∶π答案 C解析 设圆柱的高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π⎝ ⎛⎭⎪⎫6-x 2π2x =14π(x 3-12x 2+36x )(0<x <6),V ′=34π(x -2)(x -6).当x =2时,V 最大.此时底面周长为6-x =4,4∶2=2∶1,故选C.11.如图,F 1、F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点,P 是椭圆上任一点,过一焦点引∠F 1PF 2的外角平分线的垂线,则垂足Q 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线答案 A解析 延长垂线F 1Q 交F 2P 的延长线于点A ,在等腰三角形APF 1中,|PF 1|=|AP |,从而|AF 2|=|AP |+|PF 2|=|PF 1|+|PF 2|=2a ,所以|OQ |=12|AF 2|=a .12.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32答案 B解析 ∵抛物线C :y 2=8x 的焦点为F (2,0),准线为x =-2,∴K (-2,0).设A (x 0,y 0),如右图所示,过点A 向准线作垂线,垂足为B ,则B (-2,y 0).∵|AK |=2|AF |, 又|AF |=|AB |=x 0-(-2)=x 0+2, ∴由|BK |2=|AK |2-|AB |2,得y 20=(x 0+2)2, 即8x 0=(x 0+2)2,解得x 0=2,y 0=±4.∴△AFK 的面积为12|KF |·|y 0|=12×4×4=8,故选B.第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.命题“∃x ∈{正实数},使x <x ”的否定为________,是________(填“真”或“假”)命题.答案 ∀x ∈{正实数},使x ≥x 假解析 原命题的否定为“∀x ∈{正实数},使x ≥x ”,是假命题.14.如图,椭圆的中心在坐标原点,当FB →⊥A B →时,此类椭圆称为“黄金椭圆”,可推算出“黄金椭圆”的离心率e =________.答案5-12解析 设椭圆方程为x 2a 2+y 2b2=1(a >b >0),由题意得⎩⎨⎧|AB |2=a 2+b 2,|BF |=b 2+c 2=a ,|AF |=a +c ,∵B F →⊥B A →,∴|AB |2+|BF |2=|AF |2,∴(a +c )2=a 2+b 2+a 2, ∴c 2+ac -a 2=0.∴e 2+e -1=0,又0<e <1, ∴e =5-12. 15.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a 的值等于________.答案 1解析 ∵f (x )是奇函数,∴f (x )在(0,2)上的最大值为-1. 当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0得x =1a.又a >12,∴0<1a<2.当f ′(x )>0时,x <1a ,f (x )在⎝ ⎛⎭⎪⎫0,1a 上递增;当f ′(x )<0时,x >1a,f (x )在⎝ ⎛⎭⎪⎫1a ,2上递减.∴f (x )max =f ⎝ ⎛⎭⎪⎫1a =ln 1a -a ·1a=-1,∴ln 1a=0,得a =1.16.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为抛物线C 的焦点.若|FA |=2|FB |,则k 等于________.答案223解析 设A (x 1,y 1),B (x 2,y 2)由⎩⎪⎨⎪⎧y =k x +2,y 2=8x ,得k 2x 2+(4k 2-8)x +4k 2=0.∴x 1+x 2=42-k2k 2,x 1x 2=4.由抛物线定义得|AF |=x 1+2,|BF |=x 2+2, 又∵|AF |=2|BF |,∴x 1+2=2x 2+4,∴x 1=2x 2+2,代入x 1x 2=4,得x 22+x 2-2=0, ∴x 2=1或-2(舍去),∴x 1=4, ∴42-k2k 2=5,∴k 2=89,经检验Δ>0,又∵k >0,∴k =223.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知集合A ={x |x 2-3x +2≤0},集合B ={y |y =x 2-2x +a },集合C ={x |x 2-ax -4≤0},命题p :A ∩B =∅,命题q :A ⊆C .(1)若命题p 为假命题,某某数a 的取值X 围; (2)若命题p ∧q 为假命题,某某数a 的取值X 围. 解 ∵y =x 2-2x +a =(x -1)2+a -1≥a -1,∴B ={y |y ≥a -1},A ={x |x 2-3x +2≤0}={x |1≤x ≤2},C ={x |x 2-ax -4≤0}. (1)由命题p 是假命题,可得A ∩B ≠∅,即得a -1≤2,∴a ≤3.(2)∵“p ∧q 为假命题”,则其反面为“p ∧q 为真命题”, ∴p ,q 都为真命题,即A ∩B =∅且A ⊆C ,∴有⎩⎪⎨⎪⎧a -1>2,1-a -4≤0,4-2a -4≤0,解得a >3.∴实数a 的取值X 围为a ≤3.18.(本小题满分12分)已知命题p :∃x 0∈[-1,1],满足x 20+x 0-a +1>0,命题q :∀t ∈(0,1),方程x 2+y 2t 2-2a +2t +a 2+2a +1=1都表示焦点在y 轴上的椭圆,若命题p∨q 为真命题,p ∧q 为假命题,某某数a 的取值X 围.解 因为∃x 0∈ [-1,1],满足x 20+x 0-a +1>0,所以只需(x 20+x 0-a +1)max >0,即3-a >0,所以命题p 真时,a <3.因为∀t ∈(0,1),方程x 2+y 2t 2-2a +2t +a 2+2a +1=1都表示焦点在y 轴上的椭圆,所以t 2-(2a +2)t +a 2+2a +1>1,t 2-(2a +2)t +a 2+2a >0,即(t -a )[t -(a +2)]>0,对t ∈(0,1)恒成立,只需a +2≤0或a ≥1,得a ≤-2或a ≥1, 所以命题q 为真时,a ≤-2或a ≥1.因为p ∨q 为真命题,p ∧q 为假命题,所以p ,q 两个命题一真一假. 若p 真q 假,则⎩⎪⎨⎪⎧a <3,-2<a <1,所以-2<a <1.若p 假q 真,则⎩⎪⎨⎪⎧a ≥3,a ≤-2或a ≥1,所以a ≥3.综上所述:a 的取值X 围是(-2,1)∪[3,+∞). 19.(本小题满分12分)设函数f (x )=x 3-kx 2+x (k ∈R ). (1)当k =1时,求函数f (x )的单调区间;(2)当k <0时,求函数f (x )在[k ,-k ]上的最小值m 和最大值M . 解 f ′(x )=3x 2-2kx +1. (1)当k =1时,f ′(x )=3x 2-2x +1=3⎝ ⎛⎭⎪⎫x -132+23>0, ∴f (x )在R 上单调递增.