高三数学专项训练函数值的大小比较含答案
- 格式:docx
- 大小:404.88 KB
- 文档页数:10
高三数学对数与对数函数试题答案及解析1.函数(其中且)的图像恒过定点,若点在直线上,其中,则的最小值为 .【答案】2【解析】由y=log(x+3)-1经过的定点为(-2,-1)a于是-2m-n+4=0,得2m+n=4,且mn>0,于是m>0,n>0所以=2当且仅当m=1,n=2时等号成立,即的最小值为2.【考点】函数图象过定点,基本不等式(2x-1)的定义域为________________.2.函数f(x)=log2【答案】(,+∞)【解析】由2x-1>0,得x>.注意写成集合或者区间形式.考点:函数的定义域,对数函数的性质3.计算的结果是()A.B.2C.D.3【答案】B【解析】,选B【考点】对数基本运算.4.若的最小值是A.B.C.D.【答案】D【解析】由题意,且,所以又,所以,,所以,所以,当且仅当,即,时,等号成立.故选D.【考点】1、对数的运算;2、基本不等式.5.若,则=.【答案】【解析】∵,,∴.【考点】分段函数的函数值、三角函数值的计算、对数式的计算.6.设a=lg e,b=(lg e)2,c=lg,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a【答案】B【解析】∵1<e<3,则1<<e<e2<10.∴0<lg e<1.则lg=lg e<lg e,即c<a.又0<lg e<1,∴(lg e)2<lg e,即b<a.同时c-b=lg e-(lg e)2=lg e(1-2 lg e)=lg e·lg>0.∴c>b.故应选B.7.函数y=(x2-6x+17)的值域是________.【答案】(-∞,-3]【解析】令t=x2-6x+17=(x-3)2+8≥8,y=为减函数,所以有≤=-3.8.已知f(x)=logax(a>0且a≠1),如果对于任意的x∈都有|f(x)|≤1成立,试求a的取值范围.【解析】解:当a>1时,f(x)=logax在上单调递增,要使x∈都有|f(x)|≤1成立,则有解得a≥3.∴此时a的取值范围是a≥3.当0<a<1时,f(x)=logax在上单调递减,要使x∈都有|f(x)|≤1成立,则有,解得0<a≤.∴此时,a的取值范围是0<a≤.综上可知,a的取值范围是∪[3,+∞).9.(5分)(2011•重庆)设a=,b=,c=log3,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【答案】B【解析】可先由对数的运算法则,将a和c化为同底的对数,利用对数函数的单调性比较大小;再比较b和c的大小,用对数的换底公式化为同底的对数找关系,结合排除法选出答案即可.解:由对数的运算法则,a=log32>c;排除A和C.因为b=log23﹣1,c=log34﹣1=,因为(log23)2>2,所以log23>,所以b>c,排除D故选B.点评:本题考查对数值的大小比较,考查对数的运算法则和对数的换底公式,考查运算能力.10.函数的值域为 .【答案】【解析】由得 ,所以函数的定义域是:设点=所以,,所以答案填:【考点】1、对数函数的性质;2、数形结合的思想.11.函数的定义域是A.[1,2]B.C.D.【答案】C【解析】根据函数定义域的要求得:.【考点】(1)函数的定义域;(1)对数函数的性质.12.对任意实数a,b定义运算如下,则函数的值域为( )A.B.C.D.【答案】B【解析】因为,对任意实数a,b定义运算如下,所以,==,故,选B.【考点】分段函数,对数函数的性质,新定义.13.已知函数f(x)=log2x-2log2(x+c),其中c>0,若对任意x∈(0,+∞),都有f(x)≤1,则c的取值范围是________.【答案】c≥【解析】由题意,在x∈(0,+∞)上恒成立,所以c≥14. 若函数f(x)=log 2|ax -1|(a >0),当x≠时,有f(x)=f(1-x),则a =________. 【答案】2【解析】由f(x)=f(1-x),知函数f(x)的图象关于x =对称, 而f(x)=log 2+log 2|a|,从而=,所以a =2.15. 已知两条直线l 1:y =m 和l 2:y =,l 1与函数y =|log 2x|的图象从左至右相交于点A 、B ,l 2与函数y =|log 2x|的图象从左至右相交于点C 、D.记线段AC 和BD 在x 轴上的投影长度分别为a 、b.当m 变化时,求的最小值. 【答案】8【解析】由题意得x A =m,x B =2m ,x C =,x D =,所以a =|x A -x C |=,b =|x B -x D |=,即==·2m =2+m.因为+m = (2m +1)+-≥2-=,当且仅当 (2m +1)=,即m =时取等号.所以,的最小值为=8.16. 设则a ,b ,c 的大小关系为 A .a <c <b B .b <a <c C .a <b <c D .b <c <a【答案】B 【解析】因为所以显然,所以的值最大.故排除A,D 选项.又因为,所以.即.综上.故选B.本小题关键是进行对数的运算.【考点】1.对数的运算.2.数的大小比较的方法.17. 函数y=log a (x-1)+2(a>0,且a≠1)的图象恒过定点 . 【答案】(2,2)【解析】∵log a 1=0,∴x-1=1,即x=2,此时y=2,因此函数恒过定点(2,2).18. 已知函数f (x )是定义在R 上的奇函数,且当x ∈(0,+∞)时,都有不等式f (x )+xf ′(x )>0成立,若a =40.2f (40.2),b =(log 43)f (log 43),c =f,则a ,b ,c 的大小关系是________.【答案】c >a >b【解析】由f (x )+xf ′(x )>0得(xf (x ))′>0,令g (x )=xf (x ),则g (x )在(0,+∞)递增,且为偶函数,且a =g (40.2),b =g (log 43),c =g =g (-2)=g (2),因为0<log 43<1<40.2<2,所以c >a>b .19. 在ABC 中,若,则A=( )A .B .C .D .【答案】C【解析】由,整理得,又,选C.【考点】对数及其运算,余弦定理的应用.20.已知函数(1)若x=2为的极值点,求实数a的值;(2)若在上为增函数,求实数a的取值范围.【答案】(1);(2)【解析】(1)通过求导可得.又因为x=2是极值点.即可求得.(2)通过对对数的定义域可得符合题意的不等式.在上恒成立.所以转化为研究二次函数的最值问题.通过对称轴研究函数的单调性即可得到结论.本题的的关键是对含参的函数的最值的讨论.以二次的形式为背景紧扣对称轴这个知识点.试题解析:(1)因为.因为x=2为f(x)的极值点.所以即.解得.又当时.从而x=2为f(x)的极值点成立. (2)因为f(x)在区间上为增函数.所以.在区间上恒成立. ①当时. 在上恒成立.所以f(x)在上为增函数.故符合题意.②当时.由函数f(x)的定义域可知,必须有时恒成立.故只能.所以在区间上恒成立.令g(x)= .其对称轴为.因为.所以<1.从而g(x) 在上恒成立.只需要g(3) 即可.由g(3)= .解得:.因为.所以.综上所述. 的取值范围为.【考点】1.对数函数的知识点.2.最值问题.3.含参的讨论.21.已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图象上存在区域内的点,则实数的取值范围为 .【答案】【解析】的两根x1,x2满足0<x1<1<x2,则x1+x2=-m,x1x2=,(x1-1)(x2-1)=x1x2-(x1+x2)+1=+m+1<0,即∴-m<n<-3m-2,为平面区域D,∴m<-1,n>1,因为的图像上存在区域D内的点,所以,,因为,所以,所以解得.【考点】1.函数的导数;2.对数的性质.22.设是定义在上的偶函数,对任意的,都有,且当时,,若关于的方程在区间内恰有三个不同实根,则实数的取值范围是 .【答案】【解析】∵对于任意的x∈R,都有f(2-x)=f(x+2),∴函数f(x)的图象关于直线x=2对称,又∵当x∈[-2,0]时,f(x)=-1,且函数f(x)是定义在R上的偶函数,若在区间(-2,6)内关于x的方程f(x)-loga (x+2)=0恰有3个不同的实数解,则函数y=f(x)与y=loga(x+2)在区间(-2,6)上有三个不同的交点,如下图所示:又f(-2)=f(2)=3,则有 loga (2+2)<3,且loga(6+2)≥3,解得.【考点】1.指数函数与对数函数的图象与性质;2.函数的零点与方程根的关系23.对于以下结论:①.对于是奇函数,则;②.已知:事件是对立事件;:事件是互斥事件;则是的必要但不充分条件;③.若,,则在上的投影为;④.(为自然对数的底);⑤.函数的图像可以由函数图像先左移2个单位,再向下平移1个单位而来.其中,正确结论的序号为__________________.【答案】③④⑤【解析】对①,不一定有意义,所以不正确;对②,是的充分但不必要条件;所以不正确;对③,易得在上的投影为;所以正确;对④,构造函数,则.由此可得在上单调递减,故成立;所以正确;对⑤,原函数可变为:,所以将函数图像先左移2个单位,再向下平移1个单位可得函数的图像.正确.【考点】1、函数的性质;2、随机事件及二项分布;3、向量的投影;4、充分必要条件.24.设,,,则( )A.c>b>a B.b>c>a C.a>c>b D.a>b>c【答案】D【解析】,,,又,,,,所以,所以.【考点】对数与对数运算25.函数f(x)=lnx的图象与函数g(x)=x2-4x+4的图象的交点个数为()A.0B.1C.2D.3【答案】C【解析】将题中所给的函数画出如下:,根据图像,易知有2个交点.【考点】1.函数的零点;2.函数的图像画法.26.不等式的解集为_____________.【答案】【解析】原不等式等价于,解得.【考点】对数函数的定义与性质27.已知函数f(x)=|lg(x-1)|若a≠b,f(a)=f(b),则a+2b的取值范围是.【答案】【解析】由得,且,由对数函数的特征得,所以,故.【考点】对数函数性质、基本不等式.28.已知函数.(1) 当时,函数恒有意义,求实数a的取值范围;(2) 是否存在这样的实数a,使得函数在区间上为增函数,并且的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.【答案】(1);(2)存在,.【解析】(1)首先根据对数函数的底数,得到为减函数,最小值是,再根据对数函数的真数大于0,得到恒成立,在范围内解不等式即可;(2)先看真数部分是减函数,由已知“在区间上为增函数”可得,为减函数,此时得到;根据“的最大值为1”,结合对数函数的真数大于0,可知,解出,再判断它是不是在的范围内,在这个范围内,那么得到的的值满足题目要求,不在这个范围内就说明满足题目要求的是不存在的.试题解析:(1)∵,设,则为减函数,时,t最小值为, 2分当,恒有意义,即时,恒成立.即;4分又,∴ 6分(2)令,则;∵,∴函数为减函数,又∵在区间上为增函数,∴为减函数,∴,8分所以时,最小值为,此时最大值为;9分又的最大值为1,所以, 10分∴,即,所以,故这样的实数a存在. 12分【考点】1.对数函数的定义及定义域;2.对数函数的单调性及其应用;3.对数函数的值域与最值;4.简单复合函数的单调性;5.解不等式29.若函数(其中为常数且),满足,则的解集是 .【答案】【解析】函数定义域为,由,知函数为单调递减函数,所以.由知,满足:,解得.【考点】1.不等式求解;2.对数的单调性;3.函数的定义域.30.已知函数(为常数,为自然对数的底)(1)当时,求的单调区间;(2)若函数在上无零点,求的最小值;(3)若对任意的,在上存在两个不同的使得成立,求的取值范围.【答案】(1)的减区间为,增区间为;(2)的最小值为;(3)的取值范围是.【解析】(1)将代入函数的解析式,利用导数求出的单调递增区间和递减区间;(2)将函数在上无零点的问题转化为直线与曲线在区间上无交点,利用导数确定函数在区间上的图象,进而求出参数的取值范围,从而确定的最小值;(3)先研究函数在上的单调性,然后再将题干中的条件进行适当转化,利用两个函数的最值或端点值进行分析,列出相应的不等式,从而求出的取值范围.试题解析:(1)时,由得得故的减区间为增区间为 3分(2)因为在上恒成立不可能故要使在上无零点,只要对任意的,恒成立即时, 5分令则再令于是在上为减函数故在上恒成立在上为增函数在上恒成立又故要使恒成立,只要若函数在上无零点,的最小值为 8分(3)当时,,为增函数当时,,为减函数函数在上的值域为 9分当时,不合题意当时,故① 10分此时,当变化时,,的变化情况如下时,,任意定的,在区间上存在两个不同的使得成立,当且仅当满足下列条件即②即③ 11分令令得当时,函数为增函数当时,函数为减函数所以在任取时有即②式对恒成立 13分由③解得④由①④当时对任意,在上存在两个不同的使成立【考点】1.函数的单调区间;2.函数的零点;3.函数的存在性问题31.设函数,若对任意实数,函数的定义域为,则的取值范围为____________.【答案】【解析】函数的定义域为,则满足,即对任意实数恒成立,只要比的最大值大即可,而的最大值为,即.【考点】函数的定义域恒成立问题,学生的基本运算能力与逻辑推理能力.32.设,,则 ( )A.B.C.D.【答案】D.【解析】是上的增函数,又.【考点】对数值大小的比较.33.,,,则与的大小关系为()A.B.C.D.不确定【答案】C【解析】因为,,即,所以,故选C.【考点】对数的运算34.函数的定义域为()A.B.C.D.【答案】D【解析】要使函数解析式有意义需满足:解得且,即选D.【考点】1.对数函数;2.一元二次不等式.35.若,则()A.<<B.<<C.<<D.<<【答案】C【解析】因为所以,而,故,又,而,故,综上,,选C.【考点】对数函数.36.设,,,则()A.B.C.D.【答案】D【解析】一般地,只要涉及3个及以上的数比较大小,应找一中间量来比较,比如0、1.由对数的性质知:,,。
1、函数与导数(1)2、三角函数与解三角形3、函数与导数(2)4、立体几何5、数列(1)6、应用题7、解析几何8、数列(2)9、矩阵与变换10、坐标系与参数方程11、空间向量与立体几何12、曲线与方程、抛物线13、计数原理与二项式分布14、随机变量及其概率分布15、数学归纳法高考压轴大题突破练(一)函数与导数(1)1.已知函数f (x )=a e x x+x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解 (1)∵f ′(x )=a e x (x -1)+x 2x 2, ∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线方程为y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1,解得a =-1e. (2)若a <0,f ′(x )=a e x (x -1)+x 2x 2, 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值.方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0),则⎩⎪⎨⎪⎧ x 0>1,f (x 0)>0,f ′(x 0)=0,则00000200201,e 0,e (1)0,x x x a x x a x x x ⎛ > +> -+ = ⎝①②③ 由③得0e x a =-x 20x 0-1,代入②得-x 0x 0-1+x 0>0, 结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x , 设h (x )=-x 2e x ,则h ′(x )=x (x -2)e x, 当x >2时,h ′(x )>0,即h (x )是增函数,∴a >h (x 0)>h (2)=-4e 2.又a <0,故当极大值为正数时,a ∈⎝⎛⎭⎫-4e 2,0, 从而不存在负整数a 满足条件.方法二 当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2,则H ′(x )=(a e x +2)x ,∵x ∈(1,+∞),∴e x ∈(e ,+∞),∵a 为负整数,∴a ≤-1,∴a e x ≤a e ≤-e ,∴a e x +2<0,∴H ′(x )<0,∴H (x )在(1,+∞)上单调递减.又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0,∴∃x 0∈(1,2),使得H (x 0)=0,且当1<x <x 0时,H (x )>0,即f ′(x )>0;当x >x 0时,H (x )<0,即f ′(x )<0.∴f (x )在x 0处取得极大值f (x 0)=0e x a x +x 0.(*) 又H (x 0)=0e x a (x 0-1)+x 20=0, ∴00e x a x =-x 0x 0-1,代入(*)得f (x 0)=-x 0x 0-1+x 0=x 0(x 0-2)x 0-1<0, ∴不存在负整数a 满足条件.2.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ). (1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且∃x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围.解 (1)∵函数f (x )=ax 3-3x 2+1,∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a, ∵a >0,∴x 1<x 2,当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的极大值为f (0)=1,极小值为f ⎝⎛⎭⎫2a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∵∃x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在[1,2]上有解,即不等式2a ≤1x 3+3x在[1,2]上有解, 设y =1x 3+3x =3x 2+1x3(x ∈[1,2]), ∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立, ∴y =1x 3+3x在[1,2]上单调递减, ∴当x =1时,y =1x 3+3x的最大值为4, ∴2a ≤4,即a ≤2.高考中档大题规范练(一)三角函数与解三角形1.(2017·江苏宿迁中学质检)已知函数f (x )=sin 2x +23sin x cos x +sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4,x ∈R . (1)求f (x )的最小正周期和值域;(2)若x =x 0⎝⎛⎭⎫0≤x 0≤π2为f (x )的一个零点,求sin 2x 0的值. 解 (1)易得f (x )=sin 2x +3sin 2x +12(sin 2x -cos 2x ) =1-cos 2x 2+3sin 2x -12cos 2x =3sin 2x -cos 2x +12=2sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为π,值域为⎣⎡⎦⎤-32,52. (2)由f (x 0)=2sin ⎝⎛⎭⎫2x 0-π6+12=0,得 sin ⎝⎛⎭⎫2x 0-π6=-14<0,又由0≤x 0≤π2,得-π6≤2x 0-π6≤5π6, 所以-π6≤2x 0-π6<0,故cos ⎝⎛⎭⎫2x 0-π6=154, 此时sin 2x 0=sin ⎣⎡⎦⎤⎝⎛⎭⎫2x 0-π6+π6 =sin ⎝⎛⎭⎫2x 0-π6cos π6+cos ⎝⎛⎭⎫2x 0-π6sin π6=-14×32+154×12=15-38. 2.(2017·江苏南通四模)已知向量m =⎝⎛⎭⎫sin x 2,1,n =⎝⎛⎭⎫1,3cos x 2,函数f (x )=m ·n . (1)求函数f (x )的最小正周期;(2)若f ⎝⎛⎭⎫α-2π3=23,求f ⎝⎛⎭⎫2α+π3的值. 解 (1)f (x )=m ·n =sin x 2+3cos x 2=2⎝⎛⎭⎫12sin x 2+32cos x 2 =2⎝⎛⎭⎫sin x 2cos π3+cos x 2sin π3 =2sin ⎝⎛⎭⎫x 2+π3,所以函数f (x )的最小正周期为T =2π12=4π. (2)由f ⎝⎛⎭⎫α-2π3=23,得2sin α2=23,即sin α2=13. 所以f ⎝⎛⎭⎫2α+π3=2sin ⎝⎛⎭⎫α+π2=2cos α =2⎝⎛⎭⎫1-2sin 2α2=149. 3.(2017·江苏南师大考前模拟)已知△ABC 为锐角三角形,向量m =⎝⎛⎭⎫cos ⎝⎛⎭⎫A +π3,sin ⎝⎛⎭⎫A +π3,n =(cos B ,sin B ),并且m ⊥n .(1)求A -B ; (2)若cos B =35,AC =8,求BC 的长. 解 (1)因为m ⊥n ,所以m ·n =cos ⎝⎛⎭⎫A +π3cos B +sin ⎝⎛⎭⎫A +π3sin B=cos ⎝⎛⎭⎫A +π3-B =0. 因为0<A ,B <π2,所以-π6<A +π3-B <5π6, 所以A +π3-B =π2,即A -B =π6. (2)因为cos B =35,B ∈⎝⎛⎭⎫0,π2,所以sin B =45, 所以sin A =sin ⎝⎛⎭⎫B +π6=sin B cos π6+cos B sin π6=45×32+35×12=43+310, 由正弦定理可得BC =sin A sin B×AC =43+3. 4.(2017·江苏镇江三模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a -c )(sin A +sin C )=(b -3c )sin B .(1)求角A ;(2)若f (x )=cos 2(x +A )-sin 2(x -A ),求f (x )的单调递增区间.