三角形和四边形中考复习
- 格式:doc
- 大小:185.50 KB
- 文档页数:4
第二部分空间与图形第四章三角形与四边形第1讲线、角、相交线和平行线一级训练1.(2011年安徽芜湖)一个角的补角是36°35′,这个角是________.2.如图4-1-12,已知线段AB=10 cm,AD=2 cm,D为线段AC的中点,那么线段CB=________cm.图4-1-123.(2012年湖南株洲)如图4-1-13,已知直线a∥b,直线c与a,b分别交于点A,B,且∠1=120°,则∠2=()图4-1-13A.60°B.120°C.30°D.150°4.(2011年四川南充)如图4-1-14,直线DE经过点A,DE∥BC,∠B=60°,下列结论成立的是()图4-1-14A.∠C=60°B.∠DAB=60°C.∠EAC=60°D.∠BAC=60°5.下列命题中,正确的是()A.若a·b>0,则a>0,b>0 B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0 D.若a·b=0,则a=0或b=06.(2012年湖北孝感)已知∠α是锐角,∠α与∠β互补,∠α与∠r互余,则∠β-∠r的值等于()A.45°B.60°C.90°D.180°7.(2011年浙江丽水)如图4-1-15,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°图4-1-158.如图4-1-16,下列条件中,不能判断l1∥l2的是()图4-1-16A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.(2011年湖北孝感)如图4-1-17,直线AB,CD相交于点O,OT⊥AB于点O,CE∥AB交CD于点C.若∠ECO=30°,则∠DOT=()图4-1-17A.30°B.45° C. 60° D. 120°10.(2012年湖南怀化)如图4-1-18,已知AB∥CD,AE平分∠CAB,且交CD于点D,若∠C=110°,则∠EAB=()A.30°B.35°C.40°D.45°图4-1-1811.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路变直,就能缩短路程.其中可用公理“两点之间,线段最短”来解决的现象有()A.①②B.①③C.②④D.③④12.如图4-1-19,一束光线垂直照射在水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为()图4-1-19A.45°B.60°C.75°D.80°二级训练13.(2012年四川广元)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度()A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°14.如图4-1-20,在△ABC中,∠C=90°.若BD∥AE,∠DBC=20°,则∠CAE的度数是()A.40°B.60°C.70°D.80°图4-1-2015.如图4-1-21,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′=()图4-1-21A.70°B.65°C.50°D.25°w16.观察下图4-1-22,寻找对顶角(不含平角):(1)(2)(3)图4-1-22(1)如图4-1-22(1),图中共有______对对顶角;(2)如图4-1-22(2),图中共有______对对顶角;(3)如图4-1-22(3),图中共有______对对顶角;(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成______对对顶角;(5)若有2 008条直线相交于一点,则可形成______对对顶角.三级训练17.如图4-1-23,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.图4-1-23(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?第2讲三角形第1课时三角形一级训练1.已知在△ABC中,若∠A=70°-∠B,则∠C=()A.35°B.70°C.110°D.140°2.如图4-2-14,在△ABC中,∠A=70°,∠B=60°,点D在BC的延长线上,则∠ACD=()A.100°B.120°C.130°D.150°图4-2-143.已知如图4-2-15的两个三角形全等,则α的度数是()图4-2-15A.72°B.60°C.58°D.50°4.(2011年湖南怀化)如图4-2-16,∠A,∠1,∠2的大小关系是()图4-2-16A. ∠A>∠1>∠2B. ∠2>∠1>∠AC. ∠A>∠2>∠1D. ∠2>∠A>∠15.(2011年江西)如图4-2-17,下列条件中,不能证明△ABD≌△ACD的是()图4-2-17A.BD=DC,AB=AC B.∠ADB=∠ADC,∠BAD=∠CADC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.(2011年上海)下列命题中,是真命题的是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等7.(2012年山东德州)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线8.(2012年山东济宁)用直尺和圆规作一个角的平分线的示意图如图4-2-18,则能说明∠AOC=∠BOC的依据是()A.SSS B.ASAC.AAS D.角平分线上的点到角两边距离相等图4-2-189.(2011年安徽芜湖)如图4-2-19,已知在△ABC中,∠ABC=45°,F是高AD和BE 的交点,CD=4,则线段DF的长度为()图4-2-19A.2 2B.4C.3 2D.4 210.以三条线段3,4,x-5为边组成三角形,则x的取值范围为________.11.若△ABC的周长为a,点D,E,F分别是△ABC三边的中点,则△DEF的周长为__________.12.(2011年江西)如图4-2-20,两块完全相同的含30°的直角三角形叠放在一起,且∠DAB=30°.有以下四个结论:①AF⊥BC;②△ADG≌△ACF; ③O为BC的中点;④AG∶DE =3∶4.其中正确结论的序号是__________.图4-2-20二级训练13.(2011年山东威海)在△ABC中,AB>AC,点D,E分别是边AB,AC的中点,点F 在边BC上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等?()A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF14.(2011年浙江)如图4-2-21,点D,E分别在AC,AB上.(1)已知BD=CE,CD=BE,求证:AB=AC;(2)分别将“BD=CE”记为①,“CD=BE”记为②,“AB=AC”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是________命题,命题2是_________命题(选择“真”或“假”填入空格).图4-2-2115.(2012年湖北随州)如图4-2-22,在△ABC中,AB=AC,点D是BC的中点,点E 在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE.图4-2-22三级训练16.(2011年湖南衡阳)如图4-2-23,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.图4-2-2317.