(2)当k <0时,f ′(x )=3x 2-2kx +1,其开口向上,对称轴x =k3,且过点(0,1).①当Δ=4k 2-12=4(k +3)(k -3)≤0, 即-3≤k <0时,f ′(x )≥0,f (x )在[k ,-k ]上单调递增.∴m =f (x )min =f (k )=k ,M =f (x )max =f (-k )=-2k 3-k .②当Δ=4k 2-12>0,即k <-3时,令f ′(x )=0 得x 1=k +k 2-33,x 2=k -k 2-33,且k <x 2<x 1<0.∴m =min{f (k ),f (x 1)},M =max{f (-k ),f (x 2)}.又f (x 1)-f (k )=x 31-kx 21+x 1-k =(x 1-k )(x 21+1)>0, ∴m =f (k )=k ,又f (x 2)-f (-k )=x 32-kx 22+x 2-(-k 3-k ·k 2-k )=(x 2+k )[(x 2-k )2+k 2+1]<0, ∴M =f (-k )=-2k 3-k .综上,当k <0时,f (x )的最小值m =k , 最大值M =-2k 3-k .20.(本小题满分12分)设椭圆C 1与抛物线C 2的焦点均在x 轴上,C 1的中心及C 2的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表:(1)求曲线C 1,C 2(2)设直线l 过抛物线C 2的焦点F ,l 与椭圆交于不同的两点M ,N ,当OM →·ON →=0时,求直线l 的方程.解 (1)由题意,可知点(-2,0)是椭圆的左顶点,再根据椭圆上点的横、纵坐标的取值X 围,知点⎝ ⎛⎭⎪⎫2,22在椭圆上. 设椭圆C 1的标准方程为x 2a 2+y 2b2=1(a >b >0),由此可得a =2,24+⎝ ⎛⎭⎪⎫222b 2=1,∴b 2=1,∴椭圆C 1的标准方程为x 24+y 2=1.由点(3,-23),(4,-4)在抛物线C 2上,知抛物线开口向右. 设其方程为y 2=2px (p >0),∴12=6p ,∴p =2, ∴抛物线C 2的标准方程为y 2=4x .(2)由(1),知F (1,0).当直线l 的斜率不存在时,l 的方程为x =1.由⎩⎪⎨⎪⎧x =1,x 24+y 2=1,得l 与椭圆C 1的两个交点为⎝ ⎛⎭⎪⎫1,32,⎝ ⎛⎭⎪⎫1,-32,∴OM →·ON →=14≠0,∴直线l 的斜率存在.设直线l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k x -1,x 24+y 2=1,消去y ,得(1+4k 2)x 2-8k 2x +4k 2-4=0,Δ=64k 4-4(1+4k 2)(4k 2-4)=48k 2+16>0,x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.∵OM →·ON →=0,∴x 1x 2+y 1y 2=x 1x 2+k (x 1-1)·k (x 2-1)=(1+k 2)·x 1x 2-k 2(x 1+x 2)+k 2=(1+k 2)·4k 2-41+4k 2-k 2·8k 21+4k2+k 2=0,解得k =±2,∴直线l 的方程为2x -y -2=0或2x +y -2=0.21.(本小题满分12分)设函数f (x )=a3x 3+bx 2+cx +d (a >0),且方程f ′(x )-9x =0的两个根分别为1,4.若f (x )在(-∞,+∞)内无极值点,求a 的取值X 围.解 由f (x )=a3x 3+bx 2+cx +d ,得f ′(x )=ax 2+2bx +c .因为f ′(x )-9x =0,即ax 2+2bx +c -9x =0的两个根分别为1,4,所以⎩⎪⎨⎪⎧a +2b +c -9=0,16a +8b +c -36=0.(*)由于a >0,所以“f (x )=a3x 3+bx 2+cx +d 在(-∞,+∞)内无极值点”等价于“f ′(x )=ax 2+2bx +c ≥0在(-∞,+∞)内恒成立”.由(*)式得2b =9-5a ,c =4a . 又Δ=(2b )2-4ac =9(a -1)(a -9).由⎩⎪⎨⎪⎧a >0,Δ=9a -1a -9≤0,得1≤a ≤9,即a 的取值X 围是[1,9].22.(本小题满分12分)如图,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心,|CO |为半径作圆,设圆C 与准线l 交于不同的两点M ,N .(1)若点C 的纵坐标为2,求|MN |; (2)若|AF |2=|AM |·|AN |,求圆C 的半径. 解 (1)抛物线y 2=4x 的准线l 的方程为x =-1. 由点C 的纵坐标为2,得点C 的坐标为(1,2), 所以点C 到准线l 的距离d =2,又|CO |=5, 所以|MN |=2|CO |2-d 2=25-4=2.(2)设C ⎝ ⎛⎭⎪⎫y 204,y 0,则圆C 的方程为 ⎝ ⎛⎭⎪⎫x -y 2042+(y -y 0)2=y 4016+y 20,即x 2-y 202x +y 2-2y 0y =0.由x =-1,得y 2-2y 0y +1+y 202=0,设M (-1,y 1),N (-1,y 2),则⎩⎪⎨⎪⎧Δ=4y 2-4⎝ ⎛⎭⎪⎫1+y 202=2y 20-4>0,y 1y 2=y 22+1.由|AF |2=|AM |·|AN |,得|y 1y 2|=4, 所以y 202+1=4,解得y 0=±6,此时Δ>0.所以圆心C 的坐标为⎝ ⎛⎭⎪⎫32,6或⎝ ⎛⎭⎪⎫32,-6,从而|CO |2=334,|CO |=332,即圆C 的半径为332.word - 11 - / 11。
综合检测时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若a >b ,则a +1>b ”的逆否命题是( ) A .若a +1≤b ,则a >b B .若a +1<b ,则a >b C .若a +1≤b ,则a ≤bD .若a +1<b ,则a <b解析:“若a >b ,则a +1>b ”的逆否命题为“若a +1≤b ,则a ≤b ”,故选C. 答案:C2.函数y =(x -a )(x -b )在x =a 处的导数为( )A .abB .-a (a -b )C .0D .a -b 解析:∵y =x 2-(a +b )x +ab ,∴y ′=2x -(a +b ), ∴y ′|x =a =2a -(a +b)=a -b.答案:D3.过点P(1,-3)的抛物线的标准方程为( ) A .x 2=13y 或x 2=-13yB .x 2=13yC .y 2=-9x 或x 2=13yD .x 2=-13y 或y 2=9x解析:P (1,-3)在第四象限,所以抛物线只能开口向右或向下,设方程为y 2=2px (p >0)或x 2=-2py (p >0)代入P (1,-3)得y 2=9x 或x 2=-13y .答案:D4.已知函数f (x )=x 3-3x 2-9x ,则函数f (x )的单调递增区间是( ) A .(3,9) B .(-∞,-1),(3,+∞) C .(-1,3)D .