解 (1)由(a -c )(sin A +sin C )=(b -3c )sin B 及正弦定理,得(a -c )(a +c )=(b -3c )b ,即a 2=b 2+c 2-3bc . 由余弦定理,得cos A =32, 因为0<A <π,所以A =π6. (2)f (x )=cos 2(x +A )-sin 2(x -A )=cos 2⎝⎛⎭⎫x +π6-sin 2⎝⎛⎭⎫x -π6 =1+cos ⎝⎛⎭⎫2x +π32-1-cos ⎝⎛⎭⎫2x -π32=12cos 2x , 令π+2k π≤2x ≤2π+2k π,k ∈Z ,得π2+k π≤x ≤π+k π,k ∈Z . 则f (x )的单调增区间为⎣⎡⎦⎤π2+k π,π+k π,k ∈Z .(二)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的一条切线.(1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2.①试求b 的取值范围;②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0),则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0. (2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点.h ′(x )=1x -1x-b =-bx +x -1x , 令h ′(x )=0,得bx -x +1=0(x >0).令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于⎩⎪⎨⎪⎧ Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b >0,解得0<b <14. 当0<b <14时,设h ′(x )=0的两正根为x 1,x 2,且x 1<x 2, 则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2). 当x ∈(0,x 1)时,h ′(x )<0;当x ∈(x 1,x 2)时,h ′(x )>0;当x ∈(x 2,+∞)时,h ′(x )<0. 所以x 1,x 2是h (x )=f (x )-g (x )的极值点,∴b 的取值范围是⎝⎛⎭⎫0,14. ②由①知x 1x 2=x 1+x 2=1b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b . 记k (b )=12-b ln b -b ⎝⎛⎭⎫0<b <14, 则k ′(b )=-ln b -2,令k ′(b )=0,得b =1e 2∈⎝⎛⎭⎫0,14, 且当b ∈⎝⎛⎭⎫0,1e 2时,k ′(b )>0,k (b )单调递增; 当b ∈⎝⎛⎭⎫1e 2,14时,k ′(b )<0,k (b )单调递减,且当b =1e 2时,k (b )取最大值1e 2+12, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 2.设函数f (x )=2ax +b x+c ln x . (1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1<x 2. ①求a 的取值范围;②求f (x 2)的取值范围.解 (1)f (x )=2ax +b x+c ln x ,x >0, f ′(x )=2a -b x 2+c x =2ax 2+cx -b x 2. 当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x>0恒成立, 所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a; 令f ′(x )=2ax +1x <0,解得x >-12a, 所以,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. 综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在⎝⎛⎭⎫0,-12a上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6,所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3,所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-a x 2, 函数f (x )有两个极值点x 1,x 2,x 1<x 2,则方程2ax 2-ax +3-a =0有两个大于0的解,⎩⎨⎧ Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a 2a >0,解得83<a <3. 所以a 的取值范围是⎝⎛⎭⎫83,3.②2ax 22-ax 2+3-a =0,x 2=a +9a 2-24a 4a =14⎝⎛⎭⎫1+ 9-24a , 由83<a <3,得x 2∈⎝⎛⎭⎫14,12, 由2ax 22-ax 2+3-a =0,得a =-32x 22-x 2-1. f (x 2)=2ax 2+a -3x 2-a ln x 2 =a ⎝⎛⎭⎫2x 2+1x 2-ln x 2-3x 2=-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t 2t 2-t -1-3t ,t ∈⎝⎛⎭⎫14,12, φ′(t )=-3⎝⎛⎭⎫2-1t 2-1t (2t 2-t -1)-⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2 =-31t 2(2t 2-t -1)2+3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2. 当t ∈⎝⎛⎭⎫14,12时,2t +1t-ln t >0,4t -1>0,φ′(t )>0,所以φ(t )在⎝⎛⎭⎫14,12上单调递增,φ(t )∈⎝⎛⎭⎫163ln 2,3+3ln 2, 所以f (x 2)的取值范围是⎝⎛⎭⎫163ln 2,3+3ln 2. (二)立体几何1.(2017·江苏扬州调研)如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB =2CD ,AC 交BD 于O ,锐角△P AD 所在平面⊥底面ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证:(1)P A ∥平面QBD ;(2)BD ⊥AD .证明 (1)如图,连结OQ ,因为AB∥CD,AB=2CD,所以AO=2OC.又PQ=2QC,所以P A∥OQ.又OQ⊂平面QBD,P A⊄平面QBD,所以P A∥平面QBD.(2)在平面P AD内过P作PH⊥AD于点H,因为侧面P AD⊥底面ABCD,平面P AD∩平面ABCD=AD,PH⊂平面P AD,所以PH⊥平面ABCD.又BD⊂平面ABCD,所以PH⊥BD.又P A⊥BD,P A∩PH=P,所以BD⊥平面P AD.又AD⊂平面P AD,所以BD⊥AD.2.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC与BD交于点O,PC⊥底面ABCD,E为PB上一点,G为PO的中点.(1)若PD∥平面ACE,求证:E为PB的中点;(2)若AB=2PC,求证:CG⊥平面PBD.证明(1)连结OE,由四边形ABCD是正方形知,O为BD的中点,因为PD∥平面ACE,PD⊂平面PBD,平面PBD∩平面ACE=OE,所以PD∥OE.因为O为BD的中点,所以E为PB的中点.(2)在四棱锥P-ABCD中,AB=2PC,因为四边形ABCD是正方形,所以OC=22AB,所以PC=OC.因为G为PO的中点,所以CG⊥PO.又因为PC⊥底面ABCD,BD⊂底面ABCD,所以PC⊥BD.而四边形ABCD是正方形,所以AC⊥BD,因为AC,PC⊂平面P AC,AC∩PC=C,所以BD⊥平面P AC,因为CG⊂平面P AC,所以BD⊥CG.因为PO,BD⊂平面PBD,PO∩BD=O,所以CG⊥平面PBD.3.(2017·江苏怀仁中学模拟)如图,在四棱锥E-ABCD中,△ABD为正三角形,EB=ED,CB=CD.(1)求证:EC⊥BD;(2)若AB⊥BC,M,N分别为线段AE,AB的中点,求证:平面DMN∥平面BCE.证明(1)取BD的中点O,连结EO,CO.∵CD=CB,EB=ED,∴CO⊥BD,EO⊥BD.又CO∩EO=O,CO,EO⊂平面EOC,∴BD⊥平面EOC.又EC⊂平面EOC,∴BD⊥EC.(2)∵N是AB的中点,△ABD为正三角形,∴DN⊥AB,∵BC⊥AB,∴DN∥BC.又BC⊂平面BCE,DN⊄平面BCE,∴DN∥平面BCE.∵M为AE的中点,N为AB的中点,∴MN∥BE,又MN⊄平面BCE,BE⊂平面BCE,∴MN∥平面BCE.∵MN∩DN=N,∴平面DMN∥平面BCE.4.(2017·江苏楚水中学质检)如图,在三棱锥P-ABC中,点E,F分别是棱PC,AC的中点.(1)求证:P A∥平面BEF;(2)若平面P AB⊥平面ABC,PB⊥BC,求证:BC⊥P A.证明(1)在△P AC中,E,F分别是棱PC,AC的中点,所以P A∥EF.又P A⊄平面BEF,EF⊂平面BEF,所以P A∥平面BEF.(2)在平面P AB内过点P作PD⊥AB,垂足为D.因为平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,PD ⊂平面P AB ,所以PD ⊥平面ABC , 因为BC ⊂平面ABC ,所以PD ⊥BC ,又PB ⊥BC ,PD ∩PB =P ,PD ⊂平面P AB ,PB ⊂平面P AB ,所以BC ⊥平面P AB , 又P A ⊂平面P AB ,所以BC ⊥P A .(三)数 列(1)1.已知数列{a n }的前n 项和为S n ,且S n +a n =4,n ∈N *. (1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列,若存在,求出C 的值;若不存在,请说明理由.(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝⎛⎭⎫12n -n +22成立,求证:数列{b n }是等差数列. (1)解 a 1=4-a 1,所以a 1=2,由S n +a n =4,得当n ≥2时,S n -1+a n -1=4, 两式相减,得2a n =a n -1,所以a n a n -1=12,数列{a n }是以2为首项,公比为12的等比数列,所以a n =22-n (n ∈N *). (2)解 由于数列{d n }是常数列, d n =c n +log C a n =2n +3+(2-n )log C 2 =2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数, 则2-log C 2=0, 解得C =2,此时d n =7.(3)证明 b 1a n +b 2a n -1+b 3a n -2+…+b n a 1 =⎝⎛⎭⎫12n -n +22,①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=⎝⎛⎭⎫12n -1-n +12,② ②式两边同时乘以12,得b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=⎝⎛⎭⎫12n -n +14,③ 由①-③,得b n a 1=-n -34,所以b n =-n 8-38(n ∈N *,n ≥2),且b n +1-b n =-18,又b 1=-12=-18-38,所以数列{b n }是以-12为首项,公差为-18的等差数列.2.在数列{a n }中,已知a 1=13,a n +1=13a n -23n +1,n ∈N *,设S n 为{a n }的前n 项和.(1)求证:数列{3n a n }是等差数列; (2)求S n ;(3)是否存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列?若存在,求出p ,q ,r 的值;若不存在,说明理由.(1)证明 因为a n +1=13a n -23n +1,所以3n +1a n +1-3n a n =-2. 又因为a 1=13,所以31·a 1=1,所以{3n a n }是首项为1,公差为-2的等差数列. (2)解 由(1)知3n a n =1+(n -1)·(-2)=3-2n ,所以a n =(3-2n )⎝⎛⎭⎫13n,所以S n =1·⎝⎛⎭⎫131+(-1)·⎝⎛⎭⎫132+(-3)·⎝⎛⎭⎫133+…+(3-2n )·⎝⎛⎭⎫13n , 所以13S n =1·⎝⎛⎭⎫132+(-1)·⎝⎛⎭⎫133+…+(5-2n )·⎝⎛⎭⎫13n +(3-2n )·⎝⎛⎭⎫13n +1, 两式相减,得23S n =13-2⎣⎡⎦⎤⎝⎛⎭⎫132+⎝⎛⎭⎫133+…+⎝⎛⎭⎫13n -(3-2n )·⎝⎛⎭⎫13n +1=13-2⎣⎢⎡⎦⎥⎤19×1-⎝⎛⎭⎫13n -11-13+(2n -3)·⎝⎛⎭⎫13n +1=2n ·⎝⎛⎭⎫13n +1, 所以S n =n 3n .(3)解 假设存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列,则2S q =S p +S r ,即2q3q =p 3p +r 3r. 当n ≥2时,a n =(3-2n )⎝⎛⎭⎫13n<0,所以数列{S n }单调递减. 又p <q ,所以p ≤q -1且q 至少为2, 所以p 3p ≥q -13q -1,q -13q -1-2q 3q =q -33q .①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,又r 3r >0,所以p 3p +r 3r >2q3q ,等式不成立. ②当q =2时,p =1,所以49=13+r 3r ,所以r 3r =19,所以r =3({S n }单调递减,解惟一确定). 综上可知,p ,q ,r 的值为1,2,3.(三)应用题1.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少? 解 (1)当9天购买一次时,该厂用于配料的保管费用 P =70+0.03×200×(1+2)=88(元).(2)①当x ≤7时,y =360x +10x +236=370x +236,②当x >7时,y =360x +236+70+6[(x -7)+(x -6)+…+2+1]=3x 2+321x +432,∴y =⎩⎪⎨⎪⎧370x +236,x ≤7,3x 2+321x +432,x >7,∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元.f (x )=⎩⎨⎧370x +236x,x ≤7,3x 2+321x +432x,x >7.当x ≤7时,f (x )=370+236x ,当且仅当x =7时,f (x )有最小值2 8267≈404(元);当x >7时,f (x )=3x 2+321x +432x =3⎝⎛⎭⎫x +144x +321≥393.当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.2.南半球某地区冰川的体积每年中随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年的数据,冰川的体积(亿立方米)关于t 的近似函数的关系式为V (t )=⎩⎪⎨⎪⎧-t 3+11t 2-24t +100,0<t ≤10,4(t -10)(3t -41)+100,10<t ≤12.(1)该冰川的体积小于100亿立方米的时期称为衰退期.以i -1<t <i 表示第i 月份(i =1,2,…,12),问一年内哪几个月是衰退期? (2)求一年内该地区冰川的最大体积.解 (1)当0<t ≤10时,V (t )=-t 3+11t 2-24t +100<100,化简得t 2-11t +24>0,解得t <3或t >8.又0<t ≤10,故0<t <3或8<t ≤10,当10<t ≤12时,V (t )=4(t -10)(3t -41)+100<100, 解得10<t <413,又10<t ≤12,故10<t ≤12.综上得0<t <3或8<t ≤12.所以衰退期为1月,2月,3月,9月,10月,11月,12月共7个月. (2)由(1)知,V (t )的最大值只能在(3,9)内取到.由V ′(t )=(-t 3+11t 2-24t +100)′=-3t 2+22t -24, 令V ′(t )=0,解得t =6或t =43(舍去).当t 变化时,V ′(t )与V (t )的变化情况如下表:由上表,V (t )在t =6时取得最大值V (6)=136(亿立方米). 故该冰川的最大体积为136亿立方米.3.如图,某城市有一条公路从正西方AO 通过市中心O 后转向东偏北α角方向的OB .位于该市的某大学M 与市中心O 的距离OM =313 km ,且∠AOM =β.现要修筑一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,且经过大学M .其中tan α=2,cos β=313,AO =15 km.(1)求大学M 与站A 的距离AM ; (2)求铁路AB 段的长AB .解 (1)在△AOM 中,AO =15,∠AOM =β且cos β=313,OM =313, 由余弦定理,得AM 2=OA 2+OM 2-2OA ·OM ·cos ∠AOM =152+(313)2-2×15×313×313=13×9+15×15-2×3×15×3=72.∴AM =62,即大学M 与站A 的距离(2)∵cos β=313,且β为锐角,∴sin β=213, 在△AOM 中,由正弦定理,得AM sin β=OMsin ∠MAO ,即62213=313sin ∠MAO ,sin ∠MAO =22, ∴∠MAO =π4,∴∠ABO =α-π4,∵tan α=2,∴sin α=25,cos α=15, ∴sin ∠ABO =sin ⎝⎛⎭⎫α-π4=110, 又∠AOB =π-α,∴sin ∠AOB =sin(π-α)=25. 在△AOB 中,OA =15,由正弦定理,得 AB sin ∠AOB =OA sin ∠ABO,即AB 25=15110,∴AB =302,即铁路AB 段的长为30 2 km.4.(2017·江苏苏州大学指导卷)如图,某地区有一块长方形植物园ABCD ,AB =8(百米),BC =4(百米).植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG ,满足下列要求:E 在CD 的延长线上,H 在BA 的延长线上,DE =0.5(百米),AH =4(百米),N 为AH 的中点,FN ⊥AH ,EF 为曲线段,它上面的任意一点到AD 与AH 的距离的乘积为定值,FG ,GH 均为线段,GH ⊥HA ,GH =0.5(百米).(1)求四边形FGHN 的面积;(2)已知音乐广场M 在AB 上,AM =2(百米),若计划在EFG 的某一处P 开一个植物园大门,在原植物园ABCD 内选一点Q 为中心建一个休息区,使得QM =PM ,且∠QMP =90°,问点P 在何处时,AQ 最小.解 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系如图所示.则E ⎝⎛⎭⎫-12,4,因为E 到AD 与AH 距离的乘积为2, 所以曲线EF 上的任意一点都在函数y =-2x 的图象上.由题意,N (-2,0),所以F (-2,1).四边形FGHN 的面积为12×⎝⎛⎭⎫12+1×2=32(平方百米). (2)设P (x ,y ),则MP →=(x -2,y ),MQ →=(y ,-x +2),AQ →=(y +2,-x +2),因为点Q 在原植物园内,所以⎩⎪⎨⎪⎧0≤y +2≤8,0≤2-x ≤4,即-2≤x ≤2.又点P 在曲线EFG 上,x ∈⎣⎡⎦⎤-4,-12, 所以-2≤x ≤-12,则点P 在曲线段EF 上,AQ =(y +2)2+(2-x )2, 因为y =-2x ,所以AQ =⎝⎛⎭⎫-2x +22+(2-x )2= x 2+4x 2-4x -8x+8=⎝⎛⎭⎫x +2x 2-4⎝⎛⎭⎫x +2x +4=⎝⎛⎭⎫x +2x -22=-x +2-x+2≥22+2. 当且仅当-x =-2x,即x =-2时等号成立.此时点P (-2,2),即点P 在距离AD 与AH 均为2百米时,AQ 最小.(四)解析几何1.已知点A (x 1,y 1),B (x 2,y 2)(x 1x 2≠0),O 是坐标原点,P 是线段AB 的中点,若C 是点A 关于原点的对称点,Q 是线段BC 的中点,且OP =OQ ,设圆P 的方程为x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.(1)证明:线段AB 是圆P 的直径;(2)若存在正数p 使得2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2成立,当圆P 的圆心到直线x -2y =0的距离的最小值为255时,求p 的值.(1)证明 由题意知,点P 的坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22,点A (x 1,y 1)关于原点的对称点为C (-x 1,-y 1),那么点Q 的坐标为⎝⎛⎭⎫-x 1+x 22,-y 1+y 22,由OP =OQ ,得OP 2=OQ 2, 即⎝⎛⎭⎫x 1+x 222+⎝⎛⎭⎫y 1+y 222=⎝⎛⎭⎫-x 1+x 222+⎝⎛⎭⎫-y 1+y 222,得(x 1+x 2)2+(y 1+y 2)2=(x 1-x 2)2+(y 1-y 2)2, 从而x 1x 2+y 1y 2=0,由此得OA ⊥OB ,由方程x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0知,圆P 过原点,且点A ,B 在圆P 上, 故线段AB 是圆P 的直径.