如图4-2-24,两根旗杆间相距12 m ,某人从点B 沿BA 走向点A ,一定时间后他到达点M ,此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM =DM ,已知旗杆AC 的高为3 m ,该人的运动速度为1 m/s ,求这个人运动了多长时间?图4-2-24第二部分 空间与图形 第四章 三角形与四边形第1讲 线、角、相交线和平行线 【分层训练】 1.143°25′ 2.B 3.B 4.B 5.D 6.C 7.B 8.B 9.C 10.B 11.D 12.A 解析:如图D9,过点O 作OD ⊥OC ,根据平面镜反射定律,可得∠AOD =∠BOD .又∵AO 垂直于水平面,OB 平行于水平面,∴∠AOB =90°.∴∠AOD =∠BOD =45°.又∵OD ⊥OC ,∴∠BOC =90°-∠BOD =45°.由于OB 平行于水平面,可得∠1=∠BOC =45°.图D911.D 13.B14.C 解析:由题意,可得∠EAB +∠DBA =180°,又由∠C =90°,可得∠CAB +∠CBA =90°,于是∠CAE +∠DBC =90°.故∠CAE =90°-∠DBC =70°.15.C 解析:∠D ′EF =∠DEF =∠EFB =65°,于是∠AED ′=180°-∠D ′ED =50°. 16.(1)2 (2)6 (3)12 (4)n (n -1) (5)4 030 056解析:(1)如图4-1-22(1),图中共有1×2=2对对顶角; (2)如图4-1-22(2),图中共有2×3=6对对顶角; (3)如图4-1-22(3),图中共有3×4=12对对顶角;(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成(n -1)n 对对顶角;(5)若有2 008条直线相交于一点,则可形成(2 008-1)×2 008=4 030 056对对顶角.17.解:(1)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12×120°-12×30°=45°.(2)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(α+30°)-12×30°=12α.(3)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(90°+β)-12β=45°.(4)∠MON 的大小等于∠AOB 的一半,与∠BOC 的大小无关. 第2讲 三角形 第1课时 三角形 【分层训练】1.C 2.C 3.D 4.B 5.D 6.D 7.C 8.A 9.B10.6<x <12 解析:由题意,可得1<x -5<7,解得6<x <12. 11.a 2 解析:由题意,可得△DEF 的三边为△ABC 的中位线,故其周长为a 2. 12.①②③④ 13.C 14.(1)证明:连接BC ,∵ BD =CE ,CD =BE ,BC =CB , ∴ △DBC ≌△ECB (SSS). ∴ ∠DBC =∠ECB . ∴ AB =AC . (2)真 假15.证明:(1)∵D 是BC 的中点, ∴BD =CD .在△ABD 和△ACD 中, ⎩⎪⎨⎪⎧BD =CD ,AB =AC ,AD =AD (公共边),∴△ABD ≌△ACD (SSS).(2)由(1),可知:△ABD ≌△ACD , ∴∠BAD =∠CAD ,即∠BAE =∠CAE . 在△ABE 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAE =∠CAE , AE =AE ,∴△ABE ≌△ACE (SAS).∴BE =CE (全等三角形的对应边相等).16.7 解析:因为将△ABC 折叠,使点C 与点A 重合,折痕为DE ,所以EC =AE ,故△ABE 的周长为AB +BE +AE =AB +BE +EC =AB +BC =3+4=7.17.解:∵∠CMD =90°, ∴∠CMA +∠DMB =90°. 又∵∠CAM =90°,∴∠CMA +∠ACM =90°. ∴∠ACM =∠DMB . 又∵CM =MD ,∴Rt △ACM ≌Rt △BMD . ∴AC =BM =3.∴他到达点M 时,运动时间为3÷1=3(s). 答:这人运动了3 s.。
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学冲刺专题训练(附答案):三角形与四边形一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个等腰三角形的底边长是6,腰长是一元二次方程28150x x -+=的一根,则此三角形的周长是( ) A .16 B .12C .14D .12或16【答案】A 【解析】解方程28150x x -+=,得:3x =或5x =,若腰长为3,则三角形的三边为3、3、6,显然不能构成三角形; 若腰长为5,则三角形三边长为5、5、6,此时三角形的周长为16, 故选:A .2.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60°【答案】B 【解析】∵BE 是∠ABC 的平分线, ∴∠EBM=12∠ABC , ∵CE 是外角∠ACM 的平分线, ∴∠ECM=12∠ACM , 则∠BEC=∠ECM-∠EBM=12×(∠ACM-∠ABC )=12∠A=30°, 故选:B .3.如图,在△ABC 中,∠C =90°,AC =12,AB 的垂直平分线EF 交AC 于点D ,连接BD ,若cos ∠BDC =57,则BC 的长是( )A .10B .8C .3D .6【答案】D 【解析】∵∠C =90°,cos ∠BDC =57, 设CD =5x ,BD =7x , ∴BC =6x ,∵AB 的垂直平分线EF 交AC 于点D , ∴AD =BD =7x , ∴AC =12x , ∵AC =12, ∴x =1, ∴BC =6; 故选D.4.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( ) A .8 B .12C .16D .32【答案】C 【解析】 如图所示:四边形ABCD 是菱形,12AO CO AC ∴==, 12DC BO BD ==,AC BD ⊥, 面积为28,∴12282AC BD OD AO ⋅=⋅=① 菱形的边长为6,2236OD OA ∴+=②,由①②两式可得:222()2362864OD AO OD OA OD AO +=++⋅=+=,8OD AO ∴+=,2()16OD AO ∴+=,即该菱形的两条对角线的长度之和为16, 故选C .5.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC【答案】C 【解析】解:选项A 、添加AB=DE 可用AAS 进行判定,故本选项错误; 选项B 、添加AC=DF 可用AAS 进行判定,故本选项错误; 选项C 、添加∠A=∠D 不能判定△ABC ≌△DEF ,故本选项正确;选项D 、添加BF=EC 可得出BC=EF ,然后可用ASA 进行判定,故本选项错误. 故选C .6.如图,ABCD 中,对角线AC 、BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE ,若ABCD 的周长为28,则ABE ∆的周长为( )A .28B .24C .21D .14【答案】D 【解析】∵四边形ABCD 是平行四边形, ∴OB OD =,AB CD =,AD BC =, ∵平行四边形的周长为28, ∴14AB AD += ∵OE BD ⊥,∴OE 是线段BD 的中垂线, ∴BE ED =,∴ABE ∆的周长14AB BE AE AB AD =++=+=, 故选:D .7.