(-∞,3),(9,+∞)解析:∵f (x )=x 3-3x 2-9x ,∴f ′(x )=3x 2-6x -9=3(x 2-2x -3). 令f ′(x )>0知x >3或x <-1. 答案:B5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =43x ,则该双曲线的离心率为( )A.53B.43C.54D.32 解析:由题意得b a =43,e 2=a 2+b 2a 2=1+b 2a 2=1+169=259.答案:A6.设a ,b ,c 均为正实数,则“a >b ”是“ac >bc ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:根据充分性和必要性的概念判断.因为a ,b ,c 是正实数,所以a >b 等价于ac >bc ,即“a >b ”是“ac >bc ”的充要条件,故选C.答案:C7.已知命题p :∃x ∈(-∞,0),2x <3x ;命题q :∀x ∈R ,f (x )=x 3-x 2+6的极大值为6,则下面选项中真命题是( ) A .(綈p )∧(綈q ) B .(綈p )∨(綈q ) C .p ∨(綈q )D .p ∧q解析:由2x <3x 得(23)x <1,当x <0时,(23)x >1,所以命题p 为假命题.綈p 为真,选B.答案:B8.已知曲线y =x 4+ax 2+1在点(-1,a +2)处切线的斜率为8,则a =( ) A .9 B .6 C .-9D .-6解析:y ′=4x 3+2ax ,由导数的几何意义知在点(-1,a +2)处的切线斜率k =y ′|x =-1=-4-2a =8,解得a =-6. 答案:D9.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a ,b ,m 为边长的三角形一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 解析:双曲线的离心率e 21=a 2+b 2a2,椭圆的离心率e 22=m 2-b 2m 2,由已知e 21e 22=1,即a 2+b 2a2×m 2-b 2m 2=1,化简,得a 2+b 2=m 2. 答案:C10.已知f(x)的导函数f′(x)图象如图所示,那么f(x)的图象最有可能是图中的()解析:∵x∈(-∞,-2)时,f′(x)<0,∴f(x)为减函数;同理f(x)在(-2,0)上为增函数,(0,+∞)上为减函数.答案:A11.已知函数y=f(x),数列{a n}的通项公式是a n=f(n)(n∈N*),那么“函数y=f(x)在[1,+∞)上单调递增”是“数列{a n}是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当函数y=f(x)在[1,+∞)上单调递增,“数列{a n}是递增数列”一定成立.当函数y=f(x)在[1,2]上先减后增,且f(1)<f(2)时,数列{a n}也可以单调递增,因此“函数y=f(x)在[1,+∞)上单调递增”是“数列{a n}是递增数列”的充分不必要条件,故选A.答案:A12.双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点为F1,F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()A.(1,3) B.(1,3]C.(3,+∞) D.[3,+∞)解析:由双曲线的定义得|PF1|-|PF2|=|PF2|=2a,|PF1|=2|PF2|=4a,∵|PF1|+|PF2|≥|F1F2|,∴6a ≥2c ,ca≤3,故双曲线离心率的取值范围是(1,3],选B. 答案:B二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上)13.函数f (x )=x 3-3a 2x +2a (a >0)的极大值为正数,极小值为负数,则a 的取值范围是________.解析:∵f ′(x )=3x 2-3a 2 =3(x -a )(x +a )(a >0),∴f ′(x )>0时,得:x >a 或x <-a , f ′(x )<0时,得-a <x <a .∴当x =a 时,f (x )有极小值,x =-a 时,f (x )有极大值. 由题意得:⎩⎪⎨⎪⎧a 3-3a 3+2a <0,-a 3+3a 3+2a >0,a >0,解得a >1.答案:(1,+∞)14.若命题“∃x ∈R ,使得x 2+(1-a )x +1<0”是真命题,则实数a 的取值范围是________. 解析:由题意可知,Δ=(1-a )2-4>0, 解得a <-1或a >3.答案:(-∞,-1)∪(3,+∞)15.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B 两点,若A 到抛物线准线的距离为4,则|AB |=________.解析:设A (x A ,y A ),B (x B ,y B ),∵y 2=4x ,∴抛物线准线为x =-1,F (1,0),又A 到抛物线准线的距离为4,∴x A +1=4,∴x A =3,∵x A x B =p 24=1,∴x B =13,∴|AB |=x A +x B +p =3+13+2=163.答案:16316. 已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.解析:由双曲线的方程可知a =1,c =2, ∴||PF 1|-|PF 2||=2a =2, ∴|PF 1|2-2|PF 1||PF 2|+|PF 2|2=4, ∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=(2c )2=8, ∴2|PF 1||PF 2|=4,∴(|PF 1|+|PF 2|)2=8+4=12, ∴|PF 1|+|PF 2|=2 3. 答案:2 3三、解答题(本大题共有6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(12分)已知c >0,设命题p :函数y =c x 为减函数.命题q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x >1c 恒成立.如果p 或q 为真命题,p 且q 为假命题,求c 的取值范围.解析:由命题p 为真知,0<c <1, 由命题q 为真知,2≤x +1x ≤52,要使此式恒成立,需1c <2,即c >12,若p 或q 为真命题,p 且q 为假命题, 则p 、q 中必有一真一假, 当p 真q 假时, c 的取值范围是0<c ≤12;当p 假q 真时,c 的取值范围是c ≥1.综上可知,c 的取值范围是⎩⎨⎧⎭⎬⎫c ⎪⎪0<c ≤12或c ≥1. 18.(12分)已知函数f (x )=x 3+ax 2+bx +c (x ∈[-1,2]),且函数f (x )在x =1和x =-23处都取得极值. (1)求a ,b 的值;(2)求函数f (x )的单调递增区间.解析:(1)∵f (x )=x 3+ax 2+bx +c ,∴f ′(x )=3x 2+2ax +b .