2018年湖北省咸宁市咸安区初三上学期期末数学试卷[解析版]
- 格式:doc
- 大小:526.51 KB
- 文档页数:24
湖北省咸宁市2018年初中毕业会考、高级中等学校招生考试数学试卷答案解析试 题 卷一、精心选一选 1.【答案】C【解析】由题意知这一天的最高气温是2℃,最低气温是3﹣℃,所以这一天的温差是23235()()=+=﹣﹣℃, 故选C .2.【答案】B【解析】如图, 170∠=︒,3180118070110∴∠=︒∠=︒︒=︒﹣﹣,∵a b ∥,∴23110∠=∠=︒, 故选B .3.【答案】D【解析】123500000000的小数点向左移动11位得到1.235,所以123500000000用科学记数法表示为111.23510⨯,故选D . 4.【答案】A 【解析】如图所示:故该几何体的主视图和左视图相同,故选A . 5.【答案】D【解析】A .336•a a a =,故A 选项错误;B .2222a a a +=,故B 选项错误;C .624a a a ÷=,故C 选项错误;D .23628()a a =--,故D 选项正确,故选D . 6.【答案】D【解析】根据题意得1212211,22x x x x +===﹣﹣﹣,故A .B 选项错误; ∵12120,0x x x x +<<,∴12,x x 异号,且负数的绝对值大,故C 选项错误;∵1x 为一元二次方程22210x x +=﹣的根, ∴2112210x x -+=, ∴21112x x +=,故D 选项正确, 故选D .7.【答案】B【解析】如图,,AO O E BE 延长交于点连接,则180AOB BOE ∠+∠=︒, 又∵180AOB COD ∠+∠=︒, ∴BOE COD ∠=∠, ∴6BE CD ==, ∵AE O 为的直径,∴90ABE ∠=︒, ∴8AB =, 故选B .8.【答案】A【解析】由图可得,甲步行的速度为:240460/÷=米分,故①正确,乙走完全程用的时间为:240016601230()()÷⨯÷=分钟,故②错误, 乙追上甲用的时间为:1641()2=﹣分钟,故③错误,乙到达终点时,甲离终点距离是:2400430606)3(0+⨯=﹣米,故④错误, 故选A .二、细心填一填 9.【答案】2≠x【解析】分析:根据分式有意义,分母不等于0列式计算即可得解. 详解:由题意得, 20x -≠, 解得2≠x . 故答案为:2≠x . 10.【答案】)1)(1(-+b b a【解析】原式2(1)(1)1)a b ab b b =-=+- 故答案为:)1)(1(-+b b a【解析】∵459<<,∴23,即5为比2大比3小的无理数. 故答案为:5.【解析】分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号相同的情况,再利用概率公式即可求得答案. 详解:根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号相同的有3种结果, 所以两次摸出的小球标号相同的概率是3193=, 故答案为:31. 13.【答案】300【解析】如图,∵在,110,45Rt ABD AD BAD =∠=︒△中, ∴•45 (110)BD AD tan m =︒=, ∵,60Rt ACD CAD ∠=︒在△中,∴•60()110190CD AD tan m =︒=, ∴110190300()BC BD CD m =+=+=,即该建筑物的高度BC 约为300米,故答案为:300.14.【答案】()51-, 【解析】结合全等三角形的性质可以求得点G 的坐标,再由正方形的中心对称的性质求得点F 的坐标为()51-, 15.【答案】20192018【解析】由数列知第n 个数为1n(n+1),则前2018个数的和为1111126122020182019++++∙… 11111=1223344520182019++++∙∙∙∙∙ (2018)=2019故答案为:20192018.16.【答案】①③④(多填或少填均不给分)【解析】①根据对称的性质:对称点的连线被对称轴垂直平分可得:'OM 是AC 的垂直平分线,再由垂直平分线的性质可作判断; ②以O 为圆心,以,,,..,OA O AO E BE A B C O 为半径作交的延长线于连接则都在上根据四点共圆的性质得:60,,ACD E ACD α∠=∠=︒∠说明是定值不会随着的变化而变化; ③当30,30,AOD COD α=︒∠=∠=︒时即,,AOC ACD OC OA AD CD ===证明△是等边三角形和△是等边三角形得可作判断;④先证明ACD △是等边三角形,当AC 最大时,ACD △的面积最大,当AC 为直径时最大,根据面积公式计算后可作判断. 三、专心解一解 17.【答案】(1(2)26a -【解析】(1)解:原式=3-22-32+3=. (2)解:原式a a a a a +--+-=2263262-=a 18.【答案】答案见解析 【解析】证明:由作图步骤可知, 在'''D O C ∆和COD ∆中,'''''',,,O C OC O D OD C D CD ⎧=⎪=⎨⎪=⎩, ).('''SSS COD D O C ∆≅∆∴COD D O C ∠=∠∴'''.即AOB B O A ∠=∠'''. 19.【答案】(1)3 3表示这部分出行学生在这天约有一半人使用共享单车的次数在3次以上(含3次). (2)2x =(次) (3)756(人)【解析】解:(1)3,3,表示这部分出行学生在这天约有一半人使用共享单车的次数在3次以上(含3次). (2)25182823151155184283232151110≈+++++⨯+⨯+⨯+⨯+⨯+⨯=x (次)答:这天部分出行学生平均每人使用共享单车约2次. (3)28+18+51500=75611+15+23+28+18+5⨯(人)答 :估计这天使用共享单车次数在3 次以上(含3次)的学生有765人. 20.【答案】(1)答案见解析 (2)221+-=x y 【解析】解:(1) 矩形OABC 的顶点B 的坐标为()2,4,∴点M 的横坐标为4,点N 的纵坐标为2.把4=x 代入2521+-=x y ,得21=y ,∴点M 的坐标为)21,4(. 把2=y 代入2521+-=x y ,得1=x ,∴点N 的坐标为()2,1.函数)0(>=x x ky 的图象过点M ,).0(2,2214>=∴=⨯=∴x xy k把)2,1(N 代入x y 2=,得22=.∴点N 也在函数)0(>=x xky 的图像上.(2)设直线''N M 的解析式为b x y +-=21. 由1,22,y x b y x ⎧=-+⎪⎪⎨⎪=⎪⎩得,.0422=+-bx x 直线b x y +-=21与函数)0(2>=x x y 的图像上仅有一个交点,(),04422=⨯--∴b 解得2,221-==b b (舍去)∴直线''N M 的解析式为221+-=x y .21.【答案】(1)答案见解析 (2)15.4DE =【解析】解:(1)证明:连接.ODAC 是⊙O 的直径, 90=∠∴ABC .BD 平分ABC ∠, 45=∠∴ABD ..90 =∠∴AOD ,//AC DE90=∠=∠AOD ODE , DE ∴是⊙O 的切线.(2)在ABC Rt ∆中,,5,52==BC AB.25,522=∴=+=∴OD AC AB AC过点C 作,DE CG ⊥垂足为G ,则四边形ODEG 为正方形,.25===∴OD CG DG ,//AC DE,ACB CEG ∠=∠∴ACB CEG ∠=∠∴tan tan,BC ABGE CG =∴即5525.2=GE , ,45=∴GE.415=+=∴GE DG DE 22.【答案】(1)此次参加研学旅行活动的老师有16人,学生有284人 (2)8(3)答案见解析【解析】解 :(1)设老师有x 人,学生有y 人,依题意得1712,184,x y x y =-⎧⎨=+⎩, 解得16,284,x y =⎧⎨=⎩答:此次参加研学旅行活动的老师有16人,学生有284人. (2)8.(3)设乙种客车租x 辆,则甲种客车租()x -8辆.租车总费用不超过3100元,∴,3100)-300(8400x ≤+x 解得7≤x .为使300名师生都有车座,300)8(3042≥-+∴x x ,解得.5≥x x x (75≤≤∴为整数)∴共有3 种租车方案:方案一:租用甲种客车3 辆,乙种客车5 辆,租车费用2900元; 方案二:租用甲种客车2 辆,乙种客车6 辆,租车费用3000元; 方案三:租用甲种客车1辆,乙种客车7 辆,租车费用3100元;∴最节省费用的租车方案是:租用甲种客车3 辆,乙种客车5 辆.23. 【答案】(1)答案见解析 (2)答案见解析(3)FH =【解析】解:(1)如图1所示.说明:画出一个点得1分,学生画出3个点即可,其中点42,D D 直接描出也给分 (2)证明:,80 =∠ABC BD 平分ABC ∠,.140,40 =∠=∠∴=∠=∠∴ADB A DBC ABD .140,140 =∠+∠∴=∠ADB BDC ADC ,BDC A ∠=∠ ABD ∆∴∽.DBC ∆BD ∴是四边形ABCD 的“相似对角线”.(1)FH 是四边形EFGH 的“相似对角线”,∴三角形EFH 与三角形HFG 相似.又,HFG EFH ∠=∠FEH ∆∴∽,FHG ∆,FGFHFH FE =∴.2FG FE FH ⋅=∴过点E 作,FG EQ ⊥垂足为.Q则.2360sin FE FE EQ =⨯= ,322321,3221=⨯∴=⨯FE FG EQ FG ,8=⋅∴FE FG,82=⋅=∴FG FE FH.22=∴FH24.【答案】(1).343832++-=x x y (2).21(3)点M 的坐标为)3,1(-或)3,1(--. 【解析】解:(1)在343+-=x xy 中,令0=y ,得4=x ;令0=x ,得.3=y ).3,0(),0,4(B A ∴把)3,0(),0,4(B A ∴代入,832c bx x y ++-=得 23-440,83,b c c ⎧⨯++=⎪⎨⎪=⎩解得3,43,b c ⎧=⎪⎨⎪=⎩. ∴抛物线的解析式为.343832++-=x x y(2)过点P 作y 轴的平行线交AB 于点E .则PEQ ∆∽OBQ ∆,.OBPEOQ PQ =∴)343,(),34383,(2+-++-m m E m m m P 则m m m m m PE 2383)343()32383(22+-=+--++-= )30(2181)2383(3122<<+-=+-=∴m m m m m y )30(212-81218122<<+-=+-=m m m m y )( ∴当2=m 时,.21=最大值y PQ ∴与OQ 的比值的最大值为.21 (3)由抛物线.343832++-=x x y 易求),0,2(-C 对称轴为.1=x ODC ∆ 的外心为点M ,∴点M 在CO 的垂直平分线上. 设CO 的垂直平分线与CO 相交于点N .连接,DM CM OM 、、 则,,21MD MO MC OMN CMO ODC ==∠=∠=∠ ,1sin sin MOMO NO OMN ODC ==∠=∠ ODC ∠∴sin 的值随着MO 的减小而增大.又MD MO = ,∴当MD 取最小值时,ODC ∠sin 最大,此时,⊙M 与直线1=x 相切,.2=MD322=-=ON OM MN ,)3,1(--∴M .根据对称性性,另一点)3,1(--也符合题意.综上所述,点M 的坐标为)3,1(-或)3,1(--.。