如图,在ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若=60B ︒∠,=3AB ,则ADE ∆的周长为( )A .12B .15C .18D .21【答案】C 【解析】由折叠可得,90ACD ACE ︒∠=∠=,90BAC ︒∴∠=,又60B ︒∠=,30ACB ︒∴∠=,26BC AB ∴==,6AD ∴=,由折叠可得,60E D B ︒∠=∠=∠=,60DAE ︒∴∠=,ADE ∴∆是等边三角形, ADE ∴∆的周长为6318⨯=,故选:C .8.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2﹣2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .4【答案】B 【解析】 ①如图1,∵四边形ABCD 是正方形,∴∠EBM =∠ADM =∠FDN =∠ABD =45°,∵∠MAN=∠EBM=45°,∠AMN=∠BME,∴△AMN∽△BME,∴AM MN BM EM=,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°∴∠NAE=∠AEN=45°,∴△AEN是等腰直角三角形,∴AN=EN,故①正确;②在△ABE和△ADF中,∵AB ADABE ADF90 AE AF︒=⎧⎪∠=∠=⎨⎪=⎩,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,如图2,连接AC,交EF于H,∵AE=AF,CE=CF,∴AC是EF的垂直平分线,∴AC⊥EF,OE=OF,Rt △CEF 中,OC =12EF =22x , △EAF 中,∠EAO =∠FAO =22.5°=∠BAE =22.5°, ∴OE =BE , ∵AE =AE ,∴Rt △ABE ≌Rt △AOE (HL ), ∴AO =AB =1, ∴AC =2=AO+OC ,∴1+22x =2, x =2﹣2,∴BE EC =1(22)22---=(21)(22)2-+=22; 故②不正确; ③如图3,∴将△ADF 绕点A 顺时针旋转90°得到△ABH ,则AF =AH ,∠DAF =∠BAH , ∵∠EAF =45°=∠DAF+∠BAE =∠HAE , ∵∠ABE =∠ABH =90°, ∴H 、B 、E 三点共线, 在△AEF 和△AEH 中,AE AE FAE HAE AF AH =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AEH (SAS ), ∴EF =EH =BE+BH =BE+DF , 故③正确;④△ADN 中,∠FND =∠ADN+∠NAD >45°, ∠FDN =45°, ∴DF >FN ,故存在点E 、F ,使得NF >DF , 故④不正确; 故选B .二、填空题(本大题共4个小题,每小题6分,共24分)9.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 与点D ,连结AD ,若∠B =40°,∠C =36°,则∠DAC 的度数是____________.【答案】34° 【解析】由作图过程可知BD=BA , ∵∠B=40°, ∴∠BDA=∠BAD=12(180°-∠B)=70°, ∴∠DAC=∠BDA-∠C=70°-36°=34°. 故答案为34°. 10.如图,在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且35BE α=.连接AE ,将ABE ∆沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则 a 的值为________.【答案】53或53【解析】 分两种情况:①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形,90BAD B ︒∴∠=∠=,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上,1452BAE B AE BAD '︒∴∠=∠=∠=,AB BE ∴=,315a ∴=, 53a ∴=;②当点B '落在CD 边上时,如图2. ∵四边形ABCD 是矩形,90BAD B C D ︒∴∠=∠=∠=∠=,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上,90B AB E '︒∴∠=∠=,1AB AB '==,35EB EB a '==,2221DB B A AD a ''∴=-=-,3255EC BC BE a a =-=-=. 在ADB '∆与B CE '∆中,90A 90B AD EBC B DD C ︒︒⎧∠=∠=-∠'''⎨∠=∠=⎩, ADB B CE ''∴∆⋃∆,DB AB CE B E'''∴=,即2112355a a a -=,解得153a =,20a =(舍去). 综上,所求a 的值为53或53. 故答案为53或53. 11.如图,正方形ABCD 的边长为4,点E 是CD 的中点,AF 平分BAE ∠交BC 于点F ,将ADE ∆绕点A 顺时针旋转90°得ABG ∆,则CF 的长为_____.【答案】6-25 【解析】作FM AD M FN AG N ⊥⊥于,于 ,如图,易得四边形CFMD 为矩形,则4FM =∵正方形ABCD的边长为4,点是的中点,2DE ∴=,∴224225AE =+=∵△ADE 绕点A 顺时针旋转90°得△ABG ,∴252349090AG AE BG DE GAE ABG D ∠∠∠︒∠∠︒==,==,=,=,== 而90ABC ∠︒= , ∴点G 在CB 的延长线上,∵AF 平分∠BAE 交BC 于点F ,∴∠1=∠2,∴∠2+∠4=∠1+∠3,即F A 平分∠GAD , ∴FN =FM =4, ∵11••22AB GF FN AG =, ∴425254GF ⨯==, ∴4225625CF CG GF +=-=﹣=﹣ . 故答案为6-25.12.如图,在平面直角坐标系中,OA =1,以OA 为一边,在第一象限作菱形OAA 1B ,并使∠AOB =60°,再以对角线OA 1为一边,在如图所示的一侧作相同形状的菱形OA 1A 2B 1,再依次作菱形OA 2A 3B 2,OA 3A 4B 3,……,则过点B 2018,B 2019,A 2019的圆的圆心坐标为_____.【答案】(-32018,3)2019) 【解析】过A 1作A 1C ⊥x 轴于C ,∵四边形OAA1B是菱形,∴OA=AA1=1,∠A1AC=∠AOB=60°,∴A1C=32,AC=12,∴OC=OA+AC=32,在Rt△OA1C中,OA1=2213OC AC+=,∵∠OA2C=∠B1A2O=30°,∠A3A2O=120°,∴∠A3A2B1=90°,∴∠A2B1A3=60°,∴B1A3=23,A2A3=3,∴OA3=OB1+B1A3=33=(3)3∴菱形OA2A3B2的边长=3=(3)2,设B1A3的中点为O1,连接O1A2,O1B2,于是求得,O1A2=O1B2=O1B133)1,∴过点B1,B2,A2的圆的圆心坐标为O1(0,23,∵菱形OA3A4B3的边长为333,∴OA4=934,设B2A4的中点为O2,连接O2A3,O2B3,同理可得,O2A3=O2B3=O2B2=3=(3)2,∴过点B2,B3,A3的圆的圆心坐标为O2(﹣3,33),…以此类推,菱形OA2019A2020B2019的边长为(3)2019,OA2020=(3)2020,设B2018A2020的中点为O2018,连接O2018A2019,O2018B2019,求得,O2018A2019=O2018B2019=O2018B2018=(3)2018,∴点O2018是过点B2018,B2019,A2019的圆的圆心,∵2018÷12=168…2,∴点O2018在射线OB2上,则点O2018的坐标为(﹣(3)2018,(3)2019),即过点B2018,B2019,A2019的圆的圆心坐标为:(﹣(3)2018,(3)2019),故答案为:(﹣(3)2018,(3)2019).三、解答题(本大题共3个小题,每小题12分,共36分.解答应写出文字说明、证明过程或演算步骤)13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DEFH=,求菱形ABCD的周长。