由题易知,⎩⎪⎨⎪⎧f ′⎝⎛⎭⎫-23=0,f ′(1)=0,解得⎩⎪⎨⎪⎧a =-12,b =-2.(2)由(1)知,f ′(x )=3x 2-x -2=(3x +2)(x -1), ∵当x ∈⎣⎡⎭⎫-1,-23时,f ′(x )>0;当x ∈⎝⎛⎭⎫-23,1时,f ′(x )<0; 当x ∈(1,2]时,f ′(x )>0.∴f (x )的单调递增区间为⎣⎡⎭⎫-1,-23和(1,2]. 19.(12分)已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A 、B 两点. (1)若直线l 的倾斜角为60°,求|AB |的值;(2)若|AB |=9,求线段AB 的中点M 到准线的距离.解析:(1)因为直线l 的倾斜角为60°,如图.所以其斜率k =tan 60°=3,又F (32,0).所以直线l 的方程为y =3(x -32).联立⎩⎪⎨⎪⎧y 2=6x ,y =3(x -32)消去y 得x 2-5x +94=0.若设A (x 1,y 1), B (x 2,y 2).则x 1+x 2=5, 而|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p .∴|AB |=5+3=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义知|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p =x 1+x 2+3,所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3,又准线方程是x =-32,所以M 到准线的距离等于3+32=92.20.(12分)已知函数f (x )=f ′(1)e ·e x -f (0)·x +12x 2(e 是自然对数的底数).(1)求函数f (x )的解析式和单调区间;(2)若函数g (x )=12x 2+a 与函数f (x )的图象在区间[-1,2]上恰有两个不同的交点,求实数a 的取值范围.解析:(1)由已知得f ′(x )=f ′(1)ee x-f (0)+x , 令x =1,得f ′(1)=f ′(1)-f (0)+1, 即f (0)=1.又f (0)=f ′(1)e,所以f ′(1)=e.从而f (x )=e x -x +12x 2.显然f ′(x )=e x -1+x 在R 上单调递增且f ′(0)=0, 故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. ∴f (x )的单调递减区间是(-∞,0), 单调递增区间是(0,+∞). (2)由f (x )=g (x )得a =e x -x . 令h (x )=e x -x ,则h ′(x )=e x -1. 由h ′(x )=0得x =0.所以当x ∈(-1,0)时,h ′(x )<0; 当x ∈(0,2)时,h ′(x )>0.∴h (x )在(-1,0)上单调递减,在(0,2)上单调递增. 又h (0)=1,h (-1)=1+1e,h (2)=e 2-2且h (-1)<h (2).∴两个图象恰有两个不同的交点时,实数a 的取值范围是⎝⎛⎦⎤1,1+1e . 21.( 13分)如图,已知中心在原点O ,焦点在x 轴上的椭圆C 的离心率为32,点A ,B 分别是椭圆C 的长轴、短轴的端点,点O 到直线AB 的距离为655.(1)求椭圆C 的标准方程;(2)已知点E (3,0),设点P ,Q 是椭圆C 上的两个动点,满足EP ⊥EQ ,求EP →·QP →的取值范围. 解析:(1)由离心率e =c a =32,得b a =1-e 2=12.∴a =2b .① ∵原点O 到直线AB 的距离为655,直线AB 的方程为bx -ay +ab =0,∴ab a 2+b 2=655.②将①代入②,得b 2=9,∴a 2=36. 则椭圆C 的标准方程为x 236+y 29=1.(2)∵EP ⊥EQ ,∴EP →·EQ →=0, ∴EP →·QP →=EP →·(EP →-EQ →)=EP →2设P (x ,y ),则y 2=9-x 24,∴EP →·QP →=EP →2=(x -3)2+y 2 =x 2-6x +9+9-x 24.=34(x -4)2+6. ∵-6≤x ≤6.∴6≤34(x -4)2+6≤81,则EP →·QP →的取值范围为[6,81].22.(13分)在一定面积的水域中养殖某种鱼类,每个网箱的产量p 是网箱个数x 的一次函数,如果放置4个网箱,则每个网箱的产量为16吨;如果放置7个网箱,则每个网箱的产量为10吨,由于该水域面积限制,最多只能放置10个网箱. (1)试问放置多少个网箱时,总产量Q 最高?(2)若鱼的市场价为m 万元/吨,养殖的总成本为(5ln x +1)万元. ①当m =0.25时,应放置多少个网箱才能使总收益y 最大? ②当m ≥0.25时,求使得收益y 最高的所有可能的x 值组成的集合.解析:(1)设p =ax +b ,由已知得⎩⎪⎨⎪⎧ 16=4a +b ,10=7a +b ,所以⎩⎪⎨⎪⎧a =-2,b =24,所以p =-2x +24,所以Q=px =(-2x +24)x =-2(x -6)2+72(x ∈N *,x ≤10),所以当x =6时,f (x )最大,即放置6个网箱时,可使总产量达到最大.(2)总收益为y =f (x )=(-2x 2+24x )m -(5ln x +1)(x ∈N *,x ≤10),①当m =0.25时,f (x )=(-2x 2+24x )×14-(5ln x +1)=-12x 2+6x -5ln x -1,所以f ′(x )=-(x -1)(x -5)x,当1<x <5时,f ′(x )>0,当5<x <10时,f ′(x )<0,所以x =5时,函数取得极大值,也是最大值.所以应放置5个网箱才能使总收益y 最大; ②当m ≥0.25时,f (x )=(-2x 2+24x )m -(5ln x +1), 所以f ′(x )=-4mx 2+24mx -5x,令f ′(x )=0,即-4mx 2+24mx -5=0,因为m ≥0.25,所以Δ=16m (36m -5)>0,方程-4mx 2+24mx -5=0的两根分别为x 1=3-9-54m,x 2=3+9-54m,因为m ≥0.25,所以x 1≤1.5≤x 2<6,所以当x ∈(1,x 2)时,f ′(x )>0,当x 2<x <10时,f ′(x )<0,所以x =x 2时,函数取得极大值,也是最大值.所以使得收益y 最高的所有可能的x 值组成的集合为{5,6}.。