湖北省咸宁市2018年初中毕业生学业考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.咸宁冬季里某一天的气温为- 3 ℃〜2 ℃ ,则这一天的温差是( ) A .1℃ B .-1℃ C .5℃ D .-5℃2. 如图,已知l b a ,//与 b a ,相 交 ,若701=∠,则2∠ 的度数等于( )A . 120B . 110C . 100D . 703.2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP 约123 500 000 000元 ,增速在全省17个市州中排名第三.将123 500 000 000用科学记数法表示为( )A .910123.5⨯B .101012.35⨯ C .8101.235⨯ D . 11101.235⨯ 3. 用4个完全相同的小正方体搭成如图所示的几何体,该几何体的( )A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视阁相同D.三种视图都相同5.下列计算正确的是( )A .3332a a a =⋅B .422a a a =+ C. 326a a a =÷D .632-82-a a =)( 6.已知一元二次方程01222=-+x x 的两个根为21,x x ,且21x x <,下列结论正确的是( )A .121=+x xB .-121=⋅x x C. 21x x < D .21221=+x x 7.如图,已知⊙O 的半径为5,弦CD AB ,所对的圆心角分别是,AOB ∠COD ∠,若AOB ∠与COD ∠互补,弦6=CD ,则弦AB 的长为( )A .6B .8 C.25 D .358. 甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4 分钟.在整个步行过程中,甲 、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论: ①甲步行的速度为60米/分; ②乙走完全程用了32分钟;③乙用 16分钟追上甲; ④乙到达终点时,甲离终点还有300米 其中正确的结论有( )A .1个B .2个 C. 3个 D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分24分,将答案填在答题纸上)9.如果分式21-x 有意义,那么实数x 的取值范围是__________. 10.因式分解:=-a ab 2_____________________.11.写出一个比2大比3小的无理数(用含根号的式子表示)________________.12.—个不透明的口袋中有3个完全相同的小球,它们的标号分別为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球.两次摸出的小球标号相同的概率是_________________.13.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为 45,测得底部C 的俯角力60,此时航拍无人机与该建筑物的水平距离AD 为m 110,那么该建筑物的高度BC 约为___________m .(结果保留整数, 1.733≈).14. 如图,将正方形OEFG 放在平而直角坐标系中,O 是坐标原点,点E 的坐标为(()3,2),则点F 的坐标为_______________________.15.按一定顺序排列的一列数叫做数列,如数列:,,,,, 2011216121则这个数列的前2018个数列的和为____________________________.16.如图,已知120=∠MON ,点B A ,分別在ON OM ,上,且,a OB OA ==将射线OM 绕点O 逆时针旋转得到'OM ,旋转角为 1200(<<αα且) 60≠α,作点A 关于直线'OM的对称点C ,画直线BC 交'OM 于点D ,连接.,AD AC 有下列结论:①;CD AD =②ACD ∠的大小随着α的变化而变化;③ 当30=α时,四边形OADC 为荽形;④ACD ∆面积的最大值为23a .其中正确的是________________.(把你认为正确结论的序号都填上)三、解答题 (本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17. (1)计算:2-38-123+;(2)化简:()()().123---+a a a a 18. 已知:AOB ∠.求作:,'''B O A ∠使=∠'''B O A AOB ∠作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OB OA ,于点D C ,;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ; (3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ;(4)过点 'D 画射线'OB ,则 AOB B O A ∠=∠'''. 根据以上作图步骤,请你证明AOB B O A ∠=∠'''.19. 近年来,共享单车逐渐成为高校学生喜爱的“绿色出行” 方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.(1)这天部分出行学生使用共享单车次数的中位数是____________,众数是____________ 该中位数的意义是____________;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3 次)的学生有多少人?20.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()2,4,直线2521+-=x y 与边BC AB ,分别相交于点N M ,,函数)0(>=x xky 的图象过点.M(1) 试说明点N 也在函数)0(>=x xky 的图象上; (2) 将直线MN 沿y 轴的负方向平移得到直线''N M ,当直线''N M 与函数)0(>=x xky 的图象仅有一个交点时,求直线''N M 的解析式.21.如图,以ABC ∆的边AC 为直径的⊙O 恰为ABC ∆的外接圆,ABC ∠的平分线交⊙O 于点D ,过 点D 作AC DE // 交BC 的延长线于点E .(1) 求证DE 是⊙O 的切线;(2) 若,5,52==BC AB 求DE 的长.22.为拓宽学生视野,引导学生主动适应社会,促进书木知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4 个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示:学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1) 参加此次研学旅行活动的老师和学生各有多少人?(2) 既要保证所有师生都有车坐,又要保证每辆客车上至少要有2 名老师,可知租用客车总数为_____辆;(3) 你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.23. 定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知ABC Rt ∆在正方形网格中,请你只用无刻度的直尺......在网格中找到一点D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(保留画图痕迹,找出3个即可); (2)如图2,在四边形ABCD 中, 140,80=∠=∠ADC ABC ,对角线BD 平分ABC ∠. 求证:BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,30=∠=∠HFG EFH .连接EG ,若 EFG ∆的面积为32,求FH 的长. 24.如图,直线 343+-=x y 与x 轴交于点A ,与y 轴交于点B ,抛物线c bx x y ++-=283。
2018年湖北省咸宁市初中毕业生学业考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.咸宁冬季里某一天的气温为- 3 ℃〜2 ℃ ,则这一天的温差是( ) A .1℃ B .-1℃ C .5℃ D .-5℃2. 如图,已知l b a ,//与 b a ,相 交 ,若701=∠,则2∠ 的度数等于( )A .120 B .110 C .100 D .703.2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP 约123 500 000 000元 ,增速在全省17个市州中排名第三.将123 500 000 000用科学记数法表示为( )A .910123.5⨯B .101012.35⨯ C .8101.235⨯ D . 11101.235⨯ 3. 用4个完全相同的小正方体搭成如图所示的几何体,该几何体的( )A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视阁相同D.三种视图都相同 5.下列计算正确的是( )A .3332a a a =⋅B .422a a a =+ C. 326a a a =÷ D .632-82-a a =)( 6.已知一元二次方程01222=-+x x 的两个根为21,x x ,且21x x <,下列结论正确的是( )A .121=+x xB .-121=⋅x x C. 21x x < D .21221=+x x 7.如图,已知⊙O 的半径为5,弦CD AB ,所对的圆心角分别是,AOB ∠COD ∠,若AOB ∠与COD ∠互补,弦6=CD ,则弦AB 的长为( )A .6B .8 C.25 D .358. 甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4 分钟.在整个步行过程中,甲 、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分; ②乙走完全程用了32分钟;③乙用 16分钟追上甲; ④乙到达终点时,甲离终点还有300米 其中正确的结论有( )A .1个B .2个 C. 3个 D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分24分,将答案填在答题纸上)9.如果分式21-x 有意义,那么实数x 的取值范围是__________. 10.因式分解:=-a ab 2_____________________.11.写出一个比2大比3小的无理数(用含根号的式子表示)________________.12.—个不透明的口袋中有3个完全相同的小球,它们的标号分別为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球.两次摸出的小球标号相同的概率是_________________.13.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为45,测得底部C 的俯角力60,此时航拍无人机与该建筑物的水平距离AD 为m 110,那么该建筑物的高度BC 约为___________m .(结果保留整数,1.733≈).14. 如图,将正方形OEFG 放在平而直角坐标系中,O 是坐标原点,点E 的坐标为(()3,2),则点F 的坐标为_______________________.15.按一定顺序排列的一列数叫做数列,如数列:,,,,, 2011216121则这个数列的前2018个数列的和为____________________________.16.如图,已知120=∠MON ,点B A ,分別在ON OM ,上,且,a OB OA ==将射线OM 绕点O 逆时针旋转得到'OM ,旋转角为1200(<<αα且) 60≠α,作点A 关于直线'OM 的对称点C ,画直线BC 交'OM 于点D ,连接.,AD AC 有下列结论:①;CD AD =②ACD ∠的大小随着α的变化而变化;③ 当30=α时,四边形OADC 为荽形;④ACD ∆面积的最大值为23a .其中正确的是________________.(把你认为正确结论的序号都填上)三、解答题 (本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:2-38-123+;(2)化简:()()().123---+a a a a 18.已知:AOB ∠.求作:,'''B O A ∠使=∠'''B O A AOB ∠ 作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OB OA ,于点D C ,;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ; (3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ;(4)过点 'D 画射线'OB ,则 AOB B O A ∠=∠'''.根据以上作图步骤,请你证明AOB B O A ∠=∠'''.19. 近年来,共享单车逐渐成为高校学生喜爱的“绿色出行” 方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.(1)这天部分出行学生使用共享单车次数的中位数是____________,众数是____________ 该中位数的意义是____________;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3 次)的学生有多少人?20.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()2,4,直线2521+-=x y 与边BC AB ,分别相交于点N M ,,函数)0(>=x xky 的图象过点.M(1) 试说明点N 也在函数)0(>=x xky 的图象上; (2) 将直线MN 沿y 轴的负方向平移得到直线''N M ,当直线''N M 与函数)0(>=x xky 的图象仅有一个交点时,求直线''N M 的解析式.21.如图,以ABC ∆的边AC 为直径的⊙O 恰为ABC ∆的外接圆,ABC ∠的平分线交⊙O 于点D ,过 点D 作AC DE // 交BC 的延长线于点E .(1) 求证DE 是⊙O 的切线;(2) 若,5,52==BC AB 求DE 的长.22.为拓宽学生视野,引导学生主动适应社会,促进书木知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4 个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示:学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师. (1) 参加此次研学旅行活动的老师和学生各有多少人?(2) 既要保证所有师生都有车坐,又要保证每辆客车上至少要有2 名老师,可知租用客车总数为_____辆; (3) 你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.23.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知ABC Rt ∆在正方形网格中,请你只用无刻度的直尺......在网格中找到一点D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD 中,140,80=∠=∠ADC ABC ,对角线BD 平分ABC ∠. 求证:BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,30=∠=∠HFG EFH .连接EG ,若EFG ∆的面积为32,求FH 的长. 24.如图,直线343+-=x y 与x 轴交于点A ,与y 轴交于点B ,抛物线c bx x y ++-=283。