(2)解 由2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2,得x 1+x 2=12p [(y 1+y 2)2+8p 2],又圆心P ⎝⎛⎭⎫x 1+x 22,y 1+y 22到直线x -2y =0的距离为d =⎪⎪⎪⎪x 1+x 22-(y 1+y 2)5=⎪⎪⎪⎪14p [(y 1+y 2)2+8p 2]-(y 1+y 2)5=[(y 1+y 2)-2p ]2+4p 245p ≥4p 245p,当且仅当y 1+y 2=2p 时,等号成立,所以4p 245p =255,从而得p =2.2.如图,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,O 是坐标原点,OF =5,过点F 作OF 的垂线交椭圆C 于P 0,Q 0两点,△OP 0Q 0的面积为453.(1)求椭圆的标准方程;(2)若过点M (-5,0)的直线l 与上、下半椭圆分别交于点P ,Q ,且PM =2MQ ,求直线l 的方程.解 (1)由题设条件,P 0F =00OP Q S OF∆=4535=43.易知P 0F =b 2a ,所以b 2a =43.又c =OF =5,即a 2-b 2=5,因此a 2-43a -5=0,解得a =3或a =-53,又a >0,所以a =3,从而b =2. 故所求椭圆的标准方程为x 29+y 24=1.(2)设P (x 1,y 1),Q (x 2,y 2),由题意y 1>0,y 2<0, 并可设直线l :x =ty -5, 代入椭圆方程得(ty -5)29+y 24=1,即(4t 2+9)y 2-85ty -16=0. 从而y 1+y 2=85t 4t 2+9,y 1y 2=-164t 2+9.又由PM =2MQ ,得y 1-y 2=PMMQ=2,即y 1=-2y 2.因此y 1+y 2=-y 2,y 1y 2=-2y 22, 故-164t 2+9=-2⎝ ⎛⎭⎪⎫-85t 4t 2+92,可解得t 2=14.注意到y 2=-85t 4t 2+9且y 2<0,知t >0,因此t =12.故满足题意的直线l 的方程为2x -y +25=0.3.如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线l :y =-12x 与椭圆E 相交于A ,B 两点,AB =210,C ,D 是椭圆E 上异于A ,B 的两点,且直线AC ,BD 相交于点P ,直线AD ,BC 相交于点Q .(1)求椭圆E 的标准方程; (2)求证:直线PQ 的斜率为定值. (1)解 因为e =c a =32,所以c 2=34a 2,即a 2-b 2=34a 2,所以a =2b .所以椭圆方程为x 24b 2+y 2b2=1.由题意不妨设点A 在第二象限,点B 在第四象限,由⎩⎨⎧y =-12x ,x 24b 2+y2b 2=1,得A (-2b ,22b ). 又AB =210,所以OA =10, 则2b 2+12b 2=52b 2=10,得b =2,a =4.所以椭圆E 的标准方程为x 216+y 24=1.(2)证明 由(1)知,椭圆E 的方程为x 216+y 24=1,A (-22,2),B (22,-2).①当直线CA ,CB ,DA ,DB 的斜率都存在,且不为零时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0),显然k 1≠k 2.从而k 1·k CB =y 0-2x 0+22·y 0+2x 0-22=y 20-2x 20-8=4⎝⎛⎭⎫1-x 2016-2x 20-8=2-x 204x 20-8=-14,所以k CB =-14k 1.同理k DB =-14k 2.所以直线AD 的方程为y -2=k 2(x +22),直线BC 的方程为y +2=-14k 1(x -22), 由⎩⎪⎨⎪⎧y +2=-14k 1(x -22),y -2=k 2(x +22), 解得⎩⎪⎨⎪⎧x =22(-4k 1k 2-4k 1+1)4k 1k 2+1,y =2(-4k 1k 2+4k 2+1)4k 1k 2+1,从而点Q 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 1+1)4k 1k 2+1,2(-4k 1k 2+4k 2+1)4k 1k 2+1.用k 2代替k 1,k 1代替k 2得点P 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 2+1)4k 1k 2+1,2(-4k 1k 2+4k 1+1)4k 1k 2+1.所以k PQ =2(-4k 1k 2+4k 2+1)4k 1k 2+1-2(-4k 1k 2+4k 1+1)4k 1k 2+122(-4k 1k 2-4k 1+1)4k 1k 2+1-22(-4k 1k 2-4k 2+1)4k 1k 2+1=42(k 2-k 1)82(k 2-k 1)=12.即直线PQ 的斜率为定值,其定值为12.②当直线CA ,CB ,DA ,DB 中,有直线的斜率不存在时,由题意得,至多有一条直线的斜率不存在,不妨设直线CA 的斜率不存在,从而C (-22,-2). 设DA 的斜率为k ,由①知,k DB =-14k.因为直线CA :x =-22,直线DB :y +2=-14k (x -22),得P ⎝⎛⎭⎫-22,-2+2k . 又直线BC :y =-2,直线AD :y -2=k (x +22), 得Q ⎝⎛⎭⎫-22-22k ,-2, 所以k PQ =12.由①②可知,直线PQ 的斜率为定值,其定值为12.4.(2017·江苏预测卷)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,右准线的方程为x =433.(1)求椭圆C 的方程;(2)已知点P ⎝⎛⎭⎫12,2,过x 轴上的一个定点M 作直线l 与椭圆C 交于A ,B 两点,若三条直线P A ,PM ,PB 的斜率成等差数列,求点M 的坐标. 解 (1)因为椭圆的离心率为32,右准线的方程为x =433, 所以e =c a =32,a 2c =433,则a =2,c =3,b =1,椭圆C 的方程为x 24+y 2=1.(2)设M (m,0),当直线l 为y =0时,A (-2,0),B (2,0), P A ,PM ,PB 的斜率分别为 k P A =45,k PM =41-2m,k PB =-43,因为直线P A ,PM ,PB 的斜率成等差数列, 所以81-2m =45-43,m =8.证明如下:当M (8,0)时,直线P A ,PM ,PB 的斜率构成等差数列, 设AB :y =k (x -8),代入椭圆方程x 2+4y 2-4=0, 得x 2+4k 2(x -8)2-4=0,即(1+4k 2)x 2-64k 2x +256k 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=64k 21+4k 2,x 1x 2=256k 2-41+4k 2,又k PM =0-28-12=-415, 所以k P A +k PB =y 1-2x 1-12+y 2-2x 2-12=kx 1-8k -2x 1-12+kx 2-8k -2x 2-12=2k +⎝⎛⎭⎫-152k -2⎝ ⎛⎭⎪⎫1x 1-12+1x 2-12 =2k +⎝⎛⎭⎫-152k -2(x 1+x 2)-1x 1x 2-12(x 1+x 2)+14=2k +⎝⎛⎭⎫-152k -264k 21+4k 2-1256k 2-41+4k 2-12×64k 21+4k 2+14=2k +⎝⎛⎭⎫-152k -260k 2-1154(60k 2-1)=-815=2k PM ,即证. (四)数 列(2)1.已知{a n },{b n },{c n }都是各项不为零的数列,且满足a 1b 1+a 2b 2+…+a n b n =c n S n ,n ∈N *,其中S n 是数列{a n }的前n 项和,{c n }是公差为d (d ≠0)的等差数列. (1)若数列{a n }是常数列,d =2,c 2=3,求数列{b n }的通项公式; (2)若a n =λn (λ是不为零的常数),求证:数列{b n }是等差数列;(3)若a 1=c 1=d =k (k 为常数,k ∈N *),b n =c n +k (n ≥2,n ∈N *),求证:对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.(1)解 因为d =2,c 2=3,所以c n =2n -1. 因为数列{a n }是各项不为零的常数列, 所以a 1=a 2=…=a n ,S n =na 1.则由c n S n =a 1b 1+a 2b 2+…+a n b n 及c n =2n -1,得 n (2n -1)=b 1+b 2+…+b n ,当n ≥2时,(n -1)(2n -3)=b 1+b 2+…+b n -1, 两式相减得b n =4n -3.当n =1时,b 1=1也满足b n =4n -3. 故b n =4n -3(n ∈N *).(2)证明 因为a 1b 1+a 2b 2+…+a n b n =c n S n , 当n ≥2时,c n -1S n -1=a 1b 1+a 2b 2+…+a n -1b n -1, 两式相减得c n S n -c n -1S n -1=a n b n , 即(S n -1+a n )c n -S n -1c n -1=a n b n , S n -1(c n -c n -1)+a n c n =a n b n , 所以S n -1d +λnc n =λnb n .又S n -1=λ+λ(n -1)2(n -1)=λn (n -1)2,所以λn (n -1)2d +λnc n =λnb n ,即(n -1)2d +c n =b n ,(*) 所以当n ≥3时,(n -2)2d +c n -1=b n -1,两式相减得b n -b n -1=32d (n ≥3),所以数列{b n }从第二项起是公差为32d 的等差数列.又当n =1时,由c 1S 1=a 1b 1,得c 1=b 1. 当n =2时,由(*)得b 2=(2-1)2d +c 2=12d +(c 1+d )=b 1+32d ,得b 2-b 1=32d .故数列{b n }是公差为32d 的等差数列.(3)证明 由(2)得当n ≥2时,S n -1(c n -c n -1)+a n c n =a n b n ,即S n -1d =a n (b n -c n ). 因为b n =c n +k ,所以b n =c n +kd , 即b n -c n =kd , 所以S n -1d =a n ·kd , 即S n -1=ka n ,所以S n =S n -1+a n =(k +1)a n . 当n ≥3时,S n -1=(k +1)a n -1, 两式相减得a n =(k +1)a n -(k +1)a n -1, 即a n =k +1k a n -1,故从第二项起数列{a n }是等比数列, 所以当n ≥2时,a n =a 2⎝⎛⎭⎫k +1k n -2,b n =c n +k =c n +kd =c 1+(n -1)k +k 2=k +(n -1)k +k 2=k (n +k ), 另外由已知条件得(a 1+a 2)c 2=a 1b 1+a 2b 2. 又c 2=2k ,b 1=k ,b 2=k (2+k ), 所以a 2=1,因而a n =⎝⎛⎭⎫k +1k n -2.令d n =b na n ,则d n +1d n =b n +1a n a n +1b n =(n +k +1)k (n +k )(k +1).因为(n +k +1)k -(n +k )(k +1)=-n <0, 所以d n +1d n<1,所以对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.2.已知数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,设b n =a n +a n +1,c n =a n ·a n +1(n ∈N *). (1)若数列{b 2n -1}是公比为3的等比数列,求S 2n ; (2)若数列{b n }是公差为3的等差数列,求S n ;(3)是否存在这样的数列{a n },使得{b n }成等差数列和{c n }成等比数列同时成立,若存在,求出{a n }的通项公式;若不存在,请说明理由. 解 (1)b 1=a 1+a 2=1+2=3,S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 3+…+b 2n -1=3(1-3n )1-3=3n +1-32.(2)∵b n +1-b n =a n +2-a n =3,∴{a 2k -1},{a 2k }均是公差为3的等差数列,a 2k -1=a 1+(k -1)·3=3k -2,a 2k =a 2+(k -1)·3=3k -1,当n =2k (k ∈N *)时,S n =S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=k (1+3k -2)2+k (2+3k -1)2=3k 2=3n 24;当n =2k -1(k ∈N *)时,Sn =S 2k -1=S 2k -a 2k =3k 2-3k +1=3×⎝⎛⎭⎫n +122-3·n +12+1=3n 2+14.综上可知,S n=⎩⎨⎧3n 24,n =2k ,k ∈N *,3n 2+14,n =2k -1,k ∈N *.(3)∵{b n }成等差数列,∴2b 2=b 1+b 3,即2(a 2+a 3)=(a 1+a 2)+(a 3+a 4),a 2+a 3=a 1+a 4,① ∵{c n }成等比数列,∴c 22=c 1c 3. 即(a 2a 3)2=(a 1a 2)·(a 3a 4), ∵c 2=a 2a 3≠0,∴a 2a 3=a 1a 4,②由①②及a 1=1,a 2=2,得a 3=1,a 4=2,设{b n }的公差为d ,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=d ,即a n +2-a n =d ,即数列{a n }的奇数项和偶数项都构成公差为d 的等差数列, 又d =a 3-a 1=a 4-a 2=0, ∴数列{a n }=1,2,1,2,1,2,…,即a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *.此时c n =2,{c n }是公比为1的等比数列,满足题意.∴存在数列{a n },a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *, 使得{b n }成等差数列和{c n }成等比数列同时成立.高考附加题加分练 1.矩阵与变换1.已知矩阵M =⎣⎢⎡⎦⎥⎤a 1b 0,点A (1,0)在矩阵M 对应的变换作用下变为A ′(1,2),求矩阵M 的逆矩阵M -1. 解 ∵⎣⎢⎡⎦⎥⎤a 1b0 ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤12, ∴a =1,b =2.∴M =⎣⎢⎡⎦⎥⎤1 120,∴M -1=⎣⎢⎡⎦⎥⎤0 121 -12.2.(2017·江苏徐州一中检测)已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0 11 0 ⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x .又点P (x ′,y ′)在曲线C :y 2=12x 上,∴⎝⎛⎭⎫-12x 2=12y ,即x 2=2y .3.已知矩阵M =⎣⎢⎡⎦⎥⎤1 22x 的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量. 解 矩阵M 的特征多项式为f (λ)=⎣⎢⎡⎦⎥⎤λ-1 -2-2 λ-x =(λ-1)(λ-x )-4.因为λ1=3是方程f (λ)=0的一根,所以x =1. 由(λ-1)(λ-1)-4=0,得λ2=-1. 设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y , 则⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,得x =-y . 令x =1,则y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤ 1-1.4.(2017·江苏江阴中学质检)若点A (2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.解 M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1,解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.由M -1M =⎣⎢⎡⎦⎥⎤1 001,得M -1=⎣⎢⎡⎦⎥⎤1-10. 2.坐标系与参数方程1.(2017·江苏兴化中学调研)已知曲线C 1的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4,判断两曲线的位置关系. 解 将曲线C 1,C 2化为直角坐标方程,得 C 1:x +3y +2=0,C 2:x 2+y 2-2x -2y =0, 即C 2:(x -1)2+(y -1)2=2. 圆心到直线的距离d =|1+3+2|12+(3)2=∴曲线C 1与C 2相离.2.(2017·江苏金坛一中期中)已知在极坐标系下,圆C :ρ=2cos ⎝⎛⎭⎫θ+π2与直线l :ρsin ⎝⎛⎭⎫θ+π4=2,点M 为圆C 上的动点,求点M 到直线l 的距离的最大值. 解 圆C 化为直角坐标方程,得x 2+(y +1)2=1. 直线l 化为直角坐标方程,得x +y =2. 圆心C 到直线l 的距离d =|-1-2|2=322,所以点M 到直线l 的距离的最大值为1+322.3.已知直线l :⎩⎪⎨⎪⎧ x =1+t ,y =-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数. (1)当m =0时,求线段AB 的长;(2)当圆C 上恰有三点到直线的距离为1时,求m 的值. 解 (1)直线l :x +y -1=0,曲线C :x 2+y 2=4, 圆心到直线的距离d =12, 故AB =2r 2-d 2=14.(2)圆C 的直角坐标方程为x 2+(y -m )2=4, 直线l :x +y -1=0,由题意,知圆心到直线的距离d =|m -1|2=1,∴m =1± 2.4.(2017·江苏昆山中学质检)已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=3,直线l 的参数方程为⎩⎨⎧x =-3t ,y =1+t(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大. 解 曲线C 的普通方程是x 23+y 2=1,直线l 的普通方程是x +3y -3=0.设点M 的直角坐标是(3cos θ,sin θ),则点M 到直线l 的距离是d =|3cos θ+3sin θ-3|2=3⎪⎪⎪⎪2sin ⎝⎛⎭⎫θ+π4-12.因为-2≤2sin ⎝⎛⎭⎫θ+π4≤2,所以当sin ⎝⎛⎭⎫ θ+π4=-1,即θ=2k π-3π4(k ∈Z )时,d 取得最大值.此时3cos θ=-62,sin θ=-22. 设点M 的极角为φ,则⎩⎨⎧ρcos φ=-62,ρsin φ=-22,所以⎩⎪⎨⎪⎧ρ=2,φ=7π6. 综上,当点M 的极坐标为⎝⎛⎭⎫2,7π6时,该点到直线l 的距离最大. 3.空间向量与立体几何1.(2017·江苏南通中学月考)如图,已知三棱锥O -ABC 的侧棱OA ,OB ,OC 两两垂直,且OA =1,OB =OC =2,E 是OC 的中点.(1)求异面直线BE 与AC 所成角的余弦值; (2)求二面角A -BE -C 的正弦值.解 (1)以O 为原点,分别以OB ,OC ,OA 为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0). EB →=(2,-1,0),AC →=(0,2,-1), ∴cos 〈EB →,AC →〉=-25,即异面直线BE 与AC 所成角的余弦值为25.(2)AB →=(2,0,-1),AE →=(0,1,-1), 设平面ABE 的法向量为n 1=(x ,y ,z ), 则由n 1⊥AB →,n 1⊥AE →,得⎩⎪⎨⎪⎧2x -z =0,y -z =0,取n 1=(1,2,2), 平面BEC 的法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23,∴二面角A -BE -C 的余弦值cos θ=23,∴sin θ=53, 即二面角A -BE -C 的正弦值为53.2.(2017·江苏宜兴中学质检)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,AA 1=3,D 是BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的正弦值.解 (1)由题意知,B (2,0,0),C (0,4,0),D (1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3),则A 1D →=(1,2,-3),A 1C 1→=(0,4,0),DB 1→=(1,-2,3). 设平面A 1C 1D 的一个法向量为n =(x ,y ,z ). 由n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0, 得y =0,x =3z ,令z =1,得x =3,n =(3,0,1).设直线DB 1与平面A 1C 1D 所成的角为θ, 则sin θ=|cos 〈DB 1→,n 〉|=|3+3|10×14=33535.(2)设平面A 1B 1D 的一个法向量为m =(a ,b ,c ),A 1B 1→=(2,0,0). 由m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0, 得a =0,2b =3c ,令c =2,得b =3,m =(0,3,2). 设二面角B 1-A 1D -C 1的大小为α, |cos α|=|cos 〈m ,n 〉|=|m ·n ||m ||n |=265, sin α=3765=345565.所以二面角B 1-A 1D -C 13.(2017·江苏运河中学质检)PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =π2,AB =AD =PD =1,CD =2.设Q 为侧棱PC 上一点,PQ →=λPC →.试确定λ的值,使得二面角Q -BD -P 为π4.解 因为侧面PCD ⊥底面ABCD , 平面PCD ∩平面ABCD =CD ,PD ⊥CD , 所以PD ⊥平面ABCD ,所以PD ⊥AD , 又∠ADC =π2,故DA ,DC ,DP 两两互相垂直.如图,以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立直角坐标系,A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1),则平面PBD 的一个法向量为n =(-1,1,0),PC →=(0,2,-1),PQ →=λPC →,λ∈(0,1), 所以Q (0,2λ,1-λ).设平面QBD 的一个法向量为m =(a ,b ,c ), 由m ·BD →=0,m ·DQ →=0,得⎩⎪⎨⎪⎧a +b =0,2λb +(1-λ)c =0, 所以取b =1,得m =⎝⎛⎭⎫-1,1,2λλ-1,所以cos π4=|m ·n ||m ||n |,即22·2+⎝⎛⎭⎫2λλ-12=22. 注意到λ∈(0,1),解得λ=2-1.4.在三棱锥S -ABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 是AC 的中点,侧棱SB 和底面成45°角.(1)若D 为棱SB 上一点,当SDDB为何值时,CD ⊥AB ; (2)求二面角S -BC -A 的余弦值的大小.解 以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系. 由题意知∠SBO =45°,SO =3.。