A .输出m ;交换m 和n 的值B .交换m 和n 的值;输出 mC .输出n ;交换m 和n 的值D .交换m 和n 的值;输出n7.按照图1――图3的规律,第10个图中圆点的个数为( )个.A . 40B . 36C . 44D . 52&已知二次函数 f (x ) =ax bx c 的导数为f'(x ) , f '(0) 0,对于任意实数 x 都有、选择题:1 .下列命题正确的是( ) A .虚数分正虚数和负虚数 B .实数集与复数集的交集为实数集 c .实数集与虚数集的交集是 {0}2 .下列各式中,最小值等于 2的是( D .纯虚数集与虚数集的并集为复数 ) 2 x y x +5 尺 1 x x A .B. --------------- C . tan D . 2 2 y x x 2 4 tan 寸 1 3.已知三次函数 f (x ) = -x 3- (4m v 1)x 2+ (15m -2n v 7)x + 2 在 x € ( —a, )是增函数,3 则m 的取值范围是( ) A . n <2 或 n >4 B . — 4<n < — 2 C . 2<n <4 D .以上皆不正确 4. 函数f x 的定义域为 a,b ,导函数「x 在a,b 内的图像如图所示, 则函数f x 在a, b 内有极小值点 A . 1个 B . 2个 C . 3个 D . 4个5. 下面对相关系数r 描述正确的是() A . r 0表明两个变量负相关 B . r 1表明两个变量正相关C . r 只能大于零D . | r |越接近于0,两个变量相关关系越弱 6.下面的程序框图的作用是输出两数中的较大者,则①②处分别为( )f(x) _0」 f ⑴的最小值为 f'(0) A . 3 B 5 C .2 D 3 2 2 9.下表为某班 5位同学身高x (单位: cm )与体重 y (单位 kg ) 的数据, 若两个量间的回归直线方程为 y=1.16x ・a ,则a 的值为( ) A . -121.04 B . 123.2 C . 21 D . -45.1216. 若x,厂 R 且满足x 3^2,则3x 27y 1的最小值是1 ]2 117. 若a 0,贝y a " . a ■: —2的最大值为 __________________a V a三、解答题: 10.用反证法证明命题:“ a,b,c,d R , a b =1, c d =1,且 ac bd 1,则 a,b,c,d 中至少有一个负数”时的假设为( A . a, b,c,d 中至少有一个正数 B . a, b, c, d 全为正数 C . a,b, c,d 全都大于等于 0 D . a,b,c,d 中至多有一个负数 二、填空题: 11.关于x 的4- i = 0的实数解为 12. 用支付宝在淘宝网购物有以下几步: ②淘宝网站收到买家的收货确认信息, 无问题,在网上确认收货;④买家登录淘宝网挑选商品; 司发货给买家. 13. 将正整数 ①买家选好商品,点击购买按钮,并付款到支付宝; 将支付宝里的货款付给卖家; ③买家收到货物,检验 ⑤卖家收到购买信息,通过物流公 他们正确的顺序依次为 _________ 1,2,3,……按照如图的规律排列,则100应在第列. 7 8 9 1015141314.已知函数 3f (x ) =x ax 在R 上有两个极值点,则实数 a 的取值范围是15.若 a b 0,则 a 1b(a 「b) 的最小值是 ______________218.复数z = 1 -i a -3a 2 i ( a R),(1 )若Z=z,求|z|; (2)若在复平面内复数z对应的点在第一象限,求a的范围.19.证明不等式:*一y (其中x, y皆为正数).y x320.设函数f(x)=x -6x 5,x R.(1 )求f (x)的单调区间和极值;(2)若关于x的方程f(x) =a有3个不同实根,求实数a的取值范围.(3)已知当* (1「:)时,f(x) _k(x-1)恒成立,求实数k的取值范围21.已知x =1是函数f (x) =mx3_3(m亠1)x2亠nx亠1的一个极值点,其中m, n三R, m:::0(1)求m与n的关系式;(2)求f (x)的单调区间;(3)当x •[」,1],函数y二f (x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围。
高中数学学习材料唐玲出品综合测试(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是()A.命题“直角相等”的条件和结论分别是“直角”和“相等”B.语句“当a>1时,方程x2-4x+a=0有实根”不是命题C.命题“矩形的对角线互相垂直且平分”是真命题D.命题“当a>4时,方程x2-4x+a=0有实根”是假命题答案 D2.如果命题“綈p且綈q”是真命题,那么下列结论中正确的是()A.“p或q”是真命题B.“p且q”是真命题C.“綈p”为真命题D.以上都有可能解析若“綈p且綈q”是真命题,则綈p,綈q均为真命题,即命题p、命题q都是假命题,故选C.答案 C3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12x B .y =±2x C .y =±4xD .y =±14x解析 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,∴b a =12,故双曲线的渐近线方程为y =±12x ,选A.答案 A4.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( )A .椭圆B .双曲线C .抛物线D .圆解析 当sin θ=1时,曲线表示圆. 当sin θ<0时,曲线表示的双曲线. 当sin θ>0时,曲线表示椭圆. 答案 C5.曲线y =x 3+1在点(-1,0)处的切线方程为( ) A .3x +y +3=0 B .3x -y +3=0 C .3x -y =0D .3x -y -3=0解析 y ′=3x 2,∴y ′| x =-1=3,故切线方程为y =3(x +1),即3x -y +3=0. 答案 B6.下列命题中,正确的是( )A .θ=π4是f (x )=sin(x -2θ)的图像关于y 轴对称的充分不必要条件B .|a |-|b |=|a -b |的充要条件是a 与b 的方向相同C .b =ac 是a ,b ,c 三数成等比数列的充分不必要条件D .m =3是直线(m +3)x +my -2=0与mx -6y +5=0互相垂直的充要条件答案 A7.函数f (x )=x 2+a ln x 在x =1处取得极值,则a 等于( ) A .2 B .-2 C .4D .-4解析 f (x )的定义域为(0,+∞), 又f ′(x )=2x +ax ,∴由题可知,f ′(1)=2+a =0,∴a =-2. 当a =-2时,f ′(x )=2x -2x =2(x -1)(x +1)x , 当0<x <1时,f ′(x )<0. 当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极值. 故选B. 答案 B8.设P 是椭圆x 29+y 24=1上一点,F 1,F 2是椭圆的两个焦点,则cos ∠F 1PF 2的最小值是( )A .-19B .-1C.19D.12解析 由椭圆方程a =3,b =2,c =5, ∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 1|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-|F 1F 2|2-2|PF 1||PF 2|2|PF 1|·|PF 2| =(2a )2-(2c )2-2|PF 1||PF 2|2|PF 1|·|PF 2| =162|PF 1|·|PF 2|-1.