2018年中考数学卷精析版——咸宁卷(本试卷满分120分,考试时间120分钟)一、精心选一选(本大题共8小题,每小题3分,满分24分.每小题给出的4个选项中只有一个符合题意,请在答题卷上将正确答案的代号涂黑)3.(2018湖北咸宁3分)某班团支部统计了该班甲、乙、丙、丁四名同学在5月份“书香校园”活动中的课外阅读时间,他们平均每天课外阅读时间x与方差s2如下表所示,你认为表现最好的是【】.甲乙丙丁x 1.2 1.5 1.5 1.2s20.2 0.3 0.1 0.1A.甲B.乙C.丙D.丁【答案】C。
【考点】平均数,方差。
【分析】∵乙、丙的平均数大于甲、丁的平均数,故乙、丙表现较好;又∵丙的方差小于乙的方差,则丙的表现比较稳定,所以丙的表现最好。
故选C。
4.(2018湖北咸宁3分)不等式组x 1042x 0>-⎧⎨-≥⎩①②的解集在数轴上表示为【 】.【答案】C 。
【考点】解一元一次不等式组,在数轴上表示不等式的解集。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
因此,由①得,x >1,由②得,x <2,故此不等式组的解集为:1<x≤2。
不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。
在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。
因此,不等式的解集在数轴上表示为:。
故选C 。
5.(2018湖北咸宁3分)下列运算正确的是【 】. A .326a a a ⋅=B .3226(ab )a b =C .222(a b)a b -=-D .5a 3a 2-=【答案】B 。
【考点】同底数幂的乘法,幂的乘方与积的乘方,完全平方公式,合并同类项。
2018年湖北省咸宁市初中毕业生学业考试数学试卷及答案第Ⅰ卷(共60分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.咸宁冬季里某一天的气温为- 3 ℃〜2 ℃ ,则这一天的温差是( ) A .1℃ B .-1℃ C .5℃ D .-5℃2. 如图,已知l b a ,//与 b a ,相 交 ,若 701=∠,则2∠ 的度数等于( )A . 120B . 110C . 100D . 703.2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP 约123 500 000 000元 ,增速在全省17个市州中排名第三.将123 500 000 000用科学记数法表示为( ) A .910123.5⨯ B .101012.35⨯ C .8101.235⨯ D . 11101.235⨯ 3. 用4个完全相同的小正方体搭成如图所示的几何体,该几何体的( )A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视阁相同D.三种视图都相同5.下列计算正确的是( )A .3332a a a =⋅B .422a a a =+ C. 326a a a =÷D .632-82-a a =)( 6.已知一元二次方程01222=-+x x 的两个根为21,x x ,且21x x <,下列结论正确的是( )A .121=+x xB .-121=⋅x x C. 21x x < D .21221=+x x 7.如图,已知⊙O 的半径为5,弦CD AB ,所对的圆心角分别是,AOB ∠COD ∠,若AOB ∠与COD ∠互补,弦6=CD ,则弦AB 的长为( )A .6B .8 C.25 D .358. 甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4 分钟.在整个步行过程中,甲 、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论: ①甲步行的速度为60米/分; ②乙走完全程用了32分钟;③乙用 16分钟追上甲; ④乙到达终点时,甲离终点还有300米 其中正确的结论有( )A .1个B .2个 C. 3个 D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分24分,将答案填在答题纸上)9.如果分式21-x 有意义,那么实数x 的取值范围是__________. 10.因式分解:=-a ab 2_____________________.11.写出一个比2大比3小的无理数(用含根号的式子表示)________________.12.—个不透明的口袋中有3个完全相同的小球,它们的标号分別为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球.两次摸出的小球标号相同的概率是_________________.13.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为 45,测得底部C 的俯角力60,此时航拍无人机与该建筑物的水平距离AD 为m 110,那么该建筑物的高度BC 约为___________m .(结果保留整数, 1.733≈).14. 如图,将正方形OEFG 放在平而直角坐标系中,O 是坐标原点,点E 的坐标为(()3,2),则点F 的坐标为_______________________.15.按一定顺序排列的一列数叫做数列,如数列:,,,,, 2011216121则这个数列的前2018个数列的和为____________________________.16.如图,已知 120=∠MON ,点B A ,分別在ON OM ,上,且,a OB OA ==将射线OM 绕点O 逆时针旋转得到'OM ,旋转角为1200(<<αα且) 60≠α,作点A 关于直线'OM 的对称点C ,画直线BC 交'OM 于点D ,连接.,AD AC 有下列结论:①;CD AD =②ACD ∠的大小随着α的变化而变化;③ 当30=α时,四边形OADC 为荽形;④ACD ∆面积的最大值为23a .其中正确的是________________.(把你认为正确结论的序号都填上)三、解答题 (本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:2-38-123+;(2)化简:()()().123---+a a a a 18.已知:AOB ∠.求作:,'''B O A ∠使=∠'''B O A AOB ∠ 作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OB OA ,于点D C ,;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ; (3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ; (4)过点 'D 画射线'OB ,则 AOB B O A ∠=∠'''. 根据以上作图步骤,请你证明AOB B O A ∠=∠'''.19. 近年来,共享单车逐渐成为高校学生喜爱的“绿色出行” 方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.(1)这天部分出行学生使用共享单车次数的中位数是____________,众数是____________ 该中位数的意义是____________;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3 次)的学生有多少人?20.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()2,4,直线2521+-=x y 与边BC AB ,分别相交于点N M ,,函数)0(>=x xky 的图象过点.M(1) 试说明点N 也在函数)0(>=x xky 的图象上; (2) 将直线MN 沿y 轴的负方向平移得到直线''N M ,当直线''N M 与函数)0(>=x xky 的图象仅有一个交点时,求直线''N M 的解析式.21.如图,以ABC ∆的边AC 为直径的⊙O 恰为ABC ∆的外接圆,ABC ∠的平分线交⊙O 于点D ,过 点D 作AC DE // 交BC 的延长线于点E .(1) 求证DE 是⊙O 的切线;(2) 若,5,52==BC AB 求DE 的长.22.为拓宽学生视野,引导学生主动适应社会,促进书木知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4 个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示:学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1) 参加此次研学旅行活动的老师和学生各有多少人?(2) 既要保证所有师生都有车坐,又要保证每辆客车上至少要有2 名老师,可知租用客车总数为_____辆;(3) 你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.23.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知ABC Rt ∆在正方形网格中,请你只用无刻度的直尺......在网格中找到一点D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(保留画图痕迹,找出3个即可); (2)如图2,在四边形ABCD 中,140,80=∠=∠ADC ABC ,对角线BD 平分ABC ∠. 求证:BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”, 30=∠=∠HFG EFH .连接EG ,若EFG ∆的面积为32,求FH 的长. 24.如图,直线343+-=x y 与x 轴交于点A ,与y 轴交于点B ,抛物线c bx x y ++-=283。