2020届高考数学选择题填空题专项练习(文理通用)15比较大小第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2020·福建高三(理))设12a e-=,24b e -=,12c e -=,323d e -=,则a b c d ,,,的大小关系为( ) A .c b d a >>>B .c d a b >>> C .c b a d >>>D .c d b a >>>.【答案】B 【解析】【分析】利用指数幂的运算性质化成同分母,再求出分子的近似值即可判断大小.【详解】3241e a e e ==,2416b e =,222444e c e e==,249e d e =,由于 2.7e ≈,27.39e ≈,320.09e ≈,所以c d a b >>>,故选:B .【点睛】本题主要考查比较幂的大小,属于基础题.2.(2020·湖南高三学业考试)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ).A .a b c >>B .c b a >>C .c a b >>D .b c a >>【答案】B 【解析】【分析】根据所给数据,分别求出平均数为a ,中位数为b ,众数为c ,然后进行比较可得选项. 【详解】1(15171410151717161412)14.710a =+++++++++=,中位数为1(1515)152b =+=,众数为=17c .故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.3.(2020·四川省泸县第二中学高三月考(文))已知3log 6p =,5log 10q =,7log 14r =,则p ,q ,r 的大小关系为( )A .q p r >>B .p r q >>C .p q r >>D .r q p >>【答案】C 【解析】【分析】利用对数运算的公式化简,,p q r 为形式相同的表达式,由此判断出,,p q r 的大小关系.【详解】依题意得31+log 2p =,51log 2q =+,71log 2r =+,而357log 2log 2log 2>>,所以p q r >>.【点睛】本小题主要考查对数的运算公式,考查化归与转化的数学思想方法,属于基础题.4. (2020·四川省泸县第四中学高三月考(理))设{a n }是等比数列,则“a 1<a 2<a 3”是数列{a n }是递增数列的A .充分而不必要条件B .必要而不充分条件、C .充分必要条件D .既不充分也不必要条件【答案】C【解析】1212311101a a a a a a q a q q >⎧<<⇒<<⇒⎨>⎩或1001a q <⎧⎨<<⎩,所以数列{a n }是递增数列,若数列{a n }是递增数列,则“a 1<a 2<a 3”,因此“a 1<a 2<a 3”是数列{a n }是递增数列的充分必要条件,选C5.(2020·四川棠湖中学高三月考(文))设log a =log b =,120192018c =,则a ,b ,c 的大小关系是( ).A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C 【解析】【分析】根据所给的对数式和指数式的特征可以采用中间值比较法,进行比较大小.【详解】因为20182018201811log 2018log log ,2a =>=>=201920191log log ,2b ==102019201820181c =>=,故本题选C.【点睛】本题考查了利用对数函数、指数函数的单调性比较指数式、对数式大小的问题.6.(2020·北京八十中高三开学考试)设0.10.134,log 0.1,0.5a b c ===,则 ( )A .a b c >>B .b a c >>C .a c b >>D .b c a >>【答案】C 【解析】0.10.1341,log 0.10,00.51a b c =>=<<=<,a c b ∴>>,故选C 。
『高考真题·母题解密』『分项汇编·逐一击破』专题06比较大小【母题来源】2020年高考数学天津卷【母题题文】设,则的大小关系为()0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,,a b c A. B. C. D. a b c <<b a c <<b c a <<c a b<<【答案】D【试题解析】利用指数函数与对数函数的性质,即可得出的大小关系.,,a b c 【详解】因为,,,0.731a =>0.80.80.71333b a-⎛⎫==>= ⎪⎝⎭0.70.7log 0.8log 0.71c =<=所以.故选:D.1c a b <<<【命题意图】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.【命题方向】这类试题在考查题型上主要以选择题的形式出现.试题难度不大,多为低档题,是历年高考的热点.考查对简单函数单调性的理解及不等式的有关知识;常见的命题角度有:与常用基础函数如:幂函数、指数函数、对数函数等知识结合.【方法总结】比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:,当时,函数递增;当时,函数递减;x y a =1a >01a <<(2)利用对数函数的单调性:,当时,函数递增;当时,函数递减;log a y x =1a >01a <<(3)借助于中间值,例如:0或1等.1.【2020·天津九校高三下学期4月联考】设,,则().0.5log 0.8a = 1.10.8b log =0.81.1c =A. B. b a c <<b c a <<C. D. a b c <<a c b<<【答案】A 【解析】【分析】结合指数和对数函数的单调性分别与0和1比较,易得,,,所以.0a 1<<b 0<c 1>b<a<c 【详解】解:因为0.50.50.50log 1a log 0.8log 0.51=<=<=所以 故选A1.1 1.1b log 0.8log 10=<=0.80c 1.1 1.11=>=b<a<c 【点睛】本题考查了指数和对数函数性质的运用,在指数和对数比较大小过程中一般先比较与0,1的大小关系.2.【2020·天津市北辰区高三高考模拟】已知函数是定义在上的偶函数,且在上单调递增,则三个数,,的大小关系为()A. B.C.D.【答案】C 【解析】【分析】根据奇偶性得:,通过临界值的方式可判断出自变量之间的大小关系,再利用函数的单调性得到的大小关系.【详解】;,即:为偶函数又在上单调递增,即本题正确选项:【点睛】本题考查利用函数单调性判断大小的问题,关键是能够利用奇偶性将自变量变到同一单调区间内,再通过指数、对数函数的单调性,利用临界值确定自变量的大小关系.3.【2020·天津市北辰区2020届高三第一次诊断测试】已知函数的定义域为,且函数()y f x =(),ππ-的图象关于直线对称,当时,(其中是()2y f x =+2x =-()0,x π∈()ln 'sin 2f x x f xππ⎛⎫=- ⎪⎝⎭()'f x 的导函数),若,,,则的大小关系是( )()f x ()log 3a f π=13log 9b f ⎛⎫= ⎪⎝⎭13c f π⎛⎫= ⎪⎝⎭,,a b c A B. C. D. b a c >>a b c>>c b a>>b c a>>【答案】D 【解析】【分析】求出,可得的值,能确定的解析式,分类讨论可确定的符号,可得在()'f x '2f π⎛⎫ ⎪⎝⎭()'f x ()'f x ()f x 上递增,再利用指数函数、对数函数的单调性比较的大小关系,结合函数的奇()0,π13log 32ππ、、()f x 偶性与单调性可得结果.【详解】,,()ln 'sin 2f x x f x ππ⎛⎫=- ⎪⎝⎭ ()''cos 2f x f xx ππ⎛⎫∴=- ⎪⎝⎭,,'2'cos 2222f f πππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭()'2cos f x xx π=-当时,;当时,,2x π≤<π()2cos 0,'0x f x ≤>02x π<<()2,2cos 2,'0x f x x π><∴>即在上递增,的图象关于对称,()f x ()0,π()2y f x =+ 2x =-向右平移2个单位得到的图象关于轴对称,()2y f x ∴=+()y f x =y 即为偶函数,,,()y f x =()()13log 922b f f f ⎛⎫==-= ⎪⎝⎭0log 1log 3log 1ππππ=<<=,即,,1103212πππ=<<<130log 32πππ<<<<()()132log 3f f f ππ⎛⎫∴>> ⎪⎝⎭即.故选D.b c a >>【点睛】本题主要考查函数的奇偶性、对数函数的性质、指数函数的单调性及比较大小问题,属于难题. 在比较,,,的大小时,首先应该根据函数的奇偶性与周期性将,()1f x ()2f x ()n f x ()f x ()1f x ,,通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.()2f x ()n f x 4.【2020·天津市滨海新区三校2020届高三高考数学5月份模拟】已知奇函数f (x )在R 上是减函数,若a =﹣f (1og 3),b =f (),c =f (2﹣0.8),则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .b <c <aD .c <a <b【答案】B【分析】结合函数的单调性及奇偶性进行比较函数值的大小.解:奇函数f (x )在R 上是减函数,∵log 34∈(1,2),0,2﹣0.8∈(0,1),∵a =﹣f (1og 3)=f (log 34),b =f (),c =f (2﹣0.8)=f (),则a <c <b ,故选:B .5.【2020·天津市部分区2020届高考二模】已知,,,则,,的大小3log 0.3a =0.3log 2b =0.23c =a b c 关系是( )A B. C. D. a b c >>b c a>>c b a >>c a b>>【答案】C 【解析】【分析】由题意结合指数函数、对数函数的单调性可知,即可得解.10a b c <-<<<【详解】由题意,,,331log 0.3log 13<=-0.30.30.3log log 2lo 1013g 10=<<-=0.20331>=所以.10a b c <-<<<故选:C.【点睛】本题考查了指数式、对数式的大小比较,考查了指数函数、对数函数单调性的应用,属于基础题.6.【2020·天津市第一百中学2020届高三高考模拟】已知函数是定义在上的偶函数,且在()f x R 上单调递增,则三个数,,的大小关系为[)0,∞+()3log 13a f =-121log 8b f ⎛⎫= ⎪⎝⎭()0.62c f =A. B. a b c >>a c b >>C. D. b a c >>c a b>>【答案】C 【解析】【分析】根据奇偶性得:,通过临界值的方式可判断出自变量之间的大小关系,再利用函数的单调()3log 13a f =性得到的大小关系.,,a b c 【详解】;,3332log 9log 13log 273=<<=1221log log 838==0.610222<<=即:为偶函数 0.6312102log 13log 8<<<()f x ()()33log 13log 13a f f ∴=-=又在上单调递增,即()f x [)0,+∞()()0.61321log log 1328f f f ⎛⎫∴>> ⎪⎝⎭b a c>>本题正确选项:C【点睛】本题考查利用函数单调性判断大小的问题,关键是能够利用奇偶性将自变量变到同一单调区间内,再通过指数、对数函数的单调性,利用临界值确定自变量的大小关系.7.【2020·天津市第一中学2020届高三下学期第四次月考】已知奇函数,且在()f x ()()g x xf x =上是增函数.若,,,则a ,b ,c 的大小关系为[0,)+∞2(log 5.1)a g =-0.8(2)b g =(3)c g =A. B. C. D. a b c <<c b a<<b a c<<b c a<<【答案】C【解析】【详解】因为是奇函数,从而是上的偶函数,且在上是增函数,()f x ()()g x xf x =R [0,)+∞,22(log 5.1)(log 5.1)a g g =-=,又,则,所以即,0.822<4 5.18<<22log 5.13<<0.8202log 5.13<<<,0.82(2)(log 5.1)(3)g g g <<所以,故选C .b ac <<【考点】指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.8.【2020·天津市东丽区耀华滨海学校高三年级上期第二次统练】已知,则0.20.32log 0.2,2,0.2a b c ===A. B. C. D. a b c <<a c b<<c a b<<b c a<<【答案】B 【解析】【分析】运用中间量比较,运用中间量比较0,a c 1,b c【详解】则.故选B .22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=01,c a c b <<<<【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.9.【2020·天津市和平区2020届高三高考二模】已知:,,,则a ,b ,c 的11ln 4a =113eb ⎛⎫= ⎪⎝⎭11log 3e c =大小关系为( )A. B. C. D. c a b >>c b a>>b a c>>a b c>>【答案】A 【解析】【分析】利用指数函数,对数函数的性质求解.【详解】因为,,11111ln ln log ln 343e e a c =<=<==1111033eb ⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭<=所以a ,b ,c 的大小关系为.c a b >>故选:A【点睛】本题主要考查指数函数,对数函数的性质,还考查了转化问题的能力,属于基础题.10.【2020·天津市河北区高三高考数学一模】已知函数f (x )是定义在R 上的偶函数,且f (x )在[0,+∞)单调递增,设a =f (),b =f (log 37),c =f (﹣0.83),则a ,b ,c 大小关系为( )A .b <a <c B .c <b <aC .c <a <bD .a <c <b【答案】C 【解析】根据题意,由偶函数的性质可得c =f (﹣0.83)=f (0.83),又由指数、对数的性质可得0.83<1log 3log 37,结合函数的单调性分析可得答案.根据题意,函数f (x )是定义在R 上的偶函数,则c =f (﹣0.83)=f (0.83),又由f (x )在[0,+∞)单调递增,且0.83<1log 3log 37,则有c <a <b ,故选:C .【点评】本题考查函数的奇偶性与单调性的综合应用,涉及对数值的大小比较,属于基础题.11.【2020·天津市河北省区2019届高三总复习质量检测】.已知,则13241log 3log 72a b c ⎛⎫=== ⎪⎝⎭,,的大小关系为( ),,a b c A. B. C. D. a c b <<b a c<<c a b<<a b c<<【答案】A 【解析】【分析】容易得出,再根据对数函数的性质将b 化为与c 同底的对数,即可比较出大01,a <<12,12b c <<<<小.【详解】解:,,,所以.故选A.1312a ⎛⎫= ⎪⎝⎭ 01a ∴<<244log 3log 9log 71b c ==>=>b c a >>【点睛】本题考查指数与对数大小的比较,考查对数换底公式以及对数函数的单调性,属于基础题.12.【2020·天津市红桥区2020届高三高考二模】已知,,,则( )131log 2a =121log 3b =32log 3c =A. B. C. D. b a c >>a b c>>c b a>>a c b>>【答案】A 【解析】【分析】根据对数函数单调性得到,,,得到答案.01a <<l b >0c <【详解】,,,111333110log 1log log 123a =<=<=112211log log 132b =>=332log log 310c =<=故.b a c >>故选:A.【点睛】本题考查了利用对数函数单调性比较数值大小,意在考查学生对于函数性质的灵活运用.13.【2020·天津高三一模】已知函数.若,,()25x f x x =+131log 2a f ⎛⎫= ⎪⎝⎭(3log b f =.则a ,b ,c 的大小关系为()()0.26c f =A. B. C. D. a b c >>a c b>>c a b>>c b a>>【答案】D 【解析】【分析】先根据对数函数与指数函数的性质,得到,,再根据函数单调性,即可判13310log log 12<<<0.261>断出结果.【详解】因为,,113333310log 1log log log lo 2g 312=<=<<=0.261>函数与都是增函数,所以也是增函数,2xy =5y x =()25x f x x =+因此,即.故选:D.(()0.21331log log 62f f f ⎛⎫< ⎪<⎝⎭c b a >>【点睛】本题主要考查由函数单调性比较大小,熟记指数函数与对数函数的性质即可,属于常考题型.14.【2020·天津市六校高三上学期期初检测】已知,,,则,,的大ln a π=lg125b =0.31c e ⎛⎫= ⎪⎝⎭a b c 小关系是( )A. B. a b c >>b a c >>C. D. 以上选项都不对c a b >>【答案】B 【解析】【分析】利用指数对数函数的图像和性质确定的范围即得它们的大小关系.,,a b c 【详解】由题得,2ln ln ln 2e a e π<=<=所以.12a <<,2lg125lg102b =>=,0.3011()1c e e ⎛⎫=<= ⎪⎝⎭所以.b a c >>故选:B【点睛】本题主要考查指数函数和对数函数的图像和性质,意在考查学生对这些知识的理解掌握水平.15.【2020·天津市南开区南开中学高三下学期第一次月考】设,则0.231012143a b og c lg =-==,,a ,b ,c 的大小关系是( )A. B. C. D. a c b<<b c a<<c a b<<c b a<<【答案】A 【解析】【分析】判断每个数的大致范围再分析即可.【详解】,,0.2221,0a >=∴< 331031,13log log b >=∴> ,,故选:A .1410,01lg lg lg c <<∴<< a c b ∴<<【点睛】本题主要考查了函数值大小的关系,属于基础题型.16.【2020·天津高三一模】已知定义在上的函数满足,且函数在上是减函数,若 ,则的大小关系为()A. B.C. D.【答案】A 【解析】【分析】化简,根据指数函数的单调性以及对数函数的单调性分别判断出,的取值范围,结合的单调性与奇偶性即可得结果.【详解】,是偶函数,,,,,,,又因为在上递减,,,即,故选A.【点睛】本题主要考查函数的奇偶性与单调性,以及指数函数与对数函数的性质,属于综合题. 在比较,,,的大小时,首先应该根据函数的奇偶性与周期性将,,,通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.17.