∵|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=9, ∴cos ∠F 1PF 2≥162×9-1=-19,故选A. 答案 A9.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b 1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n2;③设P (x 1,y 1)为圆O 1:x 2+y 2=9上任一点,圆O 2以Q (a ,b )为圆心且半径为1.当(a -x 1)2+(b -y 1)2=2时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个解析 考查不等式的性质及其证明,两圆的位置关系.显然命题①正确,命题②用“分析法”便可证明其正确性.命题③:若两圆相切,则两圆心间的距离等于4或2,二者均不符合,故为假命题.故选B.答案 B10.如图所示是y=f(x)的导数图像,则正确的判断是()①f(x)在(-3,1)上是增函数;②x=-1是f(x)的极小值点;③f(x)在(2,4)上是减函数,在(-1,2)上是增函数;④x=2是f(x)的极小值点.A.①②③B.②③C.③④D.①③④解析从图像可知,当x∈(-3,-1),(2,4)时,f(x)为减函数,当x∈(-1,2),(4,+∞)时,f(x)为增函数,∴x=-1是f(x)的极小值点,x=2是f(x)的极大值点,故选B.答案 B11.已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,P是直线l:x=a2c(c2=a2+b2)上一点,且PF1⊥PF2,|PF1|·|PF2|=4ab,则双曲线的离心率是()A. 2B. 3C. 2D. 3解析 设直线l 与x 轴交于点A ,在Rt △PF 1F 2中,有|PF 1|·|PF 2|=|F 1F 2|·|P A |,则|P A |=2ab c ,又|P A |2=|F 1A |·|F 2A |,则4a 2b 2c 2=(c -a 2c )·(c+a 2c )=c 4-a 4c 2,即4a 2b 2=b 2(c 2+a 2),即3a 2=c 2,从而e =ca = 3.选B.答案 B12.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8xx 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x ∈R 恒成立,故Δ≤0,即m ≥43;m ≥8x x 2+4对任意x >0恒成立,即m ≥(8x x 2+4)max ,因为8x x 2+4=8x +4x ≤2,当且仅当x =2时,“=”成立,故m ≥2.易知p 是q 的必要不充分条件.答案 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为________.解析 ∵双曲线y 212-x 24=1的焦点坐标为(0,±4),顶点坐标为(0,±23),∴椭圆的顶点坐标为(0,±4),焦点坐标为(0,±23),在椭圆中a =4,c =23,b 2=4.∴椭圆的方程为x 24+y 216=1. 答案 x 24+y 216=114.给出下列三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图像一定过原点;③函数y =sin2x +cos2x 的最小正周期为π,其中假.命题的序号是________. 解析 ①不正确,如x =π4时tan x =1,当x =9π4时tan x =1,而9π4>π4,所以tan x 不是增函数;②不正确,如函数y =1x 是奇函数,但图像不过原点;③正确.答案 ①②15.若要做一个容积为324的方底(底为正方形)无盖的水箱,则它的高为________时,材料最省.解析 把材料最省问题转化为水箱各面的面积之和最小问题,然后列出所用材料和面积关于边长a 的函数关系式.设水箱的高度为h ,底面边长为a ,那么V =a 2h =324,则h =324a 2,水箱所用材料的面积是S =a 2+4ah =a 2+1296a ,令S ′=2a -1296a 2=0,得a 3=648,a =633, ∴h =324a 2=324(633)2=333,经检验当水箱的高为333时,材料最省. 答案 33316.设m ∈R ,若函数y =e x +2mx (x ∈R)有大于零的极值点,则m 的取值范围是________.解析 因为函数y =e x +2mx (x ∈R)有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图像可得-2m >1,即m <-12.答案 m <-12三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a ,b ,c 的值.解 本题涉及了3个未知量,由题意可列出三个方程即可求解. ∵y =ax 2+bx +c 过点(1,1), ∴a +b +c =1.①又∵在点(2,-1)处与直线y =x -3相切, ∴4a +2b +c =-1. ②∴y ′=2ax +b ,且k =1. ∴k =y ′| x =2=4a +b =1,③联立方程①②③得⎩⎪⎨⎪⎧a =3,b =-11,c =9.18.(12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :y =-x +22与以原点为圆心、以椭圆C 1的短半轴长为半径的圆相切.求椭圆C 1的方程.解 ∵e =63,∴e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2.∵直线l :y =-x +22与圆x 2+y 2=b 2相切, ∴222=b ,∴b =2.∴b 2=4,a 2=12. ∴椭圆C 1的方程是x 212+y 24=1.19.(12分)已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图像上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),则F ′(x )=1x -a x 2=x -ax 2(x >0),∵a >0,由F ′(x )>0,得x ∈(a ,+∞), ∴F (x )在(a ,+∞)上单调递增; 由F ′(x )<0,得x ∈(0,a ), ∴F (x )在(0,a )上单调递减.∴F (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由(1)知F ′(x )=x -a x 2(0<x ≤3),则k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立,即a ≥(-12x 20+x 0)max ,当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,∴a min =12.20.