湖北省咸宁市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共22分)1. (2分)(2016·丹东) 如图所示几何体的左视图为()A .B .C .D .2. (3分) (2015八上·广州开学考) 掷一枚骰子,掷出向上的点数为奇数与偶数的可能性是()A .B .C .D . 无法确定3. (2分)(2020·长宁模拟) 如果点D、E , F分别在△ABC的边AB、BC , AC上,联结DE、EF ,且DE∥AC ,那么下列说法错误的是()A . 如果EF∥AB ,那么AF:AC=BD:ABB . 如果AD:AB=CF:AC ,那么EF∥ABC . 如果△EFC∽△ABC ,那么EF∥ABD . 如果EF∥AB ,那么△EFC∽△BDE4. (2分)(2017·丹东模拟) 如图,点E,点F分别在菱形ABCD的边AB,AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于H,若 =2,则的值为()A .B .C .D .5. (2分)(2011·百色) 如图,CD是⊙O的直径,弦AB⊥CD于E,∠BCD=25°,则下列结论错误的是()A . AE=BEB . OE=DEC . ∠AOD=50°D . D是的中点6. (3分)(2018·成都) 关于二次函数,下列说法正确的是()A . 图像与轴的交点坐标为B . 图像的对称轴在轴的右侧C . 当时,的值随值的增大而减小D . 的最小值为-37. (2分)某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A . 450a元B . 225a元C . 150a元D . 300a元8. (2分)(2018·开封模拟) 如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=2,则阴影部分面积为()A . πB . π﹣1C . +1D .9. (2分)△ABC中,AB=AC=5,BC=6,点D是BC上的一点,那么点D到AB与AC的距离的和为()A . 5B . 6C . 4D .10. (2分)如图,在平面直角坐标系中,直线y=﹣X+3与矩形OABC的边AB、BC分别交于点E、F,若点B 的坐标为(m,2),则m的值可能为()A .B .C .D .二、填空题(每小题4分,共24分) (共6题;共16分)11. (4分)在△ABC中,∠C=90°,BC=6 cm,sinA= ,则AB的长是________.cm.12. (4分) (2019九上·秀洲期中) 在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有3个红球,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.25左右,则白球的个数约为________.13. (2分)(2017·兰州模拟) 如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,A′相交于点D,则线段BD的长为________.14. (2分)(2019·蒙城模拟) 如图,在一个半径为3的圆中,若圆周角∠ABC为30°,则的长为________.15. (2分) (2018八上·重庆期中) 已知一个正多边形有一个内角是120°,那么这个正多边形是正________边形.16. (2分) (2017九上·鞍山期末) 已知二次函数()的图象如上图所示,给出4个结论:① ;② ;③ ;④ .其中正确的是________ (把正确结论的序号都填上).三、解答题(共8题;共66分) (共8题;共36分)17. (6分)已知线段a=0.3m,b=60cm,c=12dm(1)求线段a与线段b的比.(2)如果线段a,b,c,d成比例,求线段d的长.(3) b是a和c的比例中项吗?为什么?18. (2分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75 海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)19. (2分)如图,AB是⊙O的直径,BC是⊙O的弦,OD⊥CB于点E,交BC于点E.(1)请写出三个不同类型的正确结论;(2)连接CD,∠ABC=20°,求∠CDE的度数.20. (8.0分) (2017九上·灌云期末) 甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是多少?;(2)随机选取2名同学,求其中有乙同学的概率.21. (2分) (2019八上·驿城期中) 、两地相距,甲、乙两人沿同一条路从地到地.,分别表示甲、乙两人离开地的距离与时间之间的关系.(1)乙先出发________;后,甲才出发;直接写出,的表达式________、________.(2)甲到达地时,乙还需几小时到达地?22. (2分)(2018·宿迁) 如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x,(1)当AM= 时,求x的值;(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.23. (2分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.(1)求证:BE=EC(2)填空:①若∠B=30°,AC=2 ,则DE=________;②当∠B=________度时,以O,D,E,C为顶点的四边形是正方形.24. (12分) (2018·成华模拟) 如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点.(1)求抛物线的解析式及点D的坐标;(2)如图1,抛物线的对称轴与x轴交于点E,连接BD,点F是抛物线上的动点,当∠FBA=∠BDE时,求点F 的坐标;(3)如图2,若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,求点Q的坐标.参考答案一、选择题(每小题3分,共30分) (共10题;共22分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每小题4分,共24分) (共6题;共16分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共8题;共66分) (共8题;共36分)17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、。
2017-2018学年湖北省咸宁市咸安区初三上学期期末数学试卷一、精心选一选(本大题共8小题,每小题3分,共24分,每小题给出的4个选项中只有一个符合题意,请将所选项的字母代号写在题后的括号里)1.(3分)函数y=﹣的图象在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2.(3分)下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.(3分)设x1,x2是一元二次方程4x2+3x=1的两个根,则x1x2的值为()A.1B.﹣1C.D.﹣4.(3分)下列事件是不可能事件的是()A.打开电视机,正在播放“新闻30分”B.射击运动员射击一次,命中十环C.抛掷一枚硬币五次,五次都正面朝上D.方程x2﹣2x+2=0有实数根5.(3分)如图,平行四边形ABCD中,E是CD的延长线上一点,CD=2DE,BE 与AD交于点F.若△DEF的面积为1,则平行四边形ABCD的面积为()A.8B.10C.12D.146.(3分)小亮与小明一起玩“石头、剪刀、布”的游戏,两人同时出“布”的概率是()A.B.C.D.7.(3分)如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A.若△OPA 的面积为S,则当x增大时,S的变化情况是()A.S的值增大B.S的值减小C.S的值先增大,后减小D.S的值不变8.(3分)已知y=ax2+bx+c(其中a,b,c为常数,且a≠0),乐老师在用描点法画其的图象时,列出如下表格,根据该表格,下列判断中不正确的是()x…﹣1012…y…﹣2 2.54 2.5…A.a<0B.一元二次方程ax2+bx+c﹣5=0没有实数根C.当x=3时y=﹣2D.一元二次方程ax2+bx+c=0有一根比3大二、细心填一填(本大题共8小题,每小题3分,满分24分)9.(3分)在第一大题中,当你遇到一道不会做的题目时,如果你随便选一个答案,那么你答对的概率为.10.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=50°,则∠C=.11.(3分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有20个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到白色、黑色球的频率分别稳定在25%和45%,则口袋中红色球很可能有个.12.(3分)如果x2﹣x﹣1=(x+1)0,那么x的值为.13.(3分)如图,把△ABC绕点B逆时针旋转26°得到△EBF,若EF正好经过A 点,则∠BAC=.14.(3分)飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行m才停下来.15.(3分)如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积为.16.(3分)函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B.下面结论:①PA与PB始终相等;②△OBP与△OAP的面积始终相等;③四边形PAOB的面积不变;④PA•BD=PB•AC.其中一定正确的是(把你认为正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考,解答题应写出文字说明、证明过程或演算步骤)17.(6分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.(1)写出y(m)与S(mm2)的函数关系式;(2)求当面条粗2mm2时,面条的总长度是多少米?18.(8分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.19.(8分)已知△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC绕点A按逆时针方向旋转90°后的△A′B′C′;(2)图中△ABC的外心坐标为.点B旋转到点B′所经过的路线长为.(直接写出结果)20.(9分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述事件所有可能的结果;(2)求一次打开锁的概率.21.(9分)如图,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O,⊙O与AC的公共点为E,连接DE并延长交BC的延长线于点F,BD=BF.(1)试判断AC与⊙O的位置关系并说明理由;(2)若AB=12,BC=6,求⊙O的面积.22.(10分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?23.(10分)定义:如果一个四边形的两条对角线相等且相互垂直,则称这个四边形为“等垂四边形”.如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为“等垂四边形.根据等垂四边形对角线互相垂直的特征可得等垂四边形的一个重要性质:等垂四边形的面积等于两条对角线乘积的一半.根据以上信息解答下列问题:(1)矩形“等垂四边形”(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是等垂四边形,若⊙O的半径为6,∠ADC=60°,求四边形ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是等垂四边形,作OM⊥AD于M.请猜想OM与BC的数量关系,并证明你的结论.24.(12分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C 的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.2017-2018学年湖北省咸宁市咸安区初三上学期期末数学试卷参考答案与试题解析一、精心选一选(本大题共8小题,每小题3分,共24分,每小题给出的4个选项中只有一个符合题意,请将所选项的字母代号写在题后的括号里)1.(3分)函数y=﹣的图象在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【解答】解:∵反比例函数y=﹣中k=﹣,∴函数y=﹣的图象在第二、四象限.故选:B.2.(3分)下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形但不是轴对称图形,故此选项正确;B、不是中心对称图形,是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、是中心对称图形,是轴对称图形,故此选项错误;故选:A.3.(3分)设x1,x2是一元二次方程4x2+3x=1的两个根,则x1x2的值为()A.1B.﹣1C.D.﹣【解答】解:∵由4x2+3x=1得到:4x2+3x﹣1=0,∴a=4,c=﹣1,∴x1•x2==﹣.故选:D.4.(3分)下列事件是不可能事件的是()A.打开电视机,正在播放“新闻30分”B.射击运动员射击一次,命中十环C.抛掷一枚硬币五次,五次都正面朝上D.方程x2﹣2x+2=0有实数根【解答】解:A、打开电视机,正在播放“新闻30分”是可能事件,错误;B、射击运动员射击一次,命中十环是可能事件,错误;C、抛掷一枚硬币五次,五次都正面朝上是可能事件,错误;D、方程x2﹣2x+2=0中,△<0,没有实数根,所以有实数根是不可能事件,正确;故选:D.5.(3分)如图,平行四边形ABCD中,E是CD的延长线上一点,CD=2DE,BE 与AD交于点F.