【2020·天津南开中学高三月考】已知奇函数在上是增函数,若,()f x R 21log 5a f ⎛⎫=- ⎪⎝⎭,,则的大小关系为()()2log 4.1b f =()0.82c f =,,a b c A. B. C. D. a b c <<b a c<<c b a<<c a b<<【答案】C 【解析】由题意:,且:,()221log log 55a f f ⎛⎫=-= ⎪⎝⎭0.822log 5log 4.12,122>><<据此:,结合函数的单调性有:,0.822log 5log 4.12>>()()()0.822log 5log 4.12f f f >>即.本题选择C 选项.,a b c c b a >><<【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.18.【2020·天津市实验中学滨海分校2020届高三模拟考试(】已知定义在R 上的奇函数满足()f x ,且在区间[1,2]上是减函数,令,,,则(2)()f x f x +=-ln 2a =121(4b -=12log 2c =的大小关系为( )(),(),()f a f b f c A. B. ()()()f b f c f a <<()()()f a f c f b <<C. D. ()()()f c f b f a <<()()()f c f a f b <<【答案】C 【解析】【分析】由满足,且在区间[1,2]上是减函数,确定在上是增函数,再由奇函数()f x (2)()f x f x +=-()f x [1,0]-性质得在上递增,在上单调递增.然后把自变量的值都转化到上,比较大小.()f x [0,1][1,1]-[1,1]-【详解】设,则,又在上递减,1210x x -≤<≤121222x x ≤+<+≤()f x [1,2]∴,而,,∴,即12(2)(2)f x f x +>+11(2)()f x f x +=-22(2)()f x f x +=-12()()f x f x ->-,∴在是递增,12()()f x f x <()f x [1,0]-∵是奇函数,∴在上递增,从而在上单调递增,,()f x ()f x [0,1][1,1]-(0)0f =,,,,ln 2(0,1)a =∈121()24b -==12log 21c ==-()(2)(0)0(0)f b f f f ==-==∴由得,即.10ln 2-<<(1)(0)(ln 2)f f f -<<()()()f c f b f a <<故选:C .【点睛】本题考查函数的奇偶性与单调性.解题关键是确定函数的单调性,难点在于由满足()f x ,且在区间[1,2]上是减函数,确定在上是增函数,然后就是这类问题的常(2)()f x f x +=-()f x [1,0]-规解法,确定出上单调性,转化比较大小[1,1]-19.【2020·天津和平区高三第三次质检】设正实数分别满足,则,,a b c 2321,log 1,log 1a a b b c c ⋅===的大小关系为( ),,a b c A. B. C. D. a b c >>b a c>>c b a>>a c b>>【答案】C 【解析】【分析】把看作方程的根,利用数形结合思想把方程的根转化为函数图象交点的横坐标,则可以利用图象比,,a b c 较大小.【详解】由已知可得231112,log ,log ,a b c ab c ===作出函数的图象,它们与函数图象的交点的横坐标分别为,232,log ,log xy y x y x ===1y x =,,a b c 如图所示,易得.故选C.c b a >>【点睛】本题考查函数与方程,基本初等函数的图象.对于含有指数、对数等的方程,若不能直接求得方程的根,一般可以利用数形结合思想转化为函数图象的交点问题.20.【2020·天津市芦台一中2020届高三年级第二次模拟】已知定义在R 上的函数的图象关于()f x 1-对称,且当时,单调递减,若,,,则x 1=x 0>()f x ()0.5a f log 3=()1.3b f 0.5-=()6c f 0.7=a ,b ,c 的大小关系是 ()A. B. C. D. c a b >>b a c>>a c b>>c b a>>【答案】A 【解析】【分析】先根据对称性将自变量转化到上,再根据时单调递减,判断大小.0x >0x >()f x 【详解】∵定义在上的函数的图像关于对称,∴函数为偶函数,R ()1f x -1x =()f x ∵,∴,∴,,0.50.5log 3log 10<=()()0.52log 3log 3f f =2221log 2log 3log 42=<<= 1.31.30.522-=>.∵当时,单调递减,∴,故选A .600.71<<0x >()f x c a b >>【点睛】比较两个函数值或两个自变量的大小:首先根据函数的性质把两个函数值中自变量调整到同一单调区间,然后根据函数的单调性,判断两个函数值或两个自变量的大小。
高考数学复习选填题专项练习22---比较大小第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2020·福建高三期末)若0,a b c R >>∈,则( )A .ac bc >B .32a bC .2233a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .22log log a b >【答案】D 【解析】【分析】取特殊值排除AB 选项,根据指数函数以及对数函数的单调性判断CD 选项. 【详解】当1c =-时,a b ac bc >⇒<,故A 错误;当3,1a b ==时,3212a b=<=,故B 错误; 由于函数23xy ⎛⎫= ⎪⎝⎭在R 上单调递减,a b >,则2233ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 错误;由于函数2log yx =在0,上单调递增,0a b >>则22log log a b >,故D 正确;故选:D【点睛】本题主要考查了根据所给条件判断不等式是否成立以及利用函数单调性比较大小,属于基础题.2.(2020·江西省南城一中高三期末)三个数0.20.40.44,3,log 0.5的大小顺序是 ( )A .0.40.20.43<4log 0.5<B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D【解析】由题意得,120.20.4550.40log0.514433<<<==<== D.3.(2020·重庆高三)己知命题:0p x ∀>,lg ln x x <,:0q x ∃>,2x <则下列命题中真命题是( ) A .p q ∧ B .()p q ∧⌝C .p q ∨D .()p q ∨⌝【答案】C 【解析】【分析】分别判断命题,p q 的真假再利用或且非的关系逐个选项判断即可. 【详解】易得当1x =时, lg ln x x =,故p 为假命题.当14x =时, 2x <.故q 为真命题.故p q ∨为真命题.故选:C【点睛】本题主要考查了命题真假的判断,属于基础题型. 4.(2020·钦州市第三中学高三月考)设sin6a π=,2log 3b =,2314c ⎛⎫= ⎪⎝⎭,则( )A .a c b <<B .c a b <<C .b a c <<D .c b a <<【答案】B 【解析】 【分析】利用相关知识分析各值的范围,即可比较大小.【详解】1sin 62a π==,21log 32b <=<,12343111421202c ⎛⎫=<= ⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭,c a b ∴<<,故选:B 【点睛】本题主要考查了指数函数的单调性,对数函数的单调性,属于中档题. 5.(2020·福建高三)已知log e a π=,lneb π=,2e lnc π=,则( )A .a b c <<B .b c a <<C .b a c <<D .c b a <<【答案】B 【解析】【分析】因为1b c +=,分别与中间量12做比较,作差法得到12b c <<,再由211log e log e 22a ππ==>,最后利用作差法比较a 、c 的大小即可.【详解】因为1b c +=,分别与中间量12做比较,2223111ln ln e ln 022e 2e b ππ⎛⎫-=-=< ⎪⎝⎭,432211e 1e ln ln e ln 0222c ππ⎛⎫-=-=> ⎪⎝⎭,则12b c <<,211log e log e 22a ππ==>,()112ln ln 20ln ln a c ππππ-=--=+->,所以b c a <<,故选:B . 【点睛】本题考查作差法比较大小,对数的运算及对数的性质的应用,属于中档题.6.(2020·天津二十五中高三月考)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】 【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a ,b ,c 的大小关系.详解:由题意可知:3337392log log log <<,即12a <<,13111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<, 133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.7.(2020·榆林市第二中学高三月考)已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,c f =的大小关系为( ) A .a b c >> B .a c b >>C .b a c >>D .b c a >>【答案】C 【解析】 【分析】利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=,320223<<=,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)27f f f ∴>>,即b a c >>.故选:C.【点睛】本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.8.(2020·内蒙古高三期末)已知π为圆周率,e 为自然对数的底数,则A .e π<3eB .π23e -<32e π-C .log e π>3log eD .π3log e >3log e π【答案】D 【解析】【分析】利用指数函数与对数函数的单调性、不等式的性质即可得出.【详解】对于A :函数y=x e 是(0,+∞)上的增函数,A 错;对于B :π3e ﹣2<3πe ﹣2⇔3e ﹣3<πe ﹣3,而函数 y=x e ﹣3是(0,+∞)上的减函数,B 错;对于C :31133e e e e log e log e log log log log πππ⇔⇔>><,而函数y=log e x 是(0,+∞)上的增函数,C 错,对于D :33333333e e e e log e log e log log log log ππππππππ⇔⇔⇔>>>>,D 正确;故答案为:D .【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题. 9.(2020·天津静海一中高三学业考试)已知()f x 是定义在R 上的偶函数,且在(],0-∞上是增函数.设()8log 0.2a f =,()0.3log 4b f =,()1.12c f =,则a ,b ,c 的大小关系是( )A .c b a <<B .a b c <<C .a c b <<D .c a b <<【答案】A 【解析】 【分析】利用偶函数的对称性分析函数的单调性,利用指数函数、对数函数的单调性比较出 1.180.3log 0.2log 42、、的大小关系从而比较函数值的大小关系.【详解】由题意可知()f x 在(],0-∞上是增函数,在0,上是减函数.因为0.30.30.3100102log log 4log 193-=<<=-,3881log 0.125log 0.2log 10-=<<=, 1.122>, 所以 1.180.3log 0.2log 42<<,故c b a <<.故选:A【点睛】本题考查函数的性质,利用函数的奇偶性及对称性判断函数值的大小关系,涉及指数函数、对数函数的单调性,属于基础题.10.(2020·湖南高三期末)已知 3x >,且357log log log ==x y z ,则下列不等式关系中正确的是( )A .357<<x y zB .753<<z y xC .735<<z x yD .537<<y x z【答案】B 【解析】【分析】令357log log log x y z k ===,求得1313k x -=,1515k y -=,1717k z -=,再根据幂函数的单调性即可得出结论.【详解】令357log log log x y z k ===()1k >,∴3k x =,5ky =,7k z =,∴133133k k x -==,155155k k y -==,177177k k z -==,∵3x >,∴1k >,∴10k ->,∴幂函数1k y x -=在()0,∞+上单调递增,∴1110357k k k ---<<<,∴111111753k k k ---<<,即753<<z y x ,故选:B . 【点睛】本题主要考查指数式与对数式的互化,考查根据幂函数的单调性比较大小,属于中档题.11.(2020·福建高三月考)函数()f x 的定义域为R ,其导函数为()f x ',()01f x x '>+,且(1)=-y f x 为偶函数,则( )A .(2)(1)f f -<B .(2)(1)f f -=C .(2)(1)f f ->D .|(2)||(1)|f f ->【答案】A 【解析】 【分析】根据()01f x x '>+以及(1)=-y f x 为偶函数判断出函数()f x 的单调性和对称性,由此判断出()2f -和()1f 的大小关系.【详解】由于(1)=-y f x 为偶函数,所以函数()f x 关于1x =-对称.由于()01f x x '>+,所以当1,10x x <-+<时()'0f x <,()f x 递减,当1,10x x >-+>时,()'0f x >,()f x 递增.所以(2)(1)f f -<.故选:A【点睛】本小题主要考查利用导数研究函数的单调性,考查函数的奇偶性,考查函数的图像变换,考查函数的对称性,属于中档题.12.(2020·福建高三月考)已知25log 5log 2a =+,25log 5log 2b =⋅,25log 5log 2c =,则( ) A .b a c << B .a b c <<C .b c a <<D . c b a <<【答案】A 【解析】【分析】根据2225552log log 5log 83,0log log 24log 511=<<==<=<,得24a <<,25221log 5log 2log 51log 5b =⋅=⋅=,()()222225log 5log 5log 44log 2c ==>=,再比较. 【详解】因为2225552log log 5log 83,0log log 24log 511=<<==<=<,所以252log 5log 24<+<, 所以24a <<,又因为25221log 5log 2log 51log 5b =⋅=⋅=,()()222225log 5log 5log 44log 2c ==>=, 所以b a c <<.故选:A 【点睛】本题主要考查对数的换底公式和对数比较大小,还考查了运算求解的能力,属于中档题.13.(2020·江西省南城一中高三期末)若23a ⎛= ⎪⎝⎭,log 3b π=,2log ec π=,则a 、b 、c 的大小关系为( )A .c a b >>B .b c a >>C .a b c >>D .b a c >>【答案】D 【解析】 【分析】利用指数函数与对数函数比较a 、b 、c 三个数与0和23的大小关系,进而可得出这三个数的大小关系. 【详解】指数函数23xy ⎛⎫= ⎪⎝⎭为R上的减函数,则22033⎛<<⎪⎝⎭,即023a <<;对数函数log y x π=为()0,∞+上的增函数,()322333ππ⎡⎤=<⎢⎥⎣⎦,233π∴<,所以,232log log 33πππ=<,即23b >;对数函数2log y x =为()0,∞+上的增函数,则22log log 10ec π=<=.因此,b a c >>.故选:D.【点睛】本题考查指数式和对数式的大小比较,一般利用指数函数、对数函数的单调性结合中间值法来得出各数的大小关系,考查推理能力,属于基础题.14.(2020·山西高三月考)若()10,,2nm m n a b e e c >>==+=,则( )A .b a c >>B .a c b >>C .c b a >>D .b c a >>【答案】A 【解析】 【分析】由基本不等式得出2m nm n ++>>,再根据函数的单调性即可比较大小.【详解】当0m n >>时,2m n m n ++>>,且xy e =是定义域R 上的单调增函数,2m n a e+==,所以2m ne+>a c >;又22m n m n e e e++>=,所以21()2m nm ne e e ++>,即b a >;所以b a c >>.故选:A .【点睛】本题主要考查了根据基本不等式和函数的单调性比较大小的问题,意在考查学生对这些知识的理解掌握水平.15.(2020·广西师大附属外国语学校高三)已知函数()1y f x =+是偶函数,且函数()y f x =在区间[)1,∞+上是增函数,则下列大小关系中正确的是( )A .()211log 323f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()211log 323f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭ C .()211log 332f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()211log 332f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】根据函数()1y f x =+是偶函数,关于x =0对称,则()y f x =的图象关于直线x =1对称,结合单调性比较大小.【详解】函数()1y f x =+是偶函数,关于x =0对称,()y f x =的图象关于直线x =1对称,且在区间[)1,∞+上是增函数,则在(0,1)上为减函数,1123>,2211322303327log log --=>, ()22119230228log log --=>, 所以()2211112332323log f f log f ⎛⎫⎛⎫>-><< ⎪ ⎪⎝⎭⎝⎭.故选:D 【点睛】此题考查函数奇偶性的辨析,根据对称性和单调性比较函数值的大小关系,关键在于准确识别函数的单调区间.16.(2020·山西高三月考)已知()f x 是定义在(0,)+∞上的可导函数,满足(1)1f =,2()()xf x f x x '-<,则不等式①(2)2f <,②(2)4f <,③1122⎛⎫> ⎪⎝⎭f ,④1124f ⎛⎫< ⎪⎝⎭中一定成立的个数为( ) A .1 B .2C .3D .4【答案】A 【解析】【分析】根据题意构造函数()()f x g x x=-x ,并判断其在(0,+∞)上单调递减,然后分别算出g (1)、g (2)和g (12),并利用单调性比较大小,即可判断每个选项. 【详解】令()()f x g x x=-x ,则()()()2''xf x f x g x x -=-1()()22'xf x f x x x --=,∵xf '(x )﹣f (x )<x 2,∴g '(x )<0在(0,+∞)上恒成立,即g (x )在(0,+∞)上单调递减, ∵f (1)=1,∴()()1111101f g =-=-=,对于()()()222102f g g =-=<,即f (2)<4,∴①错误,②正确;对于()1112101222f g g ⎛⎫ ⎪⎛⎫⎝⎭=-= ⎪⎝⎭>,即1124f ⎛⎫ ⎪⎝⎭>,∴③和④均错误;因此一定成立的只有②,故选:A .【点睛】本题主要考查导数的综合应用,构造新函数是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.。