中考数学复习非圆几何求角度1、【基础题】(2015呼和浩特)如左下图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B. 100°C. 110°D. 120°2、【基础题】(2015)如右上图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B. 110°C. 115°D.120°3、【基础题】(2015)如右图,在△A BC中,∠C=31°,∠A BC的平分线BD交A C于点D,如果DE垂直平分BC,那么∠A= °.4、【综合Ⅰ】在△ABC中,∠A:∠B:∠C=1:2:3,求△ABC各角的度数.5、【综合Ⅰ】(2015)如左下图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A. 15°B. 17.5°C. 20°D. 22.5°6、【综合Ⅱ】(2015)如右上图,△ABC中,CD是边AB上的高,且AD CD CD BD.(1)求证:△ACD ∽△CBD;(2)求∠ACB的大小.7、【综合Ⅲ】如左下图,点O是△ABC一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于_______8、【基础题】(2015)右上图是由射线AB、BC、CD、DE、EA,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.9、【综合Ⅱ】(2015)如左下图,平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,则∠3+∠1-∠2=°10、【基础题】(2015)如右上图,□ABCD中,对角线AC与BD交于点O,∠DAC=42º,∠CBD=23º,则∠COD的度数是()A.61º B.63º C.65º D.67º11、【综合Ⅱ】如右图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数为.12、【综合Ⅱ】(2010襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:113、【综合Ⅲ】如左下图,在矩形ABCD中,AC与BD相交于一点O,AE平分∠BAD,若∠EAO=15°,求∠BOE的度数.14、【综合Ⅱ】(2015)如右上图,已知点E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=______度.15、【综合Ⅱ】(2015黄冈)如左下图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.16、【综合Ⅲ】(2015)如右上图,等腰直角三角形BDC的顶点D在等边三角形ABC的部,∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是度.17、【综合Ⅲ】(2014)如图,在△ABC 中,AB =AC ,且D 为BC 上一点,CD =AD ,AB =BD ,则∠B 的度数为( )A .30°B .36°C .40°D .45°18、【综合Ⅲ】(2015襄阳)在□ABCD 中,AD=BD ,BE 是AD 边上的高,∠EBD=20°,则∠A 的度数为 .19、【提高题】如左下图,等边△ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 的度数是 ( )A. 45°B. 60°C. 75°D. 80°20、【提高题】(2015)如右上图,在△ABC 中,∠B=40°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC= 度。
中考数学复习考点题型专题练习 专题21 与三角形、四边形相关的压轴题解答题1.(2022·黑龙江)如图,在平面直角坐标系中,平行四边形ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,M 为BC 的中点,OA 、OB 的长分别是一元二次方程27120x x -+=的两个根()OA OB <,4tan 3DAB ∠=,动点P 从点D 出发以每秒1个单位长度的速度沿折线DC CB -向点B 运动,到达B 点停止.设运动时间为t 秒,APC △的面积为S .(1)求点C的坐标;(2)求S 关于t 的函数关系式,并写出自变量t 的取值范围;(3)在点P 的运动过程中,是否存在点P ,使CMP 是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.(2022·贵州黔东南)阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:如图,ABC 和BDE 都是等边三角形,点A 在DE 上.求证:以AE 、AD 、AC 为边的三角形是钝角三角形.(1)【探究发现】小明通过探究发现:连接DC ,根据已知条件,可以证明DC AE =,120ADC =∠︒,从而得出ADC 为钝角三角形,故以AE 、AD 、AC 为边的三角形是钝角三角形.请你根据小明的思路,写出完整的证明过程.(2)【拓展迁移】如图,四边形ABCD 和四边形BGFE 都是正方形,点A 在EG 上.①试猜想:以AE 、AG 、AC 为边的三角形的形状,并说明理由. ②若2210AE AG +=,试求出正方形ABCD 的面积.3.(2022·海南)如图1,矩形ABCD 中,6,8AB AD ==,点P 在边BC 上,且不与点B 、C重合,直线AP 与DC 的延长线交于点E .(1)当点P 是BC 的中点时,求证:ABP ECP △≌△;(2)将APB △沿直线AP 折叠得到APB ',点B '落在矩形ABCD 的内部,延长PB '交直线AD 于点F .①证明FA FP =,并求出在(1)条件下AF 的值;②连接B C ',求PCB '△周长的最小值;③如图2,BB '交AE 于点H ,点G 是AE 的中点,当2EAB AEB ∠=∠''时,请判断AB 与HG 的数量关系,并说明理由.4.(2022·吉林)如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,6cm =AB .动点P 从点A 出发,以2cm/s 的速度沿边AB 向终点B 匀速运动.以PA 为一边作120APQ ∠=︒,另一边PQ 与折线AC CB -相交于点Q ,以PQ 为边作菱形PQMN ,点N 在线段PB 上.设点P 的运动时间为(s)x ,菱形PQMN 与ABC 重叠部分图形的面积为2()cm y .(1)当点Q 在边AC 上时,PQ 的长为cm ;(用含x 的代数式表示)(2)当点M 落在边BC 上时,求x 的值;(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.5.(2022·黑龙江牡丹江)在菱形ABCD和正三角形BGF中,60∠=︒,P是DF的中ABC点,连接PG、PC.(1)如图1,当点G在BC边上时,写出PG与PC的数量关系.