若△DEF的面积为1,则平行四边形ABCD的面积为()A.8B.10C.12D.14【解答】解:∵AD∥BC,AB∥CD,∴△EDF∽△ECB,△DEF∽△ABF,∵DE=DC,∴=,∴=,∴△BCE的面积为1×9=9,∴△ABF的面积为1×4=4,∴平行四边形ABCD面积为9﹣1+4=12.故选:C.6.(3分)小亮与小明一起玩“石头、剪刀、布”的游戏,两人同时出“布”的概率是()A.B.C.D.【解答】解:画树状图得:∵共有9种等可能的结果,两人同时出“布”的有1种情况,∴两人同时出“布”的概率是.故选:A.7.(3分)如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A.若△OPA 的面积为S,则当x增大时,S的变化情况是()A.S的值增大B.S的值减小C.S的值先增大,后减小D.S的值不变【解答】解:作PB⊥OA于B,如图,则OB=AB,=S△PAB,∴S△POB∵S=|k|,△POB∴S=2k,∴S的值为定值.故选:D.8.(3分)已知y=ax2+bx+c(其中a,b,c为常数,且a≠0),乐老师在用描点法画其的图象时,列出如下表格,根据该表格,下列判断中不正确的是()x…﹣1012…y…﹣2 2.54 2.5…A.a<0B.一元二次方程ax2+bx+c﹣5=0没有实数根C.当x=3时y=﹣2D.一元二次方程ax2+bx+c=0有一根比3大【解答】解:A、正确.有点的坐标(0,2.5),(2,2.5),可得出对称轴x==1,∵在对称左侧,y随x的增大而增大,∴抛物线的开口向下,a<0;B、正确.∵抛物线开口向下,顶点(1,4),∴函数的最大值为4,∴抛物线y=ax2+bx+c与直线y=5没交点,∴一元二次方程ax2+bx+c﹣5=0没有实数根;C、正确.根据对称性,x=3时的值和x=﹣1的值相等,∴当x=3时y=﹣2.D、错误.因为在对称轴的右侧y随x增大而减小.故选:D.二、细心填一填(本大题共8小题,每小题3分,满分24分)9.(3分)在第一大题中,当你遇到一道不会做的题目时,如果你随便选一个答案,那么你答对的概率为.【解答】解:根据题意,每个题目有4个备选答案,而只有一个是正确的,故答对的概率为;故答案为:.10.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=50°,则∠C=20°.【解答】解:如右图所示,连接OB,∵AB是切线,∴∠ABO=90°,又∵∠A=50°,∴∠AOB=90°﹣50°=40°,∵OB=OC,∴∠OBC=∠OCB,∴∠AOB=2∠C,∴∠C=×40°=20°.故答案是:20°11.(3分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有20个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到白色、黑色球的频率分别稳定在25%和45%,则口袋中红色球很可能有6个.【解答】解:∵摸到白色、黑色球的频率分别稳定在25%和45%,∴摸到红球的频率稳定在1﹣25%﹣45%=30%,∴红球的个数为20×30%=6,故答案为:6.12.(3分)如果x2﹣x﹣1=(x+1)0,那么x的值为2.【解答】解:x2﹣x﹣1=1,x2﹣x﹣2=0,(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,∵x+1≠0,∴x≠﹣1,∴x=2,故答案为:2.13.(3分)如图,把△ABC绕点B逆时针旋转26°得到△EBF,若EF正好经过A 点,则∠BAC=77°.【解答】解:∵把△ABC绕点B逆时针旋转26°得到△EBF,∴△ABC≌△EBF,∴BE=BA,∠E=∠BAC,∠EBF=∠ABC,∴都减去∠ABF得:∠EBA=∠FBC=26°,∵BE=BA,∴∠E=∠BAE=(180°﹣∠EBA)=77°,∴∠BAC=∠E=77°,故答案为:77°.14.(3分)飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行600m才停下来.【解答】解:∵y=﹣x2+60x=﹣(x﹣20)2+600,∴x=20时,y取得最大值,此时y=600,即该型号飞机着陆后滑行600m才能停下来,故答案为:600.15.(3分)如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积为π.【解答】解:作直径CG,连接OC、OD、OE、OF、DG、OF.∵CG是圆的直径,∴∠CDG=90°,则DG===8,又∵EF=8,∴DG=EF,∴=,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△BCD,S△OEF=S△BEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=π.故答案是:π.16.(3分)函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B.下面结论:①PA与PB始终相等;②△OBP与△OAP的面积始终相等;③四边形PAOB的面积不变;④PA•BD=PB•AC.其中一定正确的是②③④(把你认为正确结论的序号都填上)【解答】解:∵A、B是反比函数y=上的点,=S△OAC=,∴S△OBD∵点P在y=上,=S△POC=,∴S△PDO=S△POA=1,故②正确,∴S△POB∵当P的横纵坐标相等时PA=PB,故①错误;=S△PBO+S△POA=3,故③正确;∴S四边形PAOB连接OP,∵==3,∴AC=PC,PA=PC,∴=2,同理可得=2,∴=,即PA•BD=PB•AC故④正确.故答案为②③④三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考,解答题应写出文字说明、证明过程或演算步骤)17.(6分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.(1)写出y(m)与S(mm2)的函数关系式;(2)求当面条粗2mm2时,面条的总长度是多少米?【解答】解:(1)设y与s的函数关系式为y=,∵P(4,25),∴25=解得k=100,∴y与s的函数关系式是y=;(2)x=2mm 2时,y==50,求当面条粗2 mm2时,面条长为50米.18.(8分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.【解答】(1)解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得抛物线的对称轴为直线x=1,∵抛物线经过点(﹣1,0),∴抛物线与x轴的另一个交点为(3,0),∴方程﹣2x2+4x+c=0的根为x1=﹣1,x2=3.19.(8分)已知△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC绕点A按逆时针方向旋转90°后的△A′B′C′;(2)图中△ABC的外心坐标为(1,2).点B旋转到点B′所经过的路线长为π.(直接写出结果)【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,△ABC的外心坐标为(1,2),∵AB==,∴点B旋转到点B′所经过的路线长为=π,故答案为:(1,2)、π.20.(9分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述事件所有可能的结果;(2)求一次打开锁的概率.【解答】解:(1)分别用A与B表示锁,用A、B、C、D表示钥匙,画树状图得:则可得共有8种等可能的结果;(2)∵一次打开锁的有2种情况,∴一次打开锁的概率为:=.21.(9分)如图,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O,⊙O与AC的公共点为E,连接DE并延长交BC的延长线于点F,BD=BF.(1)试判断AC与⊙O的位置关系并说明理由;(2)若AB=12,BC=6,求⊙O的面积.【解答】解:(1)AC与⊙O相切.连接OE,∵OD=OE,∴∠ODE=∠OED.∵BD=BF,∴∠ODE=∠F.∴∠OED=∠F.∴OE∥BF.∴∠AEO=∠ACB=90°.∴OE⊥AC.∵点E为⊙O上一点,∴AC与⊙O相切.(2)由(1)知∠AEO=∠ACB,又∵∠A=∠A,∴△AOE∽△ABC.∴=.设⊙O的半径为r,则=,解得r=4,∴⊙O的面积为π×42=16π.22.(10分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【解答】解:(1)由题意得出:w=(x﹣20)∙y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.23.(10分)定义:如果一个四边形的两条对角线相等且相互垂直,则称这个四边形为“等垂四边形”.如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为“等垂四边形.根据等垂四边形对角线互相垂直的特征可得等垂四边形的一个重要性质:等垂四边形的面积等于两条对角线乘积的一半.根据以上信息解答下列问题:(1)矩形不是“等垂四边形”(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是等垂四边形,若⊙O的半径为6,∠ADC=60°,求四边形ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是等垂四边形,作OM⊥AD于M.请猜想OM与BC的数量关系,并证明你的结论.【解答】解:(1)矩形的对角线相等,不一定垂直,所以矩形不一定是等垂四边形.故答案为:不是;(2)连接OA,OC,过O作OH⊥AC于H.在△AOH中,∠AOH=∠ADC=60°,OA=6∴AH=3∴AC=2AH=6∵四边形ABCD是等垂四边形∴AC=BD=6∴S=•AC•BD=××6=54.四边形ABCD(3)连接OA,OB,OC,OD,过O作OE⊥BC于E,显然∠BOE=∠BAC,∠AOM=∠ABD∵BD⊥AC∴∠ABD﹢∠BAC=90°.∵∠AOM﹢∠OAM=90°∴∠OAM=∠BOE在△OAM中与△BOE中,∴△OAM≌△BOE∴OM=BE∵BE=BC,∴OM═BC.24.(12分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C 的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.【解答】解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).。
湖北省咸宁市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共7分)1. (1分)-3的相反数是()A . -3B . 3C .D . -2. (1分) (2019九下·包河模拟) 将一个机器零件按如图方式摆放,则它的左视图为()A .B .C .D .3. (1分) (2017九上·肇源期末) 如果把分式中的正数x,y,z都扩大2倍,则分式的值()A . 不变B . 扩大为原来的两倍C . 缩小为原来的D . 缩小为原来的4. (1分) (2020八下·贵阳开学考) 我市某一周每天的最高气温统计如下(单位:℃):27,28,29,28,29,30,29.这组数据的众数与中位数分别是().A . 28,28B . 28,29C . 29,28D . 29,295. (1分)(2019·大同模拟) 如图,把三角板的直角顶点放在直尺的一边上,若∠1=27°,则∠2的度数是()A . 53°B . 63°C . 73°D . 27°6. (1分)如图,在扇形纸片AOB中,OA =10,AOB=36°,OB在桌面内的直线l上.现将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为().A . 12πB . 11πC . 10πD . 10π+57. (1分)一次函数y=2x-6的图象与两坐标轴所围成的三角形的面积为()A . 18B . 9C . 6D . 12二、填空题 (共6题;共6分)8. (1分)(2018·重庆模拟) 改革开放30年以来,成都的城市化推进一直保持着快速、稳定的发展态势.据统计,到2008年底,成都市中心五城区(不含高新区)常住人口已达到4 410 000人,对这个常住人口数有如下几种表示:①4.41×105人;②4.41×106人;③44.1×105人.其中是科学记数法表示的序号为________.9. (1分)(2017·普陀模拟) 在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米,写出y关于x的函数解析式:________(结果保留π,不要求写出定义域)10. (1分)因式分解:﹣3m2+6m﹣3=________.11. (1分)(2018·平房模拟) 不等式组的解集为________.12. (1分)一元二次方程有两个不相等的实数根,则K的取值范围是________ .13. (1分)(2017·张家界) 如图,在正方形ABCD中,AD=2 ,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为________.三、解答题 (共7题;共15分)14. (1分)(2017·广丰模拟) 综合题。