高三数学函数试题答案及解析1.一个平面图由若干顶点与边组成,各顶点用一串从1开始的连续自然数进行编号,记各边的编号为它的两个端点的编号差的绝对值,若各条边的编号正好也是一串从1开始的连续自然数,则称这样的图形为“优美图”.已知如图是“优美图”,则点A,B与边a所对应的三个数分别为________.【答案】3、6、3【解析】观察图中编号为4的边,由于6-2=5-1=4,而数字2已为一端点的编号,故编号为4的边的左、右两端点应为5、1,从而易知编号为1的边的左、右两端点应为4、3.考虑到图中编号为1的边,易知点A对应的数为3,点B对应的数为6.故应填3、6、3.2.对于实数x,符号[x]表示不超过x的最大整数.例如,[π]=3,[-1.08]=-2.如果定义函数f(x)=x-[x],那么下列命题中正确的一个是()A.f(5)=1B.方程f(x)=有且仅有一个解C.函数f(x)是周期函数D.函数f(x)是减函数【答案】C【解析】f(5)=5-[5]=0,故A错误;因为f()=-[]=,f()=-[]=,所以B错误;函数f(x)不是减函数,D错误;故C正确.3. [2012·江苏高考]已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________.【答案】9【解析】通过值域求a,b的关系是关键.由题意知f(x)=x2+ax+b=(x+)2+b-.∵f(x)的值域为[0,+∞),∴b-=0,即b=.∴f(x)=(x+)2.又∵f(x)<c,∴(x+)2<c,即--<x<-+.∴②-①,得2=6,∴c=9.4.下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x【答案】C【解析】若f(x)=|x|,则f(2x)=|2x|=2|x|=2f(x);若f(x)=x-|x|,则f(2x)=2x-|2x|=2(x-|x|)=2f(x);若f(x)=-x,则f(2x)=-2x=2f(x);若f(x)=x+1,则f(2x)=2x+1,不满足f(2x)=2f(x).5.(3分)(2011•重庆)已知,则a=()A.1B.2C.3D.6【答案】D【解析】先将极限式通分化简,得到,分子分母同时除以x2,再取极限即可.解:原式==(分子分母同时除以x2)===2∴a=6故答案选D.点评:关于高中极限式的运算,一般要先化简再代值取极限,本题中运用到的分子分母同时除以某个数或某个式子,是极限运算中常用的计算技巧.6.如果函数在上的最大值和最小值分别为、,那么.根据这一结论求出的取值范围().A.B.C.D.【答案】B【解析】函数在区间上最大值为1,最小值为,即,所以,,即取值范围为,选B.【考点】新定义概念与函数的最值.7.设函数,其中,为正整数,,,均为常数,曲线在处的切线方程为.(1)求,,的值;(2)求函数的最大值;(3)证明:对任意的都有.(为自然对数的底)【答案】(1);(2);(3)见解析.【解析】(1)在切点处的的函数值,就是切线的斜率为,可得;根据切点适合切线方程、曲线方程,可得,.(2)求导数,求驻点,讨论区间函数单调性,确定最值.(3)本小题有多种思路,一是要证对任意的都有只需证;二是令,利用导数确定,转化得到.令,证明.(1)因为, 1分所以,又因为切线的斜率为,所以 2分,由点(1,c)在直线上,可得,即 3分4分(2)由(1)知,,所以令,解得,即在(0,+上有唯一零点 5分当0<<时,,故在(0,)上单调递增; 6分当>时,,故在(,+上单调递减; 7分在(0,+上的最大值=== 8分(3)证法1:要证对任意的都有只需证由(2)知在上有最大值,=,故只需证 9分,即① 11分令,则,①即② 13分令,则显然当0<t<1时,,所以在(0,1)上单调递增,所以,即对任意的②恒成立,所以对任意的都有 14分证法2:令,则. 10分当时,,故在上单调递减;而当时,,故在上单调递增.在上有最小值,.,即. 12分令,得,即,所以,即.由(2)知,,故所证不等式成立. 14分【考点】导数的几何意义,直线方程,应用导数研究函数的单调性、最(极)值、证明不等式,转化与化归思想,分类讨论思想,应用导数研究恒成立问题.8.对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C.D.【答案】B【解析】∵,∴函数f(x)=(x2﹣2)⊗(x﹣x2)=,由图可知,当c∈函数f(x)与y=c的图象有两个公共点,∴c的取值范围是,故选B.9.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是()A.A=N*,B=NB.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}C.A={x|0<x<1},B=RD.A=Z,B=Q【答案】D【解析】对A选项,存在满足条件,故是“保序同构”. 对B选项,存在满足条件,故是“保序同构”.对C选项,存在满足条件,故是“保序同构”.选D.【考点】1、新定义;2、函数.10.设函数f(x)=x3cosx+1.若f(a)=11,则f(-a)=.【答案】-9【解析】f(a)+f(-a)=a3cosa+1+(-a)3cos(-a)+1=2,而f(a)=11,故f(-a)=2-f(a)=2-11=-9.11.对实数a和b,定义运算“⊗”:a⊗b=设函数f(x)=(x2-1)⊗(x-x2),x∈R.若函数y=f(x)-c恰有两个不同的零点,则实数c的取值范围是()A.(-∞,-1)∪(-,0)B.{-1,-}C.(-1,-)D.(-∞,-1)∪[-,0)【答案】A【解析】由x2-1≤x-x2得-≤x≤1,∴f(x)=函数f(x)的图象如图所示,由图象知,当c<-1或-<c<0时,函数y=f(x)-c恰有两个不同的零点.12.如果f()=,则当x≠0且x≠1时,f(x)=()A.B.C.D.-1【答案】B【解析】令=t,t≠0且t≠1,则x=,∵f()=,∴f(t)=,化简得:f(t)=,即f(x)=(x≠0且x≠1).13.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.【答案】2【解析】设e x=t,则x=ln t(t>0),∴f(t)=ln t+t,∴f′(t)=+1,∴f′(1)=2.14.是R上以2为周期的奇函数,当时,则在时是()A.减函数且B.减函数且C.增函数且D.增函数且【答案】D【解析】因为是R上的奇函数,故,由复合函数单调性知,当时为增函数,故此时;当时,为增函数,又因为是以2为周期的,故在上函数性质和取值完全一样,即时,为增函数,选D.【考点】函数奇偶性、函数单调性.15.直线是函数的切线,则实数.【答案】1【解析】先对函数求导,即,由于切线方程为,所以,,解得:,因此,切点为(2,)或(-2,-),代入切线方程,可得= 1.【考点】函数的导数求法,函数导数的几何意义.16.已知函数若直线与函数的图象有两个不同的交点,则实数的取值范围是 .【答案】.【解析】如下图所示,作出函数的图象如下图所示,当直线与函数的图象有两个不同的交点,则.【考点】分段函数的图象、函数的零点17.设函数.(1)若x=时,取得极值,求的值;(2)若在其定义域内为增函数,求的取值范围;(3)设,当=-1时,证明在其定义域内恒成立,并证明().【答案】(1).(2).(3)转化成.所以.通过“放缩”,“裂项求和”。
高三数学总复习--函数专题练习方法点拨函数是高考的必考内容,考查的题型主要有函数性质、函数图象、零点问题、指数幂的大小比较,与生活实际相关或函数文化结合的题.(1)函数性质的考查主要为奇偶性、单调性、对称性、周期性的综合考查,要求学生熟悉一些相关结论的由来与应用,例如由()()=f a x f a xf x关于x a+=-得到()对称.(2)对于函数图象的题型,我们一般优先考虑函数的奇偶性,或结合函数的平移、伸缩变换考虑函数的对称性,然后再考虑自变量取某些特殊值时,对应的函数值的一些特点,比如函数值的正负,最后考虑函数的单调性.(3)函数的零点问题一般可以转化成函数方程的根、函数图象与x轴的交点个数、函数图象与某条水平线的交点个数问题、函数图象与某条斜直线的交点问题,或两条曲线的交点个数问题等.(4)与生活实际相关或函数文化结合的题一般相对简单,要求学生耐心理解题目意思,知道题中每个量,每个公式所具有的意义.典型试题汇编一、选择题.1.(江西省南昌市2021届高三一模)如图所示某加油站地下圆柱体储油罐示意图,已知储油罐长度为d,截面半径为r(,d r为常量),油面高度为h,油面宽度为w,储油量为v(,,h w v为变量),则下列说法:①w是v的函数②v是w的函数③h是w的函数④w是h的函数其中正确的个数是( ) A .1个B .2个C .3个D .4个2.(河南省联考2021-2022学年高三一模)已知函数()34log ,042,03xx x f x x +>⎧⎪=⎨-≤⎪⎩,则14log 9f f ⎡⎤⎛⎫=⎢⎥ ⎪⎢⎥⎝⎭⎣⎦( )A .1B .2C .3D .43.(贵州省遵义市2021届高三一模)已知函数22,02()2(2),2x x x f x f x x ⎧-≤<=⎨-≥⎩,则(9)f =( ) A .16B .8C .8-D .16-4.(福建省龙岩市2021届高三一模)定义在R 上的奇函数()f x 满足()()2f x f x +=,当[]0,1x ∈时,()1,0211,112xe a b xf x bx x x ⎧++≤≤⎪⎪=⎨-⎪<≤⎪+⎩(e 为自然对数的底数),则a b -的值为( ) A .3- B .2- C .1- D .05.(四川省资阳市2020-2021学年高三一模)定义在R 上的偶函数()f x 满足()2f x +=()2021f =( )A .3-或4B .4-或3C .3D .46.(广东省佛山市顺德区2022届高三一模数学试题)已知函数())1ln f x x x=+, 则函数()f x 的大致图象为( )A .B .C .D .7.(四川省南充市2021-2022学年高三一模)函数()()ln x x f x e e x -=+的图象大致是( )A .B .C .D .8.(四川省资阳市2021-2022学年高三一模)函数sin 4xx xy e+=的图象大致为( ) A . B .C .D .9.(安徽省池州市2021届高三一模)设函数()f x 满足对x ∀∈R ,都有()()4f x f x -=,且在()2,+∞上单调递增,()40f =,()4g x x =,则函数()()2y f x g x =+的大致图象可能是( )A .B .C .D .10.(江苏省连云港市灌云县第一中学2021-2022学年高三一模)我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来研究函数图象的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是( )A .1()|1|f x x =- B .1()1f x x =- C .21()1f x x =- D .21()1f x x =+ 11.(四川省南充市2021-2022学年高三一模)农业农村部于2021年2月3日发布信息:全国按照主动预防、内外结合、分类施策、有效处置的总体要求,全面排查蝗灾隐患.为了做好蝗虫防控工作,完善应急预案演练,专家假设蝗虫的日增长率为6%,最初有0N 只,则大约经过( )天能达到最初的1800倍.(参考数据:ln1.060.0583≈,ln1.60.4700≈,ln18007.4955≈,ln80008.9872≈.) A .129B .150C .197D .19912.(广西柳州市2022届高三11月第一次模拟)5G 技术的数学原理之一是著名的香农公式:2log 1S C W N ⎛⎫=+⎪⎝⎭它表示:在受高斯白噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W ﹒信道内所传信号的平均功率S ,信道内部的高斯噪声功率N 的大小.其中SN叫做信噪比,按照香农公式,在不改变W 的情况下,将信噪比卡SN从1999提升至λ,使得C 大约增加了20%,则入的值约为( )(参考数据lg 20.3≈,396109120≈.) A .9121 B .9119 C .9919 D .1099913.(四川省达州市2021-2022学年高三一模)天文学中,用视星等表示观测者用肉眼所看到的星体亮度,用绝对星等反映星体的真实亮度.星体的视星等m ,绝对星等M ,距地球的距离d 有关系式05lg d M m d=+(0d 为常数).若甲星体视星等为1.25,绝对星等为 6.93-,距地球距离1d ;乙星体视星等为1.15,绝对星等为1.72,距地球距离2d ,则12d d =( ) A . 1.7510B . 1.7210C . 1.6510D . 1.621014.(江苏省苏州市八校2020-2021学年高三一模)若函数()f x 满足:对定义域内任意的()1212,x x x x ≠,有()()121222x x f x f x f +⎛⎫+> ⎪⎝⎭,则称函数()f x 具有H 性质.则下列函数中不具有H 性质的是( )A .()12xf x ⎛⎫= ⎪⎝⎭B .()ln f x x =C .()()20f x x x =≥D .()tan 02f x x x π⎛⎫=≤< ⎪⎝⎭15.(四川省资阳市高中2021-2022学年高三一模)设3log πa =,2b =,1ln 24c =, 则a ,b ,c 大小关系为( ) A .c a b >>B .c b a >>C .a b c >>D .b a c >>16.(2020山东一模)已知定义在R 上的函数()2x f x x =⋅,(3log a f =,31log 2b f ⎛⎫=- ⎪⎝⎭,()ln3c f =,则a ,b ,c 的大小关系为( )A .c b a >>B .b c a >>C .a b c >>D .c a b >>17.(湖北省武汉市部分学校2020届高三一模)已知π4ln3a =,π3ln 4b =,34ln πc =, 则a ,b ,c 的大小关系是( ) A .c b a <<B .b c a <<C .b a c <<D .a b c <<18.(天津市河北区2020-2021学年高三一模)设0.212a ⎛⎫= ⎪⎝⎭,121log 3b =,0.32c -=,则a ,b ,c 的大小关系为( )A .a b c >>B .a c b >>C .c b a >>D .b a c >>19.(江西省赣州市2021届高三一模)设函数3()sin x x f x a a b x c -=-++(0a >且1a ≠).若()1f t -=,()3f t =,则c =( ) A .1B .2C .3D .420.(江苏省2021年对口高考单招一模)若函数(),0()(2),0x x b x f x ax x x -≥⎧=⎨+<⎩,(a ,b ∈R )为奇函数,则()f a b +的值为( ) A .2-B .1-C .1D .421.(四川省资阳市2021-2022学年高三一模)已知函数()x f x xe =,则满足不等式()22f a a e -<的实数a 的取值范围是( )A .1,22⎛⎫- ⎪⎝⎭ B .1,12⎛⎫- ⎪⎝⎭ C .11,2⎛⎫- ⎪⎝⎭D .()1,2-22.(多选)(广东省普宁市勤建学校2021届高三一模)定义在R 上的函数()f x 满足()()()f x y f x f y +=+,()2()f x f x +=-且()f x 在[]1,0-上是增函数,给出下列真命题的有( ) A .()f x 是周期函数 B .()f x 的图象关于直线2x =对称 C .()f x 在[]1,2上是减函数D .()()20f f =23.(辽宁省鞍山市第一中学2018届高三上一模)指数函数()xf x a =(0a >,且1a ≠)在R上是减函数,则函数22()a g x x -=在其定义域上的单调性为( ) A .单调递增B .单调递减C .在(0,)+∞上递增,在(,0)-∞上递减D .在(0,)+∞上递减,在(,0)-∞上递增24.(山东省烟台市2021届高三一模)已知()f x 是定义在R 上的奇函数,()()2f x f x -=,当[]0,1x ∈时,()3f x x =,则( ) A .()20210f =B .2是()f x 的一个周期C .当()1,3x ∈时,()()31f x x =-D .()0f x >的解集为()()4,42k k k +∈Z25.(山东省青岛胶州市2019-2020一模)已知函数()f x 的定义域为R ,且(1)f x +是偶函数,(1)f x -是奇函数,()f x 在[1,1]-上单调递增,则( ) A .(0)(2020)(2019)f f f >> B .(0)(2019)(2020)f f f >> C .(2020)(2019)(0)f f f >>D .(2020)(0)(2019)f f f >>26.(吉林省长春市2022届高三一模)设函数()f x 的定义域为R ,且(21)f x -是偶函数,(1)f x +是奇函数,则下列说法一定正确的有( )①(8)()f x f x -=;②(1)(1)f x f x +=--;③(3)0f -=;④(2)(2)f x f x +=-. A .4个B .3个C .2个D .1个27.(四川省南充市2021-2022学年高三一模)设函数()f x 的定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当[]1,3x ∈时,()f x kx m =+,若()()032f f -=-,则()2022f =( ) A .2-B .0C .2D .428.(陕西省渭南市临渭区2021届高三一模)函数()()1ln 3x xf x x -=-的零点有( )A .0个B .1个C .2个D .3个29.(多选)(2021届高三下学期一模)若直线2y a =与函数1x y a =-(0a >,且1a ≠)的图象有两个公共点,则a 的取值可以是( ) A .14B .13C .12D .230.(四川省成都市2020-2021学年高三一模)若函数()323f x x x a =-+有且仅有一个零点,则实数a 的取值范围为( ) A .()(),04,-∞+∞ B .()(),80,-∞-+∞ C .[]0,4D .()8,0-31.(安徽省合肥市2020-2021学年高三一模)设函数()21log ,020x x f x x ⎧⎛⎫+>⎪ ⎪=⎝⎭⎨⎪≤⎩.若 14,2x ⎛⎫∈- ⎪⎝⎭时,方程()1f x k +=有唯一解,则实数k 的取值范围为( )A.(B.⎡⎣C .()0,2D .[)1,232.(四川省成都市新都区2021-2022学年高三一模)已知函数2()log f x x =,函数()g x满足以下三点条件:①定义域为R ;②对任意x ∈R ,有(π)2()g x g x +=;③当[0,π]x ∈时,()sin g x x =.则函数()()y f x g x =-在区间[0,4π]上的零点个数为( ) A .5B .6C .7D .833.(2020届浙江省金华十校高三一模)已知函数()21,0ln ,0ax x f x x x ⎧+≤=⎨>⎩,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( ) A .当0a =,m ∈R 时,有且只有1个 B .当0a >,1m ≤-时,都有3个C .当0a <,1m <-时,都有4个D .当0a <,10m -<<时,都有4个34.(山东省实验中学2021届高三一模)已知()f x 是定义在R 上的奇函数,当0x ≥时,12log (1),01()13,1x x f x x x +≤<⎧⎪=⎨--≥⎪⎩,则关于的函数()()()01F x f x a a =-<<的所有零点之和为( ) A .21a -B .21a --C .12a -D .12a --35.(安徽省滁州市定远中学2019-2020学年一模)已知函数()()21,043,0x e x f x x x x +⎧≤⎪=⎨+->⎪⎩,函数()y f x a =-有四个不同的零点,从小到大依次为1x ,2x ,3x ,4x ,则1234x x x x -++的取值范围为( ) A .[)3,3e + B .()3,3e + C .()3,+∞ D .(]3,3e +二、填空题.36.(江苏省2021年对口高考单招一模数学)在平面直角坐标系中,函数()12x f x a +=+(0a >且1a ≠)的图象恒过定点P ,若角θ的终边过点P ,则sin 2θ=________.参考答案一、选择题.1-21:BDDADBCABBABABDDBDBBB 22.【答案】ACD(4)(2)()f x f x f x +=-+=,所以()f x 是周期函数,4是它的一个周期,A 正确; (2)(2)(2)f x f x f x +=-+=--,函数图象关于点(2,0)对称,B 错; (1)(1)(1)f x f x f x +=--+=-,函数图象关于直线1x =对称,又()f x 在[1,0]-上递增,因此()f x 在[0,1]上递增,所以()f x 在[]1,2上是减函数,C 正确;(2)(0)0f f =-=,D 正确,故选ACD . 23.【答案】C【解析】结合指数函数的性质可知:01a <<, 函数()g x 的导函数:()()322'a g x x--=, 当(),0x ∈-∞时,()'0g x <,函数()g x 单调递减; 当()0,x ∈+∞时,()'0g x >,函数()g x 单调递增, 本题选择C 选项. 24.【答案】D【解析】因为()f x 是定义在R 上的奇函数,所以()()()2f x f x f x -==--, 所以()()2f x f x +=-,所以()()()42f x f x f x +=-+=,所以()f x 的最小正周期是4,故B 错误;()()202111f f ==,故A 错误;因为当[]0,1x ∈时,()3f x x =,()f x 是定义在R 上的奇函数, 所以当[]1,1x ∈-时,()3f x x =,当()1,3x ∈时,()21,1x -∈-,()()()322f x f x x =-=-,故C 错误; 因为当()0,2x ∈时,()0f x >,()f x 的最小正周期是4, 所以()0f x >的解集为()()4,42k k k +∈Z ,故D 正确, 故选D . 25.【答案】B【解析】(1)f x +是偶函数,得()(1)1f x f x +=-+,即()()2f x f x =-+,(1)f x -是奇函数,得()(1)1f x f x -=---,即()()2f x f x =---,()(2)2f x f x ---=-+,得8T =,由(1)f x -是奇函数,得()(01)10f f -=-=, 因为()f x 在[1,1]-上单调递增,所以(0)0f >,()()()2019310f f f ==-=,()()()2020400f f f ==-<,所以(0)(2019)(2020)f f f >>,故选B . 26.【答案】B【解析】由题意,函数(1)f x +是奇函数,可得()f x 的图象关于点(1,0)对称, 所以(1)(1)0f x f x ++-=,所以②正确; 令0x =,则(1)0f =,又由(21)f x -是偶函数,所以()2f x 的图象关于12x =-对称, 所以()f x 的图象关于1x =-对称,则有(1)(1)f x f x --=-+, 令2x =,则(3)(1)0f f -==,所以③正确;在(1)(1)f x f x --=-+中,将x 用7x -替换,则(8)(6)f x f x -=-, 在(1)(1)f x f x +=--中,将x 用5x -替换,则(6)(4)f x f x -=--, 所以(8)(4)f x f x -=--,再将x 用4x +替换,则(4)()f x f x -=-, 所以(8)()f x f x -=,所以①正确;对于④中,由(2)(),(2)()f x f x f x f x -=-+=--,无法推出其一定相等, 故选B . 