(不必证明)(2)如图2,当点F在AB的延长线上时,线段PC、PG有怎样的数量关系,写出你的猜想,并给予证明;(3)如图3,当点F 在CB 的延长线上时,线段PC 、PG 又有怎样的数量关系,写出你的猜想(不必证明).6.(2022·内蒙古呼和浩特)下面图片是八年级教科书中的一道题:如图,四边形ABCD 是正方形,点E 是边BC 的中点,90AEF ∠=︒,且EF 交正方形外角的平分线CF 于点F .求证AE EF =.(提示:取AB 的中点G ,连接EG .)(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件:;(2)如图1,若点E 是BC 边上任意一点(不与B 、C 重合),其他条件不变.求证:AE EF =;(3)在(2)的条件下,连接AC ,过点E 作EP ⊥AC ,垂足为P .设=BEk BC,当k 为何值时,四边形ECFP 是平行四边形,并给予证明.7.(2022·福建)已知ABC DEC ≌△△,AB =AC ,AB >BC .(1)如图1,CB 平分∠ACD ,求证:四边形ABDC 是菱形;(2)如图2,将(1)中的△CDE 绕点C 逆时针旋转(旋转角小于∠BAC ),BC ,DE 的延长线相交于点F ,用等式表示∠ACE 与∠EFC 之间的数量关系,并证明;(3)如图3,将(1)中的△CDE 绕点C 顺时针旋转(旋转角小于∠ABC ),若BAD BCD ∠=∠,求∠ADB 的度数.8.(2022·湖南衡阳)如图,在菱形ABCD 中,4AB =,60BAD ∠=︒,点P 从点A 出发,沿线段AD 以每秒1个单位长度的速度向终点D 运动,过点P 作PQ AB ⊥于点Q ,作PM AD ⊥交直线AB 于点M ,交直线BC 于点F ,设PQM 与菱形ABCD 重叠部分图形的面积为S (平方单位),点P 运动时间为t (秒).(1)当点M 与点B 重合时,求t 的值;(2)当t 为何值时,APQ 与BMF 全等;(3)求S 与t 的函数关系式;(4)以线段PQ 为边,在PQ 右侧作等边三角形PQE ,当24t ≤≤时,求点E 运动路径的长.9.(2022·浙江金华)如图,在菱形ABCD中,310,sin5AB B==,点E从点B出发沿折线B C D--向终点D运动.过点E作点E所在的边(BC或CD)的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.(1)如图1,点G在AC上.求证:FA FG=.(2)若EF FG=,当EF过AC中点时,求AG的长.(3)已知8FG=,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与BEF相似(包括全等)?10.(2022·四川南充)如图,在矩形ABCD 中,点O 是AB 的中点,点M 是射线DC 上动点,点P 在线段AM 上(不与点A 重合),12OP AB =.(1)判断ABP △的形状,并说明理由.(2)当点M 为边DC 中点时,连接CP 并延长交AD 于点N .求证:PN AN =.(3)点Q 在边AD 上,85,4,5AB AD DQ ===,当90CPQ ∠=︒时,求DM 的长.11.(2022·湖北武汉)已知CD 是ABC 的角平分线,点E ,F 分别在边AC ,BC 上,AD m =,BD n =,ADE 与BDF 的面积之和为S .(1)填空:当90ACB ∠=︒,DE AC ⊥,DF BC ⊥时,①如图1,若45B ∠=︒,m =n =_____________,S =_____________;②如图2,若60∠=︒,m=n=_____________,S=_____________;B(2)如图3,当90∠=∠=︒时,探究S与m、n的数量关系,并说明理由:ACB EDF(3)如图4,当60n=时,请直接写出S的大小.ACB∠=︒,120∠=︒,6EDFm=,412.(2022·山东临沂)已知ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点Р(端点除外),连接PD.将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点Р在线∠的大小是否发生变化?说明理由.(3)在满足(2)的段AC上的位置发生变化时,DPQ条件下,探究线段AQ与CP之间的数量关系,并加以证明.13.(2022·江西)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板()90,60PEF P F ∠=︒∠=︒的一个顶点放在正方形中心O 处,并绕点O 逆时针旋转,探究直角三角板PEF 与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为2).(1)操作发现:如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,重叠部分的面积为__________;当OF 与BC 垂直时,重叠部分的面积为__________;一般地,若正方形面积为S ,在旋转过程中,重叠部分的面积1S 与S 的关系为__________; (2)类比探究:若将三角板的顶点F 放在点O 处,在旋转过程中,,OE OP 分别与正方形的边相交于点M ,N .①如图2,当BM CN =时,试判断重叠部分OMN 的形状,并说明理由; ②如图3,当CM CN =时,求重叠部分四边形OMCN 的面积(结果保留根号); (3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处,该锐角记为GOH ∠(设GOH α∠=),将GOH ∠绕点O 逆时针旋转,在旋转过程中,GOH ∠的两边与正方形ABCD的边所围成的图形的面积为2S ,请直接写出2S 的最小值与最大值(分别用含α的式子表示),(参考数据:sin15tan152︒=︒=︒=-14.(2022·贵州贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在ABCD □中,AN 为BC 边上的高,AD m AN=,点M 在AD 边上,且BA BM =,点E 是线段AM 上任意一点,连接BE ,将ABE △沿BE 翻折得FBE .(1)问题解决:如图①,当60BAD ∠=︒,将ABE △沿BE 翻折后,使点F 与点M 重合,则AM AN=______;(2)问题探究:如图②,当45BAD ∠=︒,将ABE △沿BE 翻折后,使EF BM ∥,求ABE ∠的度数,并求出此时m 的最小值;(3)拓展延伸:当30BAD ∠=︒,将ABE △沿BE 翻折后,若EF AD ⊥,且AE MD =,根据题意在备用图中画出图形,并求出m 的值.15.(2022·吉林长春)【探索发现】在一次折纸活动中,小亮同学选用了常见的A 4纸,如图①,矩形ABCD 为它的示意图.他查找了A 4纸的相关资料,根据资料显示得出图①中AD =.他先将A 4纸沿过点A 的直线折叠,使点B 落在AD 上,点B 的对应点为点E ,折痕为AF ;再沿过点F 的直线折叠,使点C 落在EF 上,点C 的对应点为点H ,折痕为FG ;然后连结AG ,沿AG 所在的直线再次折叠,发现点D 与点F 重合,进而猜想ADG AFG △≌△.【问题解决】(1)小亮对上面ADG AFG △≌△的猜想进行了证明,下面是部分证明过程: 证明:四边形ABCD 是矩形,∴90BAD B C D ∠=∠=∠=∠=︒. 由折叠可知,1452BAF BAD ∠=∠=︒,BFA EFA ∠=∠.∴45EFA BFA ∠=∠=︒. ∴AF AD ==.请你补全余下的证明过程.【结论应用】(2)DAG ∠的度数为________度,FG AF的值为_________; (3)在图①的条件下,点P 在线段AF 上,且12AP AB =,点Q 在线段AG 上,连结FQ 、PQ ,如图②,设AB a ,则FQ PQ +的最小值为_________.