九年级(上)期末数学试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.下列所述图形中,既是轴对称图形又是中心对称图形的是( )A. 等边三角形B. 平行四边形C. 正五边形D. 圆2.从标有a、b、c、1、2的五张卡牌中随机抽取一张,抽到数字卡牌的概率是( )A. B. C. D.3.若要得到函数y=(x+1)2+2的图象,只需将函数y=x2的图象( )A. 先向右平移1个单位长度,再向上平移2个单位长度B. 先向左平移1个单位长度,再向上平移2个单位长度C. 先向左平移1个单位长度,再向下平移2个单位长度D. 先向右平移1个单位长度,再向下平移2个单位长度4.如图,⊙O中弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是( )A. 15°B. 25°C. 30°D. 75°5.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为( )A. 30πcm2B. 48πcm2C. 60πcm2D. 80πcm26.已知点A(x1,y1),B(x2,y2)是反比例函数y=-的图象上的两点,若x1<0<x2,则下列结论正确的是( )A. y1<0<y2B. y2<0<y1C. y1<y2<0D. y2<y1<07.如图,已知A(-2,0),以B(0,1)为圆心,OB长为半径作⊙B,N是⊙B上一个动点,直线AN交y轴于M点,则△AOM面积的最大值是( )A. 2B.C. 4D.8.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,且a<b,则a、b、m 、n的大小关系是( )A. m<a<b<nB. a<m<n<bC. a<m<b<nD. m<a<n<b二、填空题(本大题共8小题,共24.0分)9.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是______度.10.如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=______.11.方程x2-9x+18=0的两个根是等腰三角形的底和腰的长,则这个等腰三角形的周长为______.12.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是______.13.若P(-3,2)与P′(3,n+1)关于原点对称,则n= ______ .14.一条弦把圆分为2:3的两部分,那么这条弦所对较小的圆周角度数为______.15.如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为______.16.已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a-b+c<0;⑤3a+c>0.其中正确结论的序号是______.三、解答题(本大题共8小题,共72.0分)17.用适当的方法解方程:(x+1)2-3(x+1)=0.18.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,求∠BCD的度数.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出将△ABC向下平移5个单位后得到的△A1B1C1;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.20.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB相交于点P ,连接EF ,EO ,若DE =2,∠DPA =45°.(1)求⊙O 的半径;(2)求图中阴影部分的面积.21.如图,四边形OABC 是矩形,ADEF 是正方形,点A、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F在AB 上,点B ,E 在反比例函数y =的图象上,O A =1,O C =6,试求出正方形ADEF 的边长.22.某商店将成本为每件60元的某商品标价100元出售.(1)为了促销,该商品经过两次降低后每件售价为81元,若两次降价的百分率相同,求每次降价的百分率;(2)经调查,该商品每降价2元,每月可多售出10件,若该商品按原标价出售,每月可销售100件,那么当销售价为多少元时,可以使该商品的月利润最大?最大的月利润是多少?23.在某次数学活动中,如图有两个可以自由转动的转盘A、B,转盘A被分成四个相同的扇形,分别标有数字1、2、3、4,转盘B被分成三个相同的扇形,分别标有数字5、6、7.若是固定不变,转动转盘(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止)(1)若单独自由转动A盘,当它停止时,指针指向偶数区的概率是______.(2)小明自由转动A盘,小颖自由转动B盘,当两个转盘停止后,记下各个转盘指针所指区域内对应的数字,请用画树状图或列表法求所得两数之积为10的倍数的概率.24.如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0),直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F.(1)求抛物线的解析式;(2)连接AE,求h为何值时,△AEF的面积最大.(3)已知一定点M(-2,0),问:是否存在这样的直线y=h,使△BDM是等腰三角形?若存在,请求出h的值和点D的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选:D.根据中心对称图形和轴对称图形的定义对各选项进行判断.本题考查了中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.也考查了轴对称图形.2.【答案】B【解析】解:∵从标有a、b、c、1、2 的五张卡牌中随机抽取一张有5种等可能结果,其中抽到数字卡片的有2种可能,∴抽到数字卡牌的概率是.故选:B.根据概率公式即可得.本题主要考查概率公式,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.3.【答案】B【解析】【分析】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键.找出两抛物线的顶点坐标,由a值不变即可找出结论.【解答】解:∵抛物线y=(x+1)2+2的顶点坐标为(-1,2),抛物线y=x2的顶点坐标为(0,0),∴将抛物线y=x2先向左平移1个单位长度,再向上平移2个单位长度即可得出抛物线y=(x+1)2+2.故选B.4.【答案】C【解析】【分析】本题主要考查了三角形的外角定理,圆周角定理,熟记圆周角定理是解题的关键.由三角形外角定理求得∠C的度数,再由圆周角定理可求∠B的度数.【解答】解:∵∠A=45°,∠AMD=75°,∴∠C=∠AMD-∠A=75°-45°=30°,根据圆周角定理∠B=∠C=30°,故选C.5.【答案】C【解析】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,圆锥侧面展开图的面积为:S侧=×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.6.【答案】B【解析】解:∵A(x1,y1),B(x2,y2)是反比例函数y=-的图象上的两点,∴y1=-,y2=-,∵x1<0<x2,∴y2<0<y1.故选:B.根据反比例函数图象上点的坐标特征得到y1=-,y2=-,然后利用x1<0<x2即可得到y1与y2的大小.本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.7.【答案】B【解析】解:当直线AN与⊙B相切时,△AOM面积的最大.连接AB、BN,在Rt△AOB和Rt△ANB中∴Rt△AOB≌Rt△ANB,∴AN=AO=2,设BM=x,∴MN2=(BM-1)(BM+1),∴MN=,∵∠AOM=∠BNM=90°,∠AMO=∠BMN,∴△BNM∽△AOM,∴=,即=,解得x=,S△AOM===.故选:B.当直线AN与⊙B相切时,△AOM面积的最大.设BM=x,由切割线定理表示出MN,可证明△BNM∽△AOM,根据相似三角形的性质可求得x,然后求得△AOM面积.本题是一个动点问题,考查了切线的性质和三角形面积的计算,解题的关键是确定当射线AN与⊙B相切时,△AOM面积的最大.8.【答案】A【解析】解:∵m、n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,∴二次函数y=(x-a)(x-b)-1的图象与x轴交于点(m,0)、(n,0),∴将y=(x-a)(x-b)-1的图象往上平移一个单位可得二次函数y=(x-a)(x-b)的图象,二次函数y=(x-a)(x-b)的图象与x轴交于点(a,0)、(b,0).画出两函数图象,观察函数图象可知:m<a<b<n.故选:A.由m、n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根可得出二次函数y=(x-a)(x-b)-1的图象与x轴交于点(m,0)、(n,0),将y=(x-a)(x-b)-1的图象往上平移一个单位可得二次函数y=(x-a)(x-b)的图象,画出两函数图象,观察函数图象即可得出a、b、m、n的大小关系.本题考查了抛物线与x轴的交点,画出两函数图象,利用数形结合解决问题是解题的关键.9.【答案】80【解析】解:由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故答案为:80.由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键.10.【答案】36°【解析】解:∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=(5-2)×180°÷5=108°,BC=CD=DE,∴,∴∠CAD=×108°=36°;故答案为:36°.由正五边形的性质得出∠BAE=(5-2)×180°÷5=108°,BC=CD=DE,得出,由圆周角定理即可得出答案.本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.11.【答案】15【解析】【分析】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).利用因式分解法解方程得到x1=3,x2=6,再根据三角形三边的关系得等腰三角形的底为3,腰为6,然后计算三角形的周长.【解答】解:x2-9x+18=0,(x-3)(x-6)=0,所以x1=3,x2=6,当等腰三角形的底为3,腰为6时,这个等腰三角形的周长为3+6+6=15,当等腰三角形的底为6,腰为3时,不满足三角形三边之间的的关系(舍去),所以,这个等腰三角形的周长为15.故答案为15.12.【答案】6【解析】解:连接AO,∵半径是5,CD=1,∴OD=5-1=4,根据勾股定理,AD===3,∴AB=3×2=6,因此弦AB的长是6.连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.13.【答案】-3【解析】解:∵P(-3,2)与P′(3,n+1)关于原点对称,∴-2=n+1,则n=-3.故答案为:-3.利用关于原点对称点的性质得出横纵坐标的关系进而得出答案.此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标关系是解题关键.14.【答案】72°【解析】解:如图,连接OA、OB.弦AB将⊙O分为2:3两部分,则∠AOB=×360°=144°;∴∠ACB=∠AOB=72°,∠ADB=180°-∠ACB=108°;故这条弦所对较小的圆周角的度数为72°;故答案为:72°.先求出这条弦所对圆心角的度数,然后分情况讨论这条弦所对圆周角的度数,即可得出结论.本题考查了圆周角定理以及圆内接四边形的性质;需注意的是在圆中,一条弦(非直径)所对的圆周角应该有两种情况.15.【答案】2【解析】解:∵在等边三角形ABC中,AB=6,∴BC=AB=6,∵BC=3BD,∴BD=BC=2,∵△ABD绕点A旋转后得到△ACE,∴△ABD≌△ACE,∴CE=BD=2.