27.【答案】C【解析】因为()1f x -为奇函数,所以()1(1)f x f x --=--①; 又()1f x +为偶函数,所以()1(1)f x f x -+=+②; 令1x =,由②得:())0(22f f k m ==+,又()33f k m =+,所以()()032(3)2f f k m k m k -=+-+=-=-,得2k =, 令0x =,由①得()()1(1)10f f f -=--⇒-=;令2x =,由②得()1(3)0f f -==,所以()6330f k m m =+=⇒=-, 得[]1,3x ∈时,()26f x x =-,结合①②得,()2(2)(4)()(8)(4)()f x f x f x f x f x f x f x +=--⇒+=-⇒+=-+=, 所以函数()f x 的周期为8T =,所以()()()()()202225286622262f f f f =⨯+==-=-⨯-=,故选C . 28.【答案】B【解析】由题意知函数()()1ln 3x x f x x -=-的定义域为()()0,33,+∞,由()()1ln 03x x f x x -==-,得()1ln 0x x -=,所以1x =,所以函数()()1ln 3x x f x x -=-的零点有1个,故选B .29.【答案】AB【解析】(1)当1a >时,由题得021a <<,102a ∴<<, 因为1a >,所以此种情况不存在;(2)当01a <<时,由题得021a <<,102a ∴<<, 因为01a <<,所以102a <<,故选AB . 30.【答案】A【解析】由题意知:2()36f x x x '=-,∴()0f x '>时,2360x x ->,得0x <或2x >;()0f x '<时,2360x x -<,得02x <<, ∴()f x 在(,0)-∞上递增,(0,2)上递减,(2,)+∞上递增,当0x =时,有极大值(0)f a =;当2x =时,有极小值(2)4f a =-, ∴只有当(0)0f a =<或(2)40f a =->时,函数()f x 有且仅有一个零点, ∴0a <或4a >,故选A . 31.【答案】B【解析】因为函数()21log ,02,0x x f x x x ⎧⎛⎫+>⎪ ⎪=⎝⎭⎨⎪-≤⎩,所以23log (),12(1)1x x f x x ⎧+>-⎪+=⎨⎪≤-⎩, 若14,2x ⎛⎫∈- ⎪⎝⎭时,作出()1f x +的图象,结合图象可知方程()1f x k +=有唯一解,则1k ≤< 故选B . 32.【答案】A【解析】因为函数2()log f x x =的定义域为()0,∞+, 所以()()y f x g x =-在(],0-∞无零点;∵()()π2g x g x +=,故将()[],0,πy g x x =∈的图象向右平移π个单位后,图象纵向伸长为原来的两倍,∴在平面直角坐标系,()f x 的图象以及()g x 在[]0,4π上如图所示:又2223π5π7πlog 2,log 4,log 8222><<, 故()f x 、()g x 在(]0,4π上的图象共有5个不同交点,故选A . 33.【答案】B【解析】令()t f x =,则()0f t m +=,当0a =时,若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m ∈R 时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确; 当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误, 故选B .34.【答案】C【解析】∵0x ≥时,()()[)[)12log 1,0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,即[)0,1x ∈时,()()(]12log 11,0x f x +=∈-;[]1,3x ∈时,()[]21,1x x f -∈-=; ()3,x ∈+∞时,()()4,1f x x =-∈-∞,画出0x ≥时,()y f x =的图象,再利用奇函数的对称性,画出0x <时,()y f x =的图象,如图所示:直线y a =与()y f x =共有5个交点,则方程()0f x a -=共有五个实根, 最左边两根之和为6-,最右边两根之和为6, ∵[)0,1x ∈时,()0,1x -∈,∴()()12log 1f x x -=-+,又()()f x f x -=-,∴()()()()111222log 1log 1log 1x x x f x ---+===--,∴中间的一个根满足()2log 1x a -=,即12a x -=,得12a x =-, ∴所有根的和为12a -,故选C . 35.【答案】D【解析】当0x ≤时,2(1)()2(1)x f x x e +'=+,()010f x x '>⇒-<≤;()01f x x '<⇒<-,则函数()f x 在(,1)-∞-上单调递减,在(]1,0-上单调递增,且0(1)1,(0)f e f e -===,当0x >时,22244()1x f x x x-'=-=,()02f x x '>⇒>;()002f x x '<⇒<<,则函数()f x 在(0,2)上单调递减,在()2,+∞上单调递增,4(2)2312f =+-=,函数()y f x a =-有四个不同的零点,即两函数()y f x =与y a =图象有四个不同的交点, 如下图所示:由图可知,1a e <≤,12,x x 是方程2(1)x e a +=的两根,即221ln 0x x a ++-=的两根,所以(]12ln 11,0x x a -=-∈-,34,x x 是方程43x a x+-=的两根,即2(3)40x a x -++=的两根, 所以343(4,3]x x a e +=+∈+,(]12343,3x x x x e ∴-++∈+, 故选D . 二、填空题. 36.【答案】35-【解析】由题意,函数()12x f x a +=+,令10x +=,可得1x =-,此时()13f -=,即函数()f x 恒过定点()1,3P -,则r OP ==,根据三角函数的定义,可得sinθ=,cos θ=, 所以3sin 22sin cos 5θθθ==-, 故答案为35-.。
专题12 指、对数函数比较大小【母题原题1】【2020年高考全国Ⅲ卷,理数】已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A. a <b <c B. b <a <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a 、b 、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >. 综上所述,a b c <<. 故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.【母题原题2】【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314) 【答案】C 【解析】()f x 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.【母题原题3】【2018年高考全国Ⅲ卷理数】设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【答案】B【解析】0.22log 0.3,log 0.3a b ==,0.30.311log 0.2,log 2a b∴==, 0.311log 0.4a b ∴+=,1101a b ∴<+<,即01a b ab+<<, 又0,0a b ><,0ab ∴<,∴0ab a b <+<.故选B .【名师点睛】本题主要考查对数的运算和不等式,属于中档题.【命题意图】主要考查数形结合思想、分类讨论思想的运用和考生的逻辑推理能力、数学运算能力. 【命题规律】在高考中的考查热点有:(1)比较指、对数式的大小;(2)指、对数函数的图象与性质的应用;(3)以指、对数函数为载体,与其他函数、方程、不等式等知识的综合应用.以选择题和填空题为主,难度中等.【答题模板】1.比较指数幂大小的常用方法一是单调性法,不同底的指数函数化同底后就可以应用指数函数的单调性比较大小,所以能够化同底的尽可能化同底;二是取中间值法,不同底、不同指数的指数函数比较大小时,先与中间值(特别是0,1)比较大小,进而得出大小关系;三是图解法,根据指数函数的特征,在同一平面直角坐标系中作出它们相应的函数图象,借助图象比较大小.2.比较对数值大小的类型及相应方法【方法总结】1.指数函数图象的特点(1)任意两个指数函数的图象都是相交的,过定点(0,1),底数互为倒数的两个指数函数的图象关于y轴对称.(2)当a>1时,指数函数的图象呈上升趋势;当0<a<1时,指数函数的图象呈下降趋势.(3)指数函数在同一坐标系中的图象的相对位置与底数大小关系如图所示,其中0<c<d<1<a<b,在y 轴右侧,图象从上到下相应的底数由大变小,在y轴左侧,图象从下到上相应的底数由大变小,即无论在y轴的左侧还是右侧,底数按逆时针方向变大.2.对数函数图象的特点(1)当a >1时,对数函数的图象呈上升趋势; 当0<a <1时,对数函数的图象呈下降趋势.(2)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),函数图象只在第一、四象限.(3)在直线x =1的右侧:当a >1时,底数越大,图象越靠近x 轴;当0<a <1时,底数越小,图象越靠近x 轴,即“底大图低”.3.解决对数型复合函数的单调性问题的步骤 (1)求出函数的定义域;(2)判断对数函数的底数与1的大小关系,当底数是含字母的代数式(包含单独一个字母)时,要考查其单调性,就必须对底数进行分类讨论;(3)判断内层函数和外层函数的单调性,运用复合函数“同增异减”原则判断函数的单调性. 研究对数型复合函数的单调性,一定要坚持“定义域优先”原则,否则所得范围易出错.1.(2020·广西壮族自治区高三月考(文))已知函数()f x 是定义在R 上的奇函数,当0x ≤时,()f x 单调递增,则( ).A .()()93log 4(1)log 4f f f >>B .()()93log 4(1)log 4f f f <<C .()()93(1)log 4log 4f f f >>D .()()93(1)log 4log 4f f f <<【答案】B 【解析】【分析】根据函数()f x 的单调性和奇偶性可知()f x 是R 上的单调增函数,只需根据对数函数的单调性比较9log 4,1,3log 4的大小即可得到答案.【详解】因为函数()f x 是定义在R 上的奇函数,当0x ≤时,()f x 单调递增, 所以()f x 在R 上单调递增,因为99log 4log 91<=,331log 3log 4=<, 所以93log 41log 4<<,所以()()93log 4(1)log 4f f f <<. 故选B.【点睛】本题考查函数的性质,对数函数的单调性的应用,考查数学抽象与逻辑推理的核心素养. 2.(2020·广西壮族自治区高三其他(文))已知0.2log 2a =,20.2b =,0.23c =,则( ) A .a b c << B .a c b << C .c a b << D .b c a <<【答案】A 【解析】【分析】利用指对函数的单调性,借助中间量比较大小. 【详解】0.2log 20a =<,()20.20,1b =∈,0.231c =>,所以a b c <<, 故选A .【点睛】利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.3.(2020·广西壮族自治区田阳高中高二月考(理))已知0.64a =, 1.12b =,4log 12c =,则( ) A .c b a << B .b a c <<C .a b c <<D .c a b <<【答案】A 【解析】【分析】利用对数函数的单调性比较c 与2的大小关系,再利用指数函数的单调性得出2a b >>,即可得出a 、b 、c 三个数的大小关系.【详解】指数函数2xy =为增函数,则 1.2 1.1222a b =>=>,对数函数4log y x =是()0,∞+上的增函数,则44log 12log 162c =<=,因此,c b a <<. 故选A.【点睛】本题考查指数与对数的大小比较,一般利用指数函数与对数函数的单调性,结合中间值法来得出各数的大小关系,考查推理能力,属于中等题.4.(2020·广西壮族自治区田阳高中高二月考(文))已知20.8a =,0.82b =,2log 0.8c =,则a ,b ,c 的大小关系为( )A .a b c >>B . a c b >>C . b a c >>D . c a b >>【答案】C 【解析】【分析】把各数与中间值0,1比较即得.【详解】200.81<<,0.821>,2log 0.80<,∴c a b <<. 故选C .【点睛】本题考查幂和对数的比较大小,掌握指数函数和对数函数的性质是解题关键.不同底的幂或对数解题时可借助于中间值0,1等比较大小.5.(2020·广西壮族自治区桂平市第五中学高三月考(文))已知()12log ,02,0x x x f x x >⎧⎪=⎨⎪≤⎩,()()2a f f =-,ln π2b =,lncos5c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .b a c >>D .c a b >>【答案】C 【解析】【分析】根据对数运算和指数运算比较大小即可.【详解】解:由题设知,()()12112log 244a f f f ⎛⎫=-=== ⎪⎝⎭,ln π1>,∴ln π22b =>,又0cos51<<, ∴lncos50c =<,则b a c >>.故选C.【点睛】本题考查对数运算和指数运算,结合对数函数,指数函数及余弦函数的性质,属于基础题. 6.(2020·广西壮族自治区南宁三中高三期末(文))已知ln 2a =,ln b π=,125ln 24c =,则a ,b ,c 的大小关系为( ) A .b c a << B .c a b << C .a b c << D .a c b <<【答案】D 【解析】【分析】化简c ,利用对数函数的单调性,即可得出结论. 【详解】因为12125255ln ln ln 2442c ⎛⎫=== ⎪⎝⎭,又因为ln y x =在(0,)+∞上单调递增, 且522π<<,所以a c b <<. 故选:D.【点睛】本题考查对数的简单运算,考查利用函数的单调性比较函数值的大小,属于基础题. 7.(2020·湖南省高三一模(理))已知函数()y f x =在区间(),0-∞内单调递增,且()()f x f x -=,若12log 3a f ⎛⎫= ⎪⎝⎭,()1.22b f -=,12c f ⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系为( )A .a c b >>B .b c a >>C .b a c >>D .a b c >>【答案】B 【解析】【分析】由偶函数的性质可得出函数()y f x =在区间()0,∞+上为减函数,由对数的性质可得出12log 30<,由偶函数的性质得出()2log 3a f =,比较出2log 3、 1.22-、12的大小关系,再利用函数()y f x =在区间()0,∞+上的单调性可得出a 、b 、c 的大小关系.【详解】()()f x f x -=,则函数()y f x =为偶函数,函数()y f x =在区间(),0-∞内单调递增,在该函数在区间()0,∞+上为减函数,1122log 3log 10<=,由换底公式得122log 3log 3=-,由函数的性质可得()2log 3a f =,对数函数2log y x =在()0,∞+上为增函数,则22log 3log 21>=, 指数函数2xy =为增函数,则 1.2100222--<<<,即 1.210212-<<<, 1.22102log 32-∴<<<,因此,b c a >>. 【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.8.(2020·广西壮族自治区高三三模(文))已知函数()1112xf x e =-+,若()1.32a f =,()0.74b f =,()3log 8c f =,则a ,b ,c 的大小关系为( )A .c a b <<B .a c b <<C .b a c <<D .a b c <<【答案】C 【解析】【分析】由指数函数的性质,求得函数()f x 是减函数,再利用指数函数与对数函数的性质,得到1.30.73log 824<<,即可求解.【详解】由指数函数的性质,可得函数e 1xy =+为单调递增函数, 可得函数()1112xf x e =-+是定义域R 上的单调递减函数, 又因为 1.31.40.73log 82224<<<=,所以()()()0.7 1.3342log 8f f f <<,所以b a c <<. 故选C .【点睛】本题主要考查了函数的单调性的应用,以及指数式与对数式的比较大小,其中解答中根据指数函数与对数函数的性质,得到自变量的大小关系是解答的关键,着重考查了推理与计算能力. 9.(2020·广西壮族自治区南宁三中高三月考(理))已知13(ln 2)a =,13(ln 3)b =,21log 3c =,则a ,b ,c 的大小关系是( ).A .a b c <<B .c a b <<C .b a c <<D .c b a <<【答案】B 【解析】【分析】利用对数函数和指数函数的性质求解. 【详解】解:∵0ln 21<<,∴01a <<, ∵ln 31>,∴1b >, ∵221log log 313=-<-,∴0c <, ∴c a b <<, 故选B .【点睛】本题考查三个数的大小的求法,解题时要认真审题,注意对数函数和指数函数的性质的合理运用,属于基础题.10.(2020·四川省金堂中学校高三一模(文))若a ,b ,c 满足23a =,2log 5b =,32c =.则( )A .c a b <<B .b c a <<C .a b c <<D .c b a <<【答案】A 【解析】【分析】利用指数函数和对数函数的单调性即可比较大小. 【详解】23a =,12232<<,∴12a <<,22log 5log 4b =>,∴2b >,32c =,01323<<,∴01c <<,∴c a b <<,故选A.【点睛】本题考查了指数函数和对数函数的单调性,考查了计算能力和推理能力,属于基础题. 11.(2020·四川省绵阳南山中学高三一模(理))已知0.50.70.70.7,0.5,log 0.5a b c ===,则a ,b ,c 的大小关系为( ) A .a b c << B .b a c << C .c b a << D .c a b <<【答案】B 【解析】【分析】先利用指数函数和幂函数的单调性比较出,a b ,1的大小,再利用对数函数的单调性判断出c 与1的大小,然后可比较出3个数的大小.【详解】解:因为0.7xy =在R 上为减函数,且0.50>,所以0.500.00.771<<=,即01a <<,同理可得01b <<, 因为0.50.500.7.50.5,0.700..55<>,所以0.50.710.70.50>>>,即10a b >>>,因为0.7log y x =在(0,)+∞上为减函数,且0.70.50>>, 所以0.70.7log 0.5log 0.71>=,即1c >, 所以b a c <<, 故选B【点睛】此题考查指数和对数大小的比较,采取了中间量法,利用了转化与化归的思想,属于基础题.12.(2020·四川省成都外国语学校高二期中(理))已知实数ln22a =,22ln2b =+,2(ln2)c =,则a ,b ,c 的大小关系是( ) A .c a b << B .c b a << C .b a c << D .a c b <<【答案】A 【解析】【分析】先判断ln2的大小范围,然后判断三个数的大小关系.【详解】解:因为0ln21<<所以1<ln 22<2,2+2ln2>2,0<2(ln2)<1,∴c <a <b . 故选A .【点睛】本题考查了有关对数式的大小比较.13.(2020·四川省绵阳南山中学高三一模(文))已知5log 312a ⎛⎫= ⎪⎝⎭,5log 314b ⎛⎫= ⎪⎝⎭,5log 0.12c =,则( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>【答案】A 【解析】【分析】利用指数函数与对数函数的单调性即可求解.【详解】5log 312a ⎛⎫= ⎪⎝⎭,555log 32log 3log 9111422b ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5555101log log log 0.1lo 10g 122212c -⎛⎫=== ⎪⎝⎭=,由5log y x =在定义域内单调递增,则555log 10log 9log 3>>,又12xy ⎛⎫= ⎪⎝⎭单调递减,所以555log 10log 9log 3111222⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以a b c >>. 故选A【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,需掌握指数函数、对数函数的图像与性质,属于基础题.14.(2020·四川省南充市第一中学高二期中(理))设0.40.831.2, 1.2,log 2a b c ===,则,,a b c 的大小关系是( ) A .b c a >> B .b a c >> C .c b a >> D .a b c >>【答案】B 【解析】【分析】由函数的单调性及与中间值“1”的大小关系,即可得到本题答案.【详解】由 1.2xy =在区间(,)-∞+∞是单调增函数,得0.80.401.2 1.2 1.21>>=, 又因为33log 2log 31c =<=,所以b a c >>. 故选B.