(用含a 的代数式表示)16.(2022·广东深圳)(1)【探究发现】如图①所示,在正方形ABCD 中,E 为AD 边上一点,将AEB △沿BE 翻折到BEF 处,延长EF 交CD 边于G 点.求证:BFG BCG △≌△(2)【类比迁移】如图②,在矩形ABCD 中,E 为AD 边上一点,且8,6,AD AB ==将AEB △沿BE 翻折到BEF 处,延长EF 交BC 边于点,G 延长BF 交CD 边于点,H 且,FH CH =求AE 的长.(3)【拓展应用】如图③,在菱形ABCD 中,E 为CD 边上的三等分点,60,D ∠=︒将ADE 沿AE 翻折得到AFE △,直线EF 交BC 于点,P 求CP 的长.17.(2022·黑龙江)ABC和ADE都是等边三角形.(1)将ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA PB PC+=)成立;请证明.(2)将ADE绕点A旋转到图②的位+=(或PA PC PB置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;(3)将ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.18.(2022·辽宁锦州)在ABC中,AC BC=,点D在线段AB上,连接CD并延长至点E,使DE CD=,过点E作EF AB⊥,交直线AB于点F.(1)如图1,若120ACB ∠=︒,请用等式表示AC 与EF 的数量关系:____________.(2)如图2.若90ACB ∠=︒,完成以下问题:①当点D ,点F 位于点A 的异侧时,请用等式表示,,AC AD DF 之间的数量关系,并说明理由;②当点D ,点F 位于点A 的同侧时,若1,3DF AD ==,请直接写出AC 的长.19.(2022·广西)已知MON α∠=,点A ,B 分别在射线,OM ON 上运动,6AB =.(1)如图①,若90α=︒,取AB 中点D ,点A ,B 运动时,点D 也随之运动,点A ,B ,D 的对应点分别为,,A B D ''',连接,OD OD '.判断OD 与OD '有什么数量关系?证明你的结论:(2)如图②,若60α=︒,以AB 为斜边在其右侧作等腰直角三角形ABC ,求点O 与点C 的最大距离:(3)如图③,若45α=︒,当点A ,B 运动到什么位置时,AOB 的面积最大?请说明理由,并求出AOB 面积的最大值.20.(2022·湖北十堰)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m 1.7≈).21.(2022·陕西)问题提出(1)如图1,AD 是等边ABC 的中线,点P 在AD 的延长线上,且AP AC =,则APC ∠的度数为__________. 问题探究(2)如图2,在ABC 中,6,120CA CB C ==∠=︒.过点A 作AP BC ∥,且AP BC =,过点P 作直线l BC ⊥,分别交AB BC 、于点O 、E ,求四边形OECA 的面积. 问题解决(3)如图3,现有一块ABC 型板材,ACB ∠为钝角,45BAC ∠=︒.工人师傅想用这块板材裁出一个ABP △型部件,并要求15,BAP AP AC ∠=︒=.工人师傅在这块板材上的作法如下:①以点C 为圆心,以CA 长为半径画弧,交AB 于点D ,连接CD ; ②作CD 的垂直平分线l ,与CD 于点E ; ③以点A 为圆心,以AC 长为半径画弧,交直线l 于点P ,连接AP BP 、,得ABP △. 请问,若按上述作法,裁得的ABP △型部件是否符合要求?请证明你的结论.。
专题七 三角形、四边形实践探究(旋转、动点、折叠问题)1.将矩形ABCD 绕点A 按顺时针方向旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E 在BD 上时.求证:FD =CD ;(2)当α为何值时,GC =GB ?画出图形,并说明理由.(1)证明:由旋转可得AE =AB ,∠AEF =∠ABC =∠DAB =90°,EF =BC =AD.∴∠AEB =∠ABE.又∵∠ABE +∠EDA =90°=∠AEB +∠DEF ,∴∠EDA =∠DEF.又∵DE =ED ,∴△AED ≌△FDE(SAS ).∴FD =AE.又∵AE =AB =CD ,∴FD =CD ;(2)解:当α为60°或300°时,GC =GB.理由:如图,当GB =GC 时,点G 在BC 的垂直平分线上,分两种情况讨论:①当点G 在AD 右侧时,GH 垂直平分BC ,AG =AD.又∵AD ∥BC ,∴GH ⊥AD.∴四边形ABHM 是矩形.∴AM =BH =12AD. ∴GM 垂直平分AD ,∴GD =GA =DA.∴△ADG 是等边三角形.∴∠DAG =60°.∴旋转角α=60°;②当点G 在AD 左侧时,同理可得△ADG 是等边三角形,∴∠DAG =60°.∴旋转角α=360°-60°=300°.2.(2019·唐山路北区三模)如图,在△ABC 中,AB =5,AC =9,S △ABC =272,动点P 从点A 出发,沿射线AB 方向以每秒5个单位长度的速度运动,动点Q 从点C 出发,以相同的速度在线段AC 上由C 向A 运动,当点Q 运动到点A 时,P ,Q 两点同时停止运动,以PQ 为边作正方形PQEF(P ,Q ,E ,F 按逆时针排序),以CQ 为边在AC 上方作正方形QCGH.(1)tan A =________;(2)设点P 运动时间为t s ,正方形PQEF 的面积为S ,请探究S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由;(3)当t 为何值时,正方形PQEF 的某个顶点(点Q 除外)落在正方形QCGH 的边HG 上?请直接写出t 的值.解:(1)34;[过点B 作BM ⊥AC 于点M.∵AC =9,S △ABC =272,∴12AC·BM =272,即12×9BM =272,解得BM =3.由勾股定理,得AM =52-32=4,则tan A =BM AM =34.](2)存在.过点P 作PN ⊥AC 于点N.依题意,得AP =CQ =5t.∵tan A =34,∴AN =4t ,PN =3t.∴QN =AC -AN -CQ =9-9t.根据勾股定理得PN 2+QN 2=PQ 2.∴S =PQ 2=(3t)2+(9-9t)2=90t 2-162t +81⎝⎛⎭⎫0<t ≤95.∵-b 2a =1622×90=910<95,∴S 最小=4ac -b 24a =4×90×81-16224×90=8110;(3)①如图1,当点E 在边HG 上时,t 1=914;图1图29②如图2,当点F在边HG上时,t2=11.。