故答案为:2.由在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,根据等边三角形的性质,即可求得BD的长,然后由旋转的性质,即可求得CE的长度.此题考查了旋转的性质与等边三角形的性质.此题难度不大,注意旋转中的对应关系.16.【答案】①④⑤【解析】解:∵图象和x轴有两个交点,∴b2-4ac>0,∴b2>4ac,∴①正确;∵从图象可知:a>0,c<0,-=-1,b=2a>0,∴abc<0,∴②错误;∵b=2a>0∴2a+b=4a>0,∴③错误;∵x=-1时,y<0,∴a-b+c<0,∴④正确;∵x=1时,y>0,∴a+b+c>0,把b=2a代入得:3a+c>0,选项⑤正确;故答案为①④⑤.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=-1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.【答案】解:∵(x+1)[(x+1)-3]=0,即(x+1)(x-2)=0,∴x+1=0或x-2=0,解得:x=-1或x=2.【解析】因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键18.【答案】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°-44°=136°,即∠BCD的度数是136°.【解析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.19.【答案】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,,点B旋转到点B2所经过的路径长=.【解析】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,然后计算出OB的长后利用弧长公式计算点B旋转到点B2所经过的路径长.20.【答案】解:(1)连接OF,∵直径AB⊥DE,∴CE=DE=1.∵DE平分AO,∴CO=AO=OE.设CO=x,则OE=2x.由勾股定理得:12+x2=(2x)2.x=.∴OE=2x=.即⊙O的半径为.(2)在Rt△DCP中,∵∠DPC=45°,∴∠D=90°-45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF==π.∵∠EOF=2∠D=90°,OE=OF=S Rt△OEF==.∴S阴影=S扇形OEF-S Rt△OEF=π-.【解析】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系.(1)根据垂径定理得CE的长,再根据已知DE平分AO得CO=AO=OE,根据勾股定理列方程求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.21.【答案】解:∵OA=1,OC=6,四边形OABC是矩形,∴点B的坐标为(1,6),∵反比例函数y=的图象过点B,∴k=1×6=6.设正方形ADEF的边长为a(a>0),则点E的坐标为(1+a,a),∵反比例函数y=的图象过点E,∴a(1+a)=6,解得:a=2或a=-3(舍去),∴正方形ADEF的边长为2.【解析】根据OA、OC的长度结合矩形的性质即可得出点B的坐标,由点B的坐标利用反比例函数图象上点的坐标特征即可求出k值,设正方形ADEF的边长为a,由此即可表示出点E的坐标,再根据反比例函数图象上点的坐标特征即可得出关于a的一元二次方程,解之即可得出结论.本题考查了反比例函数图象上点的坐标特征、矩形的性质以及正方形的性质,根据反比例函数图象上点的坐标特征得出关于a的一元二次方程是解题的关键.22.【答案】解:(1)根据题意得:100(1-x)2=81,解得:x1=0.1,x2=1.9,经检验x2=1.9不符合题意,∴x=0.1=10%,答:每次降价百分率为10%;(2)设销售定价为每件m元,每月利润为y元,则y=(m-60)[100+5×(100-m)]=-5(m-90)2+4500,∵a=-5<0,∴当m=90元时,y最大为4500元.答:(1)下降率为10%;(2)当定价为90元时,y最大为4500元.【解析】(1)设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是100(1-x),第二次后的价格是100(1-x)2,据此即可列方程求解;(2)销售定价为每件m元,每月利润为y元,列出二者之间的函数关系式利用配方法求最值即可.本题考查了一元二次方程的应用及二次函数的有关知识,解题的关键是正确的找到题目中的等量关系且利用其列出方程.23.【答案】【解析】解:(1)∵指针指向1、2、3、4区是等可能情况,∴指针指向偶数区的概率是:=;(2)根据题意画出树状图如下:一共有12种情况,两数之积为10的倍数的情况有2种,所以,P(两数之积为10的倍数)==.(1)根据概率公式列式计算即可得解;(2)画出树状图,然后根据概率公式列式计算即可得解.本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:(1)∵抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0),∴,解得:.∴抛物线的解析式为y=-x2-x+6.(2)∵把x=0代入y=-x2-x+6,得y=6,∴点C的坐标为(0,6),设经过点A和点C的直线的解析式为y=mx+n,则,解得,∴经过点A和点C的直线的解析式为:y=2x+6,∵点E在直线y=h上,∴点E的坐标为(0,h),∴OE=h,∵点F在直线y=h上,∴点F的纵坐标为h,把y=h代入y=2x+6,得h=2x+6,解得x=,∴点F的坐标为(,h),∴EF=.∴S△AEF=•OE•FE=•h•=-(h-3)2+,∵-<0且0<h<6,∴当h=3时,△AEF的面积最大,最大面积是.(3)存在符合题意的直线y=h.∵直线AC的解析式为y=2x+6,点F的坐标为(,h),在△OFM中,OM=2,OF=,MF=,①若OF=OM,则==2,整理,得5h2-12h+20=0,∵△=(-12)2-4×5×20=-256<0,∴此方程无解,∴OF=OM不成立.②若OF=MF,则=,解得h=4,把y=h=4代入y=-x2-x+6,得-x2-x+6=4,解得x1=-2,x2=1,∵点G在第二象限,∴点G的坐标为(-2,4).③若MF=OM,则=2,解得h1=2,h2=-(不合题意,舍去),把y=h1=2代入y=-x2-x+6,得-x2-x+6=2.解得x1=,x2=,∵点G在第二象限,∴点G的坐标为(,2).综上所述,存在这样的直线y=2或y=4,使△OMF是等腰三角形,当h=4时,点G的坐标为(-2,4);当h=2时,点G的坐标为(,2).【解析】(1)利用待定系数法即可解决问题.(2)由题意可得点E的坐标为(0,h),点F的坐标为(,h),根据S△AEF=•OE•FE=•h•=-(h-3)2+.利用二次函数的性质即可解决问题.(3)分三种情形,分别列出方程即可解决问题.此题考查了待定系数法求函数的解析式、二次函数的性质、等腰三角形的性质、勾股定理一次函数的应用等知识,此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.。
2017-2018学年湖北省咸宁市咸安区初三上学期期末数学试卷一、精心选一选(本大题共8小题,每小题3分,共24分,每小题给出的4个选项中只有一个符合题意,请将所选项的字母代号写在题后的括号里)1.(3分)函数y=﹣的图象在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2.(3分)下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.(3分)设x1,x2是一元二次方程4x2+3x=1的两个根,则x1x2的值为()A.1B.﹣1C.D.﹣4.(3分)下列事件是不可能事件的是()A.打开电视机,正在播放“新闻30分”B.射击运动员射击一次,命中十环C.抛掷一枚硬币五次,五次都正面朝上D.方程x2﹣2x+2=0有实数根5.(3分)如图,平行四边形ABCD中,E是CD的延长线上一点,CD=2DE,BE 与AD交于点F.若△DEF的面积为1,则平行四边形ABCD的面积为()A.8B.10C.12D.146.(3分)小亮与小明一起玩“石头、剪刀、布”的游戏,两人同时出“布”的概率是()A.B.C.D.7.(3分)如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A.若△OPA 的面积为S,则当x增大时,S的变化情况是()A.S的值增大B.S的值减小C.S的值先增大,后减小D.S的值不变8.(3分)已知y=ax2+bx+c(其中a,b,c为常数,且a≠0),乐老师在用描点法画其的图象时,列出如下表格,根据该表格,下列判断中不正确的是()x…﹣1012…y…﹣2 2.54 2.5…A.a<0B.一元二次方程ax2+bx+c﹣5=0没有实数根C.当x=3时y=﹣2D.一元二次方程ax2+bx+c=0有一根比3大二、细心填一填(本大题共8小题,每小题3分,满分24分)9.(3分)在第一大题中,当你遇到一道不会做的题目时,如果你随便选一个答案,那么你答对的概率为.10.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=50°,则∠C=.11.(3分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有20个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到白色、黑色球的频率分别稳定在25%和45%,则口袋中红色球很可能有个.12.(3分)如果x2﹣x﹣1=(x+1)0,那么x的值为.13.(3分)如图,把△ABC绕点B逆时针旋转26°得到△EBF,若EF正好经过A 点,则∠BAC=.14.(3分)飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行m才停下来.15.(3分)如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积为.16.(3分)函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B.下面结论:①PA与PB始终相等;②△OBP与△OAP的面积始终相等;③四边形PAOB的面积不变;④PA•BD=PB•AC.其中一定正确的是(把你认为正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考,解答题应写出文字说明、证明过程或演算步骤)17.(6分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.(1)写出y(m)与S(mm2)的函数关系式;(2)求当面条粗2mm2时,面条的总长度是多少米?18.(8分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.19.(8分)已知△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC绕点A按逆时针方向旋转90°后的△A′B′C′;(2)图中△ABC的外心坐标为.点B旋转到点B′所经过的路线长为.(直接写出结果)20.(9分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述事件所有可能的结果;(2)求一次打开锁的概率.21.(9分)如图,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O,⊙O与AC的公共点为E,连接DE并延长交BC的延长线于点F,BD=BF.(1)试判断AC与⊙O的位置关系并说明理由;(2)若AB=12,BC=6,求⊙O的面积.22.(10分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?23.(10分)定义:如果一个四边形的两条对角线相等且相互垂直,则称这个四边形为“等垂四边形”.如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为“等垂四边形.根据等垂四边形对角线互相垂直的特征可得等垂四边形的一个重要性质:等垂四边形的面积等于两条对角线乘积的一半.根据以上信息解答下列问题:(1)矩形“等垂四边形”(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是等垂四边形,若⊙O的半径为6,∠ADC=60°,求四边形ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是等垂四边形,作OM⊥AD于M.