(12分)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P ,Q ,交直线l 1于点R ,求RP →·RQ →的最小值.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线. ∴所求轨迹的方程为x 2=4y .(2)由题意知,直线l 2的方程可设为y =kx +1(k ≠0),与抛物线方程联立消去y 得x 2-4kx -4=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.又易得点R 的坐标为(-2k ,-1).∴RP →·RQ →=(x 1+2k ,y 1+1)·(x 2+2k ,y 2+1)=(x 1+2k )(x 2+2k )+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+(2k +2k )(x 1+x 2)+4k 2+4 =-4(1+k 2)+4k (2k +2k )+4k 2+4 =4(k 2+1k 2)+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,∴RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.21.(12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围;(3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值.解 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6,又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7.(2)因为f ′(x )=2(x +2)(x -2)x, 又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎪⎨⎪⎧a ≥2,a +1≤7,解得2≤a ≤6.故a 的取值范围是[2,6] (3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x,且x >0, 所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.22.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点M (4,1),直线l :y =x +m 交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若直线l 不过点M ,试问直线MA ,MB 与x 轴能否围成等腰三角形?解 (1)根据题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为e =32,a 2-b 2=c 2,所以a 2=4b 2.又椭圆过点M (4,1),所以16a 2+1b 2=1,则可得b 2=5,a 2=20,故椭圆的方程为x 220+y 25=1.(2)将y =x +m 代入x 220+y 25=1并整理得5x 2+8mx +4m 2-20=0,Δ=(8m )2-20(4m 2-20)>0,得-5<m <5.设直线MA ,MB 的斜率分别为k 1和k 2,A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=4m 2-205.k1+k2=y1-1x1-4+y2-1 x2-4=(y1-1)(x2-4)+(y2-1)(x1-4)(x1-4)(x2-4).上式分子=(x1+m-1)(x2-4)+(x2+m-1)·(x1-4) =2x1x2+(m-5)(x1+x2)-8(m-1)=2(4m2-20)5-8m(m-5)5-8(m-1)=0,即k1+k2=0.所以直线MA,MB与x轴能围成等腰三角形.。
- 1 -一.选择题(本大题共10小题,每小题4分,共40分) 1. “21sin =A ”是“︒=30A ”的( ) A .充分而不必要条件 B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 2.命题“对任意的3210x x x ∈-+R ,≤”的否定是( )A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>, D .对任意的3210x R x x ∈-+>,3、若0>n ,则232n n +的最小值为 ( ) A 、2 B 、4 C 、6 D 、84.双曲线19422=-y x 的渐近线方程是 ( ) A .x y 32±= B .x y 94±= C .x y 23±= D .x y 49±=5、抛物线px y 22=上一点Q ),6(0y ,且知Q 点到焦点的距离为10,则p 的值是( ) A 4 B 8 C 12 D 166.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 ( ) ABC .12D .137.抛物线281x y -=的准线方程是 ( ) A . 321=x B .2=y C . 321=y D .2-=y 8.椭圆171622=+y x 的左右焦点为F 1、F 2, 一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为 ( )A.32B. 16C.8D.49.如果221122x y k k -=--表示焦点在y 轴上的双曲线,那么实数k 的取值范围是 ( ) A .1,22⎛⎫⎪⎝⎭ B .()1,12⎛⎫⋃ ⎪⎝⎭1,2 C .()1,2 D .12⎛⎫∞ ⎪⎝⎭, 10.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000(2)()limh f x h f x h→+-的值为 ( ) A .'0()f x B .'02()f x C .'02()f x - D .0二.填空题(本大题共4小题,每小题54分,共20分) 11.等轴双曲线x 2-y 2=a 的离心率为 __12. 曲线y=x 2 +1在点(1,2)处的切线方程是 _______________。
13已知抛物线x y 42=,则过点P(-2,1)且与抛物线有一个公共点的直线的条数为 条14对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点;双曲线的焦点恰好是椭圆的顶点;③ 双曲线与椭圆共焦点; 椭圆与双曲线有两个顶点相同. 其中真命题...的序号是 ____。
三.解答题15(本小题满分10分)解不等式: 5|2||1|≤++-x x 16 (本小题满分8分) 命题2:230,:12,p x x q x q p +-≤-≤∧命题若为真,求x 的取值范围.17 (本小题满分10分)求下列函数的导数: ⑴)(x f =xe xsin + ⑵)(x f =xlnx+x118 (本小题满分10分) 已知双曲线的渐近线方程为x y 21±=,两顶点之间的距离为4,求此双曲线的标准方程。