中考复习之——三角形与四边形1、三角形与平行四边形联手例1、如图1,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB 于点F.试判断AF与CE是否相等,并说明理由.解:∵四边形ABCD为平行四边形∴AB=CD,∠A=∠C,∠ADC=∠CBA∵DF平分∠ADC,BE平分∠CBA∴∠ADF=1/2∠ADC=1/2∠CBA=∠CBE在△ADF和△CBE中∠A=∠CAD=BC∠ADF=∠CBE∴△ADF≌△CBE(ASA)∴AF=CE2、三角形与矩形联手例2、如图5,矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F,连结DE,求证:DF=DC.证明:∵AE=AD∴∠AED=∠ADE∵AD ‖BC ∴∠CED=∠ADE∴∠CED=∠AED∵∠DFE=∠C=90∠CED=∠AED (已证)DE=DE (公共边)∴△DFE ≌△DCE (AAS )∴DF=DC例3、如图4所示,四边形ABCD 是矩形,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE ,垂足为F.(1)猜想:AD 与CF 的大小关系;(2)请证明上面的结论.解: ∵AB 平行DC ∴∠AED=∠EDC∵CF ⊥DE ∴∠DFC=∠DAE又∵DE=AB 且AB=DC ∴DE=DC∵∠AED=∠EDC ∠DAE=∠DFC DE=DC∴△AED 全等于△FCD∴AD=CF例4、如图6,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF与AB CD ,的延长线分别交于E F ,.△≌△;(1)求证:BOE DOF,,,为顶点的四边形是菱形?证明你(2)当EF与AC满足什么关系时,以A E C F的结论.证明:1、证明:∵矩形ABCD∴OA=OC,AB∥CD∴∠E=∠F,∠EBO=∠FDO∴△BOE≌△DOF (AAS)2、EF⊥AC时,四边形AECF为菱形∵△BOE≌△DOF∴OE=OF又∵OA=OC∴平行四边形AECF∵EF⊥AC∴菱形AECF (对角线互相垂直平分的四边形是菱形)例5、在矩形ABCD中,AB=2,AD=3.(1)在边CD上找.一点E,使EB平分∠AEC,并加以说明;(2)若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.①求证:点B平分线段AF;②△PAE能否由△PFB绕P点按顺时针方向旋转而得到,若能,加以证明,并求出旋转度数;若不能,请说明理由.解:(1)∵∠AEB=∠BEC=∠ABE∴∠AEB=∠ABEAB=AE=2DE=1(勾股定理计算)∴DE=EC=1E 是DC 的中点(2)∵⊿ECP∽⊿FBP∴EC/BF=PC/PB=1/2∴BF=2点B平分线段AF②由(1)知⊿AED≌⊿BEC⊿ABE 是等边三角形在⊿PEC 中tan∠PEC=√3/3∴∠PEC=30º=∠F∴⊿AEF 是直角三角形∴AF=2AE=2AB3、三角形与正方形联手例6、如图8所示,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(08年义乌市)(3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k=12,求22BE DG+的值.解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC/DC =CG/CE =b/a ,又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+ 1=16.25例7、如图9-甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90º.①当点D在线段BC上时(与点B不重合),如图9-乙,线段CF、BD之间的位置关系为▲,数量关系为▲.②当点D在线段BC的延长线上时,如图9-丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)(3)若AC=42BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.解:(1)①CF与BD位置关系是垂直、数量关系是相等;②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF ,∠DAF=90º.∵∠BAC=90º,∴∠DAF=∠BAC ,∴∠DAB=∠FAC,又AB=AC ,∴△DAB≌△FAC ,∴CF=BD∠ACF=∠ABD.∵∠BAC=90º,AB=AC ,∴∠ABC=45º,∴∠ACF=45º,∴∠BCF=∠ACB+∠ACF= 90º.即CF⊥BD(2)画图正确当∠BCA=45º时,CF⊥BD(如图丁).理由是:过点A作AG⊥AC交BC于点G,∴AC=AG 可证:△GAD≌△CAF ∴∠ACF=∠AGD=45º∠BCF=∠ACB+∠ACF= 90º.即CF⊥BD(3)当具备∠BCA=45º时,过点A作AQ⊥BC交BC的延长线于点Q,(如图戊)∵DE与CF交于点P时,∴此时点D位于线段CQ上,∵∠BCA=45º,可求出AQ= CQ=4.设CD=x ,∴DQ=4―x,容易说明△AQD∽△DCP,∴,∴,.∵0<x ≤3 ∴当x=2时,CP 有最大值1.4三角形与梯形联手例8、已知:如图11,梯形ABCD 中,AD BC ∥,点E 是CD 的中点,BE 的延长线与AD 的延长线相交于点F .(1)求证: BCE △和FDE △全等(2)连结BD CF ,,判断四边形BCFD 的形状,并证明你的结论.1、证明:∵AD ∥BC∴∠CFE =∠BAE ,∠FCE =∠ABE∵E 是BC 的中点∴BE =CE∴△ABE ≌△FCE (AAS )∴AB =CF2、菱形ABFC证明:∵AD ∥BC ,AB =CF∴平行四边形ABFC∵△ADC 沿AE 折叠至△AEC ,∠D =90∴∠AEC =∠D =90∴AF ⊥BC∴菱形ABFC例9、如图12,在等腰梯形ABCD 中,AD BC ∥,M 是AD 的中点,求证:MB MC .(1)证明:∵四边形ABCD 是等腰梯形,∴AB=DC ,∠A=∠D .∵M 是AD 的中点,∴AM=DM .在△ABM 和△DCM 中,AB =DC ∠A =∠D AM =DM ∴△ABM ≌△DCM (SAS ).∴MB=MC.例10、如图13所示,已知等腰梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于点O.请在图中找出一对全等的三角形,并加以证明.解:∵ABCD是等腰梯形∴AB=DC ∠ABC=∠DCBBC是公共边∴△ABC≌△DCB(SAS)还有△ABD≌△DCA(SAS)∵AD‖BC ∠ABC=∠DCB∴∠BAD=∠CDAAD是公共边且AB=DC∴△ABD≌△DCA(SAS)例11、已知:如图14,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E。
三角形和四边形
一、仔细选一选
1.正方形具有而菱形不具备的性质是 ( )
A .四条边相等
B .对角线垂直
C .对角线相等
D .对角线平分对角
2.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是 ( )
A .测量对角线是否相互平分
B .测量两组对边是否分别相等 B .测量一组对角是否都为直角 D .测量其中三个角是否都为直角
3.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形。
②一组对边平行,一组对角相等的四边形是平行四边形。
③两组对角分别相等的四边形是平行四边形。
④顺次连结等腰梯形各边中点所得到的四边形是菱形。
其中正确的是( ) A .①②. B .①②③. C .②③④ D .①②③④。
4.如图,在□ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,下列结论不正确...的是( ) A.BF=
2
1
DF , B. S △FAD =2S △FBE C.四边形AECD 是等腰梯形 D. ∠AEB=∠ADC , 5.如图直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE 、CE ,则△ADE 的面积是 ( ) A 、1 B 、2 C 、3 D 、不能确定 6.等腰三角形底边上的高与底边的比是1:2,则它的顶角等于( ). A .60° B .90° C .120° D .150°
7.下列两个三角形中,一定全等的是( ).