请猜想OM与BC的数量关系,并证明你的结论.24.(12分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C 的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.2017-2018学年湖北省咸宁市咸安区初三上学期期末数学试卷参考答案与试题解析一、精心选一选(本大题共8小题,每小题3分,共24分,每小题给出的4个选项中只有一个符合题意,请将所选项的字母代号写在题后的括号里)1.(3分)函数y=﹣的图象在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【解答】解:∵反比例函数y=﹣中k=﹣,∴函数y=﹣的图象在第二、四象限.故选:B.2.(3分)下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形但不是轴对称图形,故此选项正确;B、不是中心对称图形,是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、是中心对称图形,是轴对称图形,故此选项错误;故选:A.3.(3分)设x1,x2是一元二次方程4x2+3x=1的两个根,则x1x2的值为()A.1B.﹣1C.D.﹣【解答】解:∵由4x2+3x=1得到:4x2+3x﹣1=0,∴a=4,c=﹣1,∴x1•x2==﹣.故选:D.4.(3分)下列事件是不可能事件的是()A.打开电视机,正在播放“新闻30分”B.射击运动员射击一次,命中十环C.抛掷一枚硬币五次,五次都正面朝上D.方程x2﹣2x+2=0有实数根【解答】解:A、打开电视机,正在播放“新闻30分”是可能事件,错误;B、射击运动员射击一次,命中十环是可能事件,错误;C、抛掷一枚硬币五次,五次都正面朝上是可能事件,错误;D、方程x2﹣2x+2=0中,△<0,没有实数根,所以有实数根是不可能事件,正确;故选:D.5.(3分)如图,平行四边形ABCD中,E是CD的延长线上一点,CD=2DE,BE 与AD交于点F.若△DEF的面积为1,则平行四边形ABCD的面积为()A.8B.10C.12D.14【解答】解:∵AD∥BC,AB∥CD,∴△EDF∽△ECB,△DEF∽△ABF,∵DE=DC,∴=,∴=,∴△BCE的面积为1×9=9,∴△ABF的面积为1×4=4,∴平行四边形ABCD面积为9﹣1+4=12.故选:C.6.(3分)小亮与小明一起玩“石头、剪刀、布”的游戏,两人同时出“布”的概率是()A.B.C.D.【解答】解:画树状图得:∵共有9种等可能的结果,两人同时出“布”的有1种情况,∴两人同时出“布”的概率是.故选:A.7.(3分)如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A.若△OPA 的面积为S,则当x增大时,S的变化情况是()A.S的值增大B.S的值减小C.S的值先增大,后减小D.S的值不变【解答】解:作PB⊥OA于B,如图,则OB=AB,=S△PAB,∴S△POB=|k|,∵S△POB∴S=2k,∴S的值为定值.故选:D.8.(3分)已知y=ax2+bx+c(其中a,b,c为常数,且a≠0),乐老师在用描点法画其的图象时,列出如下表格,根据该表格,下列判断中不正确的是()x…﹣1012…y…﹣2 2.54 2.5…A.a<0B.一元二次方程ax2+bx+c﹣5=0没有实数根C.当x=3时y=﹣2D.一元二次方程ax2+bx+c=0有一根比3大【解答】解:A、正确.有点的坐标(0,2.5),(2,2.5),可得出对称轴x==1,∵在对称左侧,y随x的增大而增大,∴抛物线的开口向下,a<0;B、正确.∵抛物线开口向下,顶点(1,4),∴函数的最大值为4,∴抛物线y=ax2+bx+c与直线y=5没交点,∴一元二次方程ax2+bx+c﹣5=0没有实数根;C、正确.根据对称性,x=3时的值和x=﹣1的值相等,∴当x=3时y=﹣2.D、错误.因为在对称轴的右侧y随x增大而减小.故选:D.二、细心填一填(本大题共8小题,每小题3分,满分24分)9.(3分)在第一大题中,当你遇到一道不会做的题目时,如果你随便选一个答案,那么你答对的概率为.【解答】解:根据题意,每个题目有4个备选答案,而只有一个是正确的,故答对的概率为;故答案为:.10.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=50°,则∠C=20°.【解答】解:如右图所示,连接OB,∵AB是切线,∴∠ABO=90°,又∵∠A=50°,∴∠AOB=90°﹣50°=40°,∵OB=OC,∴∠OBC=∠OCB,∴∠AOB=2∠C,∴∠C=×40°=20°.故答案是:20°11.(3分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有20个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到白色、黑色球的频率分别稳定在25%和45%,则口袋中红色球很可能有6个.【解答】解:∵摸到白色、黑色球的频率分别稳定在25%和45%,∴摸到红球的频率稳定在1﹣25%﹣45%=30%,∴红球的个数为20×30%=6,故答案为:6.12.(3分)如果x2﹣x﹣1=(x+1)0,那么x的值为2.【解答】解:x2﹣x﹣1=1,x2﹣x﹣2=0,(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,∵x+1≠0,∴x≠﹣1,∴x=2,故答案为:2.13.(3分)如图,把△ABC绕点B逆时针旋转26°得到△EBF,若EF正好经过A 点,则∠BAC=77°.【解答】解:∵把△ABC绕点B逆时针旋转26°得到△EBF,∴△ABC≌△EBF,∴BE=BA,∠E=∠BAC,∠EBF=∠ABC,∴都减去∠ABF得:∠EBA=∠FBC=26°,∵BE=BA,∴∠E=∠BAE=(180°﹣∠EBA)=77°,∴∠BAC=∠E=77°,故答案为:77°.14.(3分)飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行600m才停下来.【解答】解:∵y=﹣x2+60x=﹣(x﹣20)2+600,∴x=20时,y取得最大值,此时y=600,即该型号飞机着陆后滑行600m才能停下来,故答案为:600.15.(3分)如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积为π.【解答】解:作直径CG,连接OC、OD、OE、OF、DG、OF.∵CG是圆的直径,∴∠CDG=90°,则DG===8,又∵EF=8,∴DG=EF,∴=,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△BCD,S△OEF=S△BEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=π.故答案是:π.16.(3分)函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B.下面结论:①PA与PB始终相等;②△OBP与△OAP的面积始终相等;③四边形PAOB的面积不变;④PA•BD=PB•AC.其中一定正确的是②③④(把你认为正确结论的序号都填上)【解答】解:∵A、B是反比函数y=上的点,=S△OAC=,∴S△OBD∵点P在y=上,∴S=S△POC=,△PDO=S△POA=1,故②正确,∴S△POB∵当P的横纵坐标相等时PA=PB,故①错误;∴S=S△PBO+S△POA=3,故③正确;四边形PAOB连接OP,∵==3,∴AC=PC,PA=PC,∴=2,同理可得=2,∴=,即PA•BD=PB•AC故④正确.故答案为②③④三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考,解答题应写出文字说明、证明过程或演算步骤)17.(6分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.(1)写出y(m)与S(mm2)的函数关系式;(2)求当面条粗2mm2时,面条的总长度是多少米?【解答】解:(1)设y与s的函数关系式为y=,∵P(4,25),∴25=解得k=100,∴y与s的函数关系式是y=;(2)x=2mm 2时,y==50,求当面条粗2 mm2时,面条长为50米.18.(8分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.【解答】(1)解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得抛物线的对称轴为直线x=1,∵抛物线经过点(﹣1,0),∴抛物线与x轴的另一个交点为(3,0),∴方程﹣2x2+4x+c=0的根为x1=﹣1,x2=3.19.(8分)已知△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC绕点A按逆时针方向旋转90°后的△A′B′C′;(2)图中△ABC的外心坐标为(1,2).点B旋转到点B′所经过的路线长为π.(直接写出结果)【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,△ABC的外心坐标为(1,2),∵AB==,∴点B旋转到点B′所经过的路线长为=π,故答案为:(1,2)、π.20.(9分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述事件所有可能的结果;(2)求一次打开锁的概率.【解答】解:(1)分别用A与B表示锁,用A、B、C、D表示钥匙,画树状图得:则可得共有8种等可能的结果;(2)∵一次打开锁的有2种情况,∴一次打开锁的概率为:=.21.(9分)如图,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O,⊙O与AC的公共点为E,连接DE并延长交BC的延长线于点F,BD=BF.(1)试判断AC与⊙O的位置关系并说明理由;(2)若AB=12,BC=6,求⊙O的面积.【解答】解:(1)AC与⊙O相切.连接OE,∵OD=OE,∴∠ODE=∠OED.∵BD=BF,∴∠ODE=∠F.∴∠OED=∠F.∴OE∥BF.∴∠AEO=∠ACB=90°.∴OE⊥AC.∵点E为⊙O上一点,∴AC与⊙O相切.(2)由(1)知∠AEO=∠ACB,又∵∠A=∠A,∴△AOE∽△ABC.∴=.设⊙O的半径为r,则=,解得r=4,∴⊙O的面积为π×42=16π.22.(10分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【解答】解:(1)由题意得出:w=(x﹣20)∙y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.23.(10分)定义:如果一个四边形的两条对角线相等且相互垂直,则称这个四边形为“等垂四边形”.如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为“等垂四边形.根据等垂四边形对角线互相垂直的特征可得等垂四边形的一个重要性质:等垂四边形的面积等于两条对角线乘积的一半.根据以上信息解答下列问题:(1)矩形不是“等垂四边形”(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是等垂四边形,若⊙O的半径为6,∠ADC=60°,求四边形ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是等垂四边形,作OM⊥AD于M.请猜想OM与BC的数量关系,并证明你的结论.【解答】解:(1)矩形的对角线相等,不一定垂直,所以矩形不一定是等垂四边形.故答案为:不是;(2)连接OA,OC,过O作OH⊥AC于H.在△AOH中,∠AOH=∠ADC=60°,OA=6∴AH=3∴AC=2AH=6∵四边形ABCD是等垂四边形∴AC=BD=6=•AC•BD=××6=54.∴S四边形ABCD(3)连接OA,OB,OC,OD,过O作OE⊥BC于E,显然∠BOE=∠BAC,∠AOM=∠ABD∵BD⊥AC∴∠ABD﹢∠BAC=90°.∵∠AOM﹢∠OAM=90°∴∠OAM=∠BOE在△OAM中与△BOE中,∴△OAM≌△BOE∴OM=BE∴OM═BC.24.(12分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C 的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.【解答】解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F 2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).。