19、(本小题10分)已知函数f(x)=x 3-2ax 2+6bx 的图象与直线15x+y -4=0相切,切点为(1,-11). (Ⅰ)求a ,b 的值;- 2 -20. (本小题满分12分) 如图,已知椭圆C :12222=+b y a x )0(>>b a(1,0)-F ,(1)求椭圆C 的方程;(2)若过椭圆右焦点且斜率为1的直线l 交椭圆于,A B 两点.求弦AB 的长一、选择题(本大题共12小题,每小题5分,满分60分) 1、有以下四个命题:(1)y1x 1=,则x=y.(2)若lgx 有意义,则x>0. (3若x=y,则y x =。
(4)若x<y ,则x 2<y 2,则真命题的序号为( )A.(1)(2)B.(1)(3)C.(2)(3)D.(3)(4) 2、“x ≠0”是x>0的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 3、若方程x 2+1ay2=(a 是常数),则下列结论正确的是 ( ) A.+∈∀R a ,方程表示椭圆。
B.—R a ∈∀,方程表示双曲线.C.—Ra ∈∃,方程表示椭圆。
D.R ∈∃a ,方程表示双曲线.4、抛物线y=x 2的焦点坐标是 ( ) ② (0,21) B.(0,41) C.(21,0) D.(41,0) 5、双曲线x 2-4y 2=1的渐近线方程和离心率为 ( )A.y=±2x. e=3.B.y=±21x, e=5. C.y=±21x, e=3 D.y=±2x, e=5 6、椭圆42x +5y 2=1的一个焦点坐标是 ( )A.(3,0)B.(0,3)C.(1,0)D.(0,1) 7、a<1是a1>1的 ( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8、给出下列两个命题,命题p:2是有理数。
命题q:若a>0,b>0, 则方程ax 2+ by 2=1表示的曲线一定是椭圆,那么下列命题中 真命题的是 ( ) A.p q ∧ B.q p ∨ C.q p ∧⌝ D.q p ∨⌝ 9.下列命题的逆命题为真命题的是 ( ) A.正方形的四条边相等。
B.正弦函数是周期函数。
C.若a+b 是偶数,则a,b 都是偶数 D.若 x>0,则|x|=x.10.已知双曲线1_x 2222=b y a 的一条渐近线方程为y=34x ,则双曲线的离心率为35 B. 34 C.45 D. 2311、设点A 为双曲线14_1222=y x 的右顶点,则点A 到该双曲线的一 条渐近线的距离是 ( )A.3 B. 3 C.23D.2312、方程116m 25x 22=++my —表示焦点在y 轴上的椭圆,则m 的取值范围( ) A.(-16,25) B.(29,25) C.(-16,29) D.(29,+∞) 二、填空题(本大题共4小题,每小题5分,满分20分)13、命题:若a>2,则a 2>4的逆否命题为 。
14、抛物线y 2=-12x 的准线方程是 ,焦点坐标是 。
15、已知点M(-2,0),N(2, 0),动点p 满足|PM|-|PN|=22, 则动点P 的轨迹方程 为 。
- 3 -16、已知p(x):x 2+2x -m>0,如果p(1)是假命题,p(2)是真命题,则实数m 的取值范围是 。
三、解答题(本大题共6小题,共70分)17、抛物线y 2=4x 与双曲线x 2-y 2=5相交于A 、B 两点, 求以AB 为直径的圆的方程。
(10分)18、已知椭圆的方程134x 22=+y ,若点P 在第二象限且21F PF ∠=120,求21F PF ∆的面积。
(12分)19、求以椭圆9x 2+5y 2=45的焦点为焦点,且经过M(2,6)的椭圆的标准方程。
(12分)20、根据以下条件,分别求出双曲线的标准方程。
(12分)(1)虚轴长为12 ,离心率为45。
(2)与双曲线9x 2-16y 2=1有共同的渐近线,且经过点M (-3,23),20、直线:y=k x+1,抛物线:y 2=4x,当k 为何值时,直线与抛物线有 (1)一个公共点;(2)两个公共点;(3)没有公共点;(12分)22、已知双曲线的方程12y x 22=—。
试问:是否存在被点B (1,1)平分的弦? 如果存在,求出弦所在的直线方程,如果不存在,说明理由。
(12分)一.选择题(本大题共12小题,每题5分,共60分。
请将答案写于答题卡上)1.抛物线22y x =的准线方程为 ( )A .12y =-B .18y =-C .12x =-D .18x =- 2.下列命题中的假命题是( )A .∀x R ∈,120x -> B. ∃x R ∈,tan 2x = C .∃ x R ∈,lg 1x < D. ∀*x N ∈,2(1)0x -> 3.与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线方程是( )A .x 24-y 2=1B .x 22-y 2=1C .x 23-y 23=1D .x 2-y 22=1 4.“a b<0”是“方程ax 2+b y 2 =c 表示双曲线”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .非充分非必要条件5.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( ) A .22 B .12 C . 33 D .136.已知△ABC 的顶点A (-4,0)和C ( 4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin C sin B =( )A .54B .58C .45D .857.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( )A .01223=-+y xB .01232=-+y xC .014494=-+y xD . 014449=-+y x8.a x q x x P <<--命题已知命题},032:2,若p 是q 的必要不充分条件,则实数a 的取值范围是( ) 1.<a A 10.≤<a B 1.≤a C 31.≤<-a D9.设 12F F 、是双曲线22214x y b-=的两个焦点,点P 在双曲线上,且1290F PF ∠= ,△12F PF 的面积为1,则正数b 的值为( ) AB .2 CD .110.已知椭圆C :x 24+y 2b =1,直线l :y =mx +1,若对任意的m ∈R ,直线l 与椭圆C 恒有公共点,则实数b 的取值范围是( )A .[1,4)B .[1,+∞)C .[1,4)∪(4,+∞)D .(4,+∞)11.过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则- 4 -这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在12.方程02=+ny mx 与)0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图应是( )4小题,每题5分,共20分。