A.有一个角是40°,腰相等的两个等腰三角形
B.两个等边三角形
C.有一个角是100°,底相等的两个等腰三角形
D.有一条边相等,有一个内角相等的两个等腰三角形 8.若△ABC 的三边长分别为a ,b ,c ,且满足(a-b )·(a 2
+b 2
-c 2
)=0,则△ABC 是( ). A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等腰三角形或直角三角形 9.如果两个三角形两条边和其中一边上的高分别对应相等,•则这两个三角形第三条边所 对的角的关系是( ).
A .相等
B .不相等
C .互补
D .相等或互补
10.图①是一瓷砖的图案,用这种瓷砖铺设地面,图②铺成了一个2×2的近似正方形,其中完整菱形共有5个;若铺成3×3的近似正方形图案③,其中完整的菱形有13个;铺成4×4的近似正方形图案④,其中完整的菱形有25个;如此下去,可铺成一个n n 的近似正方形图案.当得到完整的菱形共221个时,n 的值为( B ) A.12 B.11 C.10 D.9
二、认真填一填
1.若调查到爱好“乒乓球”的5名学生中有3名男生,2名女生,现从这5名学生中任意抽取2名学生,请用列表 法或画树状图的方法,求出刚好抽到一男一女的概率 . 53
2.上图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第9个
图案中基础图形个数为 28 。
E
A D
C
B
(1)
(2)
(3)
……
16
3.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC =36°,则∠CAP = .54︒
4.如图,正方形ABCD 、正方形A 1B 1C 1D 1、正方形A 2B 2C 2D 2均位于第一象限内,它们的边平行于x 轴或y 轴,其中点A 、A 1、A 2在直线OM 上,点C 、C 1、C 2在直线ON 上,O 为坐标原点,已知点A 的坐标为()3,3,正方形
ABCD 的边长为1.若正方形A 2B 2C 2D 2的边长为a ,则点D 2的坐标为 。
()3,4a a
5.如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC =EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC .则以下四个结论中正确结论① ② ④ 。
①OH =
2
1BF ; ②∠CHF =45°; ③GH =41BC ; ④DH 2=HE ·
6.如图,直线y =-21x +2与x 轴交于C ,与y 轴交于D , 以CD 为边作矩形CDAB ,点A 在x 轴上,双曲线y =x
k
(k <0)
经过点B 与直线CD 交于E ,EM ⊥x 轴于M ,则S BEMC = 2
7
三、解答题
1.如图,∠B=∠C=90°,M 是BC 中点,DM 平分∠ADC ,判断AM •是否平分∠DAB ,说明理由
2.已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E 。
求证:(1)△BFC ≌△DFC ;(2)AD=DE
A
B
C
D F
O G H
E
3.如图,梯形ABCD 中,AD ∥BC ,∠A =900, 点E 为CD 边的中点,BE ⊥CD ,且∠FBE =2∠EBC .在线段AD 上取
一点F ,在线段BE 上取一点G ,使得BF =BG ,连接CG . (1)若AB =AF ,EG =2,求线段CG 的长; (2)求证:∠EBC +3
1
∠ECG =30°.
解:连接BD, GC=2
4.重庆西永微电园入驻企业----方正集团开发了一种新型电子产品,是未来五年IT 行业倍受青睐的产品.在五年
销售期限内,方正集团每年对该产品最多可投入100万元销售投资,该集团营销部门根据市场分析,对该产品的销售投资收益拟定了两种销售方案:
x 方案二:五年销售期限内,每年均投入100万元销售投资。
前两年中,每年拨出50万元用于筹备国际营销平台,两年筹备完成, 完成前该产品只能在国内销售;国际营销平台完成后的3年中,该产品既在国内销售,也在国外销售,在国内销售的投资收益仍满足方案一,而在国外销售的投资收益为:每年投入x 万元,可获年利润299294(100)(100)1601005
Q x x =-
-+-+(万元). (1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出P 与x 之间的函数关系式,并求出选择方案一该集团每年所获利润的最大值.
(2)若选择方案二,设后3年中每年用于国内销售的投入为n (万元),则n 为何值时可使这5年所获总利润(扣
除筹备国际营销平台资金后)最大?并求出该最大值.
(3)方正集团的国际营销平台也可销售该集团其它产品,方正集团决定将另一种产品也销往国外.已知,该产品
在国内销售情况为:售价y (元/件)与销量a (件)的函数关系式为y =100
1
-
a +120,成本为20元/件;国外销售情况为:价格为120元/件,国外销售成本为40元/件.该集团要将8000件产品全部销售完并获得312000元的利润,该集团该怎样安排国内的销售量?(精确到个位) (参考数据:
414.12≈ 732.13≈ 236.25≈)
1)解: 21
(60)41100
P x =-
-+ 当x=60时P 有最大值41.
(2)方案二,在前2年中,当50x =时,每年最大利润为:
A
B C
D
E
F
G
21
(5060)4140100
P =-
-+=(万元)
,前2年的利润为:40280⨯=(万元), 扣除筹备资金后的纯利润为:8050220-⨯=-(万元). 国际营销平台筹备完成后,每年用n 万元投资本地销售,而用剩下的(100n)-万元投资外地销售,则其总利润
22199294(60)411603100
1005W n n n ⎡⎤
⎛⎫=--++-++⨯ ⎪⎢⎥⎝⎭⎣⎦=23180495n n -++(5)
23(30)3195n =--+.
当30n =时,W 的最大值为3195万元
∴5年的最大利润为3195-20=3175(万元) (3)由题意可知:1
(12020)80(8000)31200010
a a a -
+-+-= 化简可得:2
2000328000000a a --=
解得:122000200022
a a +-==(舍)。