【点睛】本题主要考查指数、对数比较大小的问题,利用函数的单调性及中间值“1”是解决此题的关键. 15.(2020·四川省高三三模(文))已知a =log 20.2,b =20.2,c =0.20.3,则A .a <b <cB .a <c <bC .c <a <bD .b <c <a【答案】B 【解析】【分析】运用中间量0比较a , c ,运用中间量1比较b , c【详解】a =log 20.2<log 21=0, b =20.2>20=1, 0<0.20.3<0.20=1,则0<c <1,a <c <b .故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.16.(2020·宜宾市叙州区第一中学校高三二模(理))已知0.22018a =,20180.2b =,2018log 0.2c =,则( )A .c b a >>B .b a c >>C .a b c >>D .a c b >>【答案】C【解析】由于020181a >=,000.21b <<=,2018log 10c <=,故a b c >>.故选C . 17.(2020·西昌市第二中学高三二模(理))已知2log 3a =,ln3b =,123c -=,则( )A .a b c <<B .c a b <<C .b c a <<D .c b a <<【答案】D 【解析】【分析】由题意结合对数函数的性质、指数函数的性质可得1101a b<<<、1c <,进而可得1c b a <<<,即可得解. 【详解】由题意31log 2a =,31log e b =,所以1101a b<<<,则1a b >>, 又102331c -=<=,所以1c b a <<<. 故选D.【点睛】本题考查了指数函数、对数函数单调性的应用,考查了指数式、对数式的大小比较与推理能力,属于基础题.18.(2020·四川省棠湖中学高三一模(文))已知0.250.5log 2,1og 0.2,0.5a b c ===,则( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b【答案】B 【解析】【分析】利用对数函数和指数函数的性质求解.【详解】555log 1log 2log <<∴102a <<,2221og 1og 54>=,∴2b >, 10.200.50.50.5<<,∴112c <<, ∴a c b <<,故选B.【点睛】本题考查指数式和对数式的大小比较,考查逻辑推理能力、运算求解能力,求解时注意中间变量的引入.19.(2020·四川省阆中中学高三二模(理))已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为( ) A .a c b << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】【分析】利用10,,12等中间值区分各个数值的大小.【详解】551log 2log 2a =<<, 0.50.5log 0.2log 0.252b =>=, 10.200.50.50.5<<,故112c <<, 所以a c b <<. 故选A .【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.20.(2020·四川省高三三模(理))已知函数(1)=-y f x 的图象关于直线1x =对称,且当(0,)x ∈+∞时,ln ()x f x x =.若2e a f ⎛⎫=- ⎪⎝⎭,(2)b f =,23c f ⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系是( ) A .b a c >> B .a b c >>C .a c b >>D .c b a >>【答案】D 【解析】【分析】根据函数图象平移的性质判断出函数()y f x =的对称性,结合导数判断出函数()y f x =在(1,)x e ∈时的单调性,最后利用单调性,结合对数的运算性质和对数函数的单调性进行大小比较即可.【详解】因为函数(1)=-y f x 的图象向左平移1个单位长度,得到()y f x =的图象, 而函数(1)=-y f x 的图象关于直线1x =对称,所以()y f x =的图象关于0x =对称,即关于纵轴对称,因此()y f x =是偶函数.因此22e e a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭, 当(1,)x e ∈时,'2ln ln 1ln ()()x x xf x f x x x x -==⇒=, 因为(1,)x e ∈,所以ln 1x <,即'()0f x >,所以()y f x =在(1,)x e ∈时,单调递增,因为122e e <<<,所以()(2)2ef f <,即b a > 32ln232121273ln ln()ln 232323283c f -⎛⎫===-== ⎪⎝⎭,ln 21(2)ln 222b f ===,因为2728>,所以c b >,即c b a >>. 故选D【点睛】本题考查了利用函数单调性比较函数值大小问题,考查了导数的应用,考查了对数函数的性质,考查了数学运算能力.21.(2020·贵州省高三其他(文))已知2log 0.7a =,0.12b =,ln 2c =,则( )A .b c a <<B .a c b <<C .b a c <<D .a b c <<【答案】B 【解析】【分析】找中间量0和1进行比较,根据指数函数、对数函数的单调性可得到答案. 【详解】因为2log 0.7a =2log 10<=,0.10221b =>=,ln1ln 2ln 1c e <=<=, 所以a c b <<. 故选B.【点睛】本题考查了利用指数函数和对数函数的单调性比较大小,找中间量0和1进行比较是关键,属于基础题.22.(2020·贵州省高三其他(文))若0.32=a ,2log 0.3b =,3log 2c =,则实数a ,b ,c 之间的大小关系为( ) A .a b c >> B .a c b >>C .c a b >>D .b a c >>【答案】B【解析】【分析】由已知,将a ,b ,c 与0和1比较得出结果.【详解】解:由题意可知0.30221a =>=,122log 0.3log 21b -=<=-,330log 2log 31c <=<=,∴a c b >>.故选B.【点睛】本题考查对数比较大小,属于基础题.23.(2020·嘉祥县第一中学高三三模)若x ∈(0,1),a =lnx ,b =ln 12x⎛⎫ ⎪⎝⎭,c =e lnx ,则a ,b ,c 的大小关系为( ) A .b >c >a B .c >b >aC .a >b >cD .b >a >c【答案】A 【解析】【分析】利用指数函数、对数函数的单调性直接求解. 【详解】∵x ∈(0,1), ∴a =lnx <0, b =(12)lnx >(12)0=1, 0<c =e lnx <e 0=1,∴a ,b ,c 的大小关系为b >c >a . 故选A .【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.24.(2020·贵州省凯里一中高三月考(理))已知,,a b c 均为正实数,若122log aa -=,122log bb -=,21log 2cc ⎛⎫= ⎪⎝⎭,则( ) A .c a b << B .c b a << C .a b c << D .b a c <<【答案】C 【解析】【分析】画出函数2xy =,12log xy =,12xy ⎛⎫= ⎪⎝⎭,2log y x =的图像,根据图像得到答案.【详解】122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭,利用函数2xy =,12log xy =,12xy ⎛⎫= ⎪⎝⎭,2log y x =,如图所示:由图象可得:a b c <<, 故选C.【点睛】本题考查了比较方程的解的大小关系,画出函数图像是解题的关键. 25.(2020·贵州省高三月考(理))已知132a -=, 21log 3b =, 131log 4c =,则( )A .a b c >>B .a c b >>C .c b a >>D .c a b >>【答案】D 【解析】131218a -==<, 21log 03b =<, 1331log log 414c ==>, 所以c a b >>. 故选D.26.(2020·云南省云南师大附中高三月考(理))设2log 0.2a =,0.5log 3b =,154c=,则a ,b ,c 的大小关系是( ) A .c a b >> B .c b a >>C .b a c >>D .a b c >>【答案】B 【解析】【分析】根据对数的性质,把2log 0.2a =和0.5log 3b =缩小范围,和中间值0、1、2、3比较,把154c=两边取以5为底的对数表示出c ,缩小c 的范围,最后比较大小. 【详解】解:∵2221log 0.2log log 55a ===-,22log 53<<,∴32a -<<-, ∵0.5122log 3log 3log 3b ===-,21log 32<<,∴21b -<<-; ∵154c=,∴551log log 44c ==-,50log 41<<,∴10c -<<. ∴c b a >>, 故选B .【点睛】考查对数值、幂值的大小比较,借助于中间值0、1、2、3以及一些特殊值是解决这类题的关键,基础题.27.(2020·云南省高三其他(文))已知352a =,253b =,135c -=,则( ) A .b a c << B .a b c <<C .c b a <<D .c a b <<【答案】D 【解析】【分析】求出,,a b c 的范围,比较得到b a >即得解. 【详解】由题得1305222,12a <∴<<<.120533,1b 33<∴<<<.352b a b a ===∴< 30151,15c -<=∴<.所以c a b <<. 故选D【点睛】本题主要考查指数函数幂函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 28.(2020·云南省下关第一中学高一期末)已知a =log 20.3,b =20.1,c =0.21.3,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<【答案】D 【解析】【分析】根据指数函数与对数函数单调性得到a ,b ,c 的取值范围,即得到它们的大小关系. 【详解】解:由对数和指数的性质可知,0.10 1.302log 0.3022100.20.21a b c a c b =<=>=<=<=∴<<,,,故选D .【点睛】本题考查对数的性质,考查指数的性质,考查比较大小,在比较大小时,若所给的数字不具有相同的底数,需要找一个中间量,把要比较大小的数字用不等号连接起来.29.(2020·四川省泸县五中高三月考(文))0.70.60.7log 6,6,0.7a b c ===,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b a c >>D .b c a >>【答案】D 【解析】【分析】利用指数函数和对数函数的单调性,分别比较三个数与0或1的大小,进而可得结果. 【详解】由对数函数与指数函数的单调性可得,0.700.70.7log 6log 10,661,0a b ====<0.60.7c =00.71<=,b c a ∴>>,故选D.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.30.(2020·会泽县茚旺高级中学高一开学考试)三个数60.7,0.76,0.7log 6的大小关系为( )A .60.70.70.7log 66<<B .60.70.7log 60.76<<C .0.760.7log 660.7<<D .60.70.70.76log 6<<【答案】B 【解析】【分析】根据函数的单调性,将三个数与0,1比大小,即可求解.【详解】600.700.70.700.70.71,661,log 6log 10<<=>=<=,所以60.70.7log 60.76<<.故选:B【点睛】本题考查比较数的大小,注意函数单调性的应用,属于基础题.31.(2020·云南省云南师大附中高三月考(理))已知函数()2sin f x x x x =-,若()0.2log 3a f =,()3log 0.2b f =,()30.2c f =,则( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】B 【解析】【分析】判断函数()f x 为偶函数,然后利用导数求出()f x 在()0,x ∈+∞上单调递增,利用函数的单调性即可比较出大小.【详解】()()()()()22sin sin f x x x x x x x f x -=----=-=,故()f x 为偶函数,故只需考虑()0,x ∈+∞的单调性即可.()()'2sin cos sin 1cos f x x x x x x x x x =--=-+-,当()0,x ∈+∞时,设()sin h x x x =-,则()1cos 0h x x '=-> 所以()h x 在()0,∞+上单调递增,即()()00h x h >=,故sin x x >, 而()1cos 0x x -≥显然成立,故()'0fx >,故()f x 在()0,x ∈+∞上单调递增.()()0.25log 3log 3a f f ==,()()33log 0.2log 5b f f ==,35530.20.2log log 31log 5<<<<<,由函数单调性可知()()()3530.2log 3log 5f f f <<,即c a b <<,故选B .【点睛】本题考查了利用导数研究函数的单调性、利用函数的单调性比较函数值的大小,属于中档题.32.(2020·云南省高三月考(文))若13log 2a =,1312b ⎛⎫=⎪⎝⎭,2log 3c =,则a b c ,,的大小关系是( )A .b a c <<B .b c a <<C .a b c <<D .c b a <<【答案】C 【解析】【分析】利用指数函数、对数函数的单调性即可比较大小. 【详解】13log x y =为单调递减函数,1133log 2log 10a =<=∴,12xy ⎛⎫= ⎪⎝⎭为单调递减函数,13112012⎛⎫∴<<⎛⎫ ⎝⎪⎪⎭⎝=⎭,2log x y =为单调递增函数, 22log 3log 21∴>=,所以a b c <<. 故选C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题. 33.(2020·西藏自治区拉萨中学高三月考(文))已知123a =,131log 2b =,21log 3c =,则( ) A .a b c >> B .b c a >> C .c b a >> D .b a c >>【答案】 A【解析】试题分析:由指数函数,对数函数的性质,可知1231a =>,113311log ,0log 122b =<< 21log 03c =<,即a b c >>,选A 34.(2020·西藏自治区拉萨那曲第二高级中学高三月考(文))已知1(,1)x e -∈,ln a x =,ln 1()2xb =,ln x c e =,则,,a b c 的大小关系为( )A .c b a >>B .b c a >>C .a b c >>D .b a c >>【答案】B【解析】试题分析:∵1(,1)x e -∈,∴ln (1,0)x ∈-∴(1,0)a ∈-,(1,2)b ∈,1(,1)c e -∈∴b c a >>.选B.。
专题二 数与式大小的比较一、问题的提出【2016高考新课标1文数】若0a b >>,01c <<,则(A )log a c <log b c (B )log c a <log c b (C )a c<bc(D )c a >c b利用指数函数、对数函数、及幂函数的性质比较数与式的大小是高考中的热点,本题对此问题作深入探讨,帮助同学们掌握数与式大小的基本方法. 二、问题的探源本题解法:由01c <<可知log c y x =是减函数,又0a b >>,所以log log c c a b <.故选B.本题也可以 用特殊值代入验证.【点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数单调性进行比较,若底数不同,可考虑利用中间量进行比较. 一、思路点拨1.比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小. 2.若题中所给的对数式的底数相同时,可以考虑利用对数函数的单调性来比较大小,在比较时,一定要注意底数所在X 围对单调性的影响,即a >1时xa y log =是增函数,0<a <1时xa y log =是减函数,当对数底数为变量时,要分情况对底数进行讨论来比较两个对数的大小.3.若题中所给的对数式的底数和真数都不相同时,可以找一个中间量作为桥梁,通过比较中间量与这两个对数式的大小来比较对数式的大小,.在具体比较时,可以首先将它们与零比较,分出正负;正数通常再与1比较分出大于1还是小于1,然后在各类中间两两相比较,另外若题中既有对数式又有指数式,也常用中间量比较大小.4.比较复杂的数与式大小的比较有时可通过作差或作上比较大小 二、技巧和方法1、如何快速判断对数的符号?八字真言“同区间正,异区间负”,容我慢慢道来: 判断对数的符号,关键看底数和真数,区间分为()0,1和()1,+∞(1)如果底数和真数均在()0,1中,或者均在()1,+∞中,那么对数的值为正数 (2)如果底数和真数一个在()0,1中,一个在()1,+∞中,那么对数的值为负数 例如:30.52log 0.50,log 0.30,log 30<>>等2、要善于利用指对数图像观察指对数与特殊常数(如0,1)的大小关系,一作图,自明了3、比较大小的两个理念:(1)求同存异:如果两个指数(或对数)的底数相同,则可通过真数的大小与指对数函数的单调性,判断出指数(或对数)的关系,所以要熟练运用公式,尽量将比较的对象转化为某一部分相同的情况例如:1113423,4,5,比较时可进行转化,尽管底数难以转化为同底,但指数可以变为相同()()()11111143634212121233,44,55===,从而只需比较底数的大小即可(2)利用特殊值作“中间量”:在指对数中通常可优先选择“0,1”对所比较的数进行划分,然后再进行比较,有时可以简化比较的步骤(在兵法上可称为“分割包围,各个击破”,也有一些题目需要选择特殊的常数对所比较的数的值进行估计,例如2log 3,可知2221log 2log 3log 42=<<=,进而可估计2log 3是一个1点几的数,从而便于比较4、常用的指对数变换公式:(1)nm mn a a ⎛⎫= ⎪⎝⎭(2)log log log a a a M N MN +=log log log a a a M M N N-= (3)()log log 0,1,0na a N n N a a N =>≠>(4)换底公式:log log log c a c bb a=进而有两个推论:1log log a b b a =(令c b =) log log m n a a nN N m=三、问题的佐证【例1】已知a =⎝ ⎛⎭⎪⎫1223,b =2-43,c =⎝ ⎛⎭⎪⎫1213,则下列关系式中正确的是( )A .c <a <bB .b <a <cC .a <c <bD .a <b <c【解析】把b 化简为b =⎝ ⎛⎭⎪⎫1243,而函数y =⎝ ⎛⎭⎪⎫12x在R 上为减函数,43>23>13,所以⎝ ⎛⎭⎪⎫1243<⎝ ⎛⎭⎪⎫1223<⎝ ⎛⎭⎪⎫1213,即b <a <c .【例2】已知a =5log 2 3.4,b =5log 4 3.6,c =⎝ ⎛⎭⎪⎫15log 30.3,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b【解析】选C.c =⎝ ⎛⎭⎪⎫15log 30.3=5-log 3 0.3=5log 3103.法一:在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知:log 23.4>log 3103>log 43.6.由于y =5x为增函数,∴5log 23.4>5log 3103>5log 43.6,∴a >c >b .【例3】【2017某某高考】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<,本题选择C 选项.【点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,()2log 5a f =,再比较0.822log 5,log 4.1,2比较大小.【例4】【2016高考某某】已知a ,b >0,且a ≠1,b ≠1,若log >1a b ,则( ) A.(1)(1)0a b --< B. (1)()0a a b --> C. (1)()0b b a --<D. (1)()0b b a -->【易错点睛】在解不等式log 1a b >时,一定要注意对a 分为1a >和01a <<两种情况进行讨论,否则很容易出现错误. 四、问题的解决1. 【2016高考新课标Ⅲ文数】 已知4213332,3,25a b c ===,则( ) (A) b a c << (B)a b c <<(C) b c a << (D) c a b <<【答案】A【解析】因为423324a ==,1233255c ==,又函数23y x =在[0,)+∞上是增函数,所以222333345<<,即b a c <<,故选A .【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决. 2.已知0.90.7 1.1log 0.8,log 0.9,c 1.1a b ===,则,,a b c 的大小关系是( ) A .a b c << B .a c b << C .b a c << D .c a b << 【答案】C【解析】0.900.70.7 1.10log 0.8log 0.71,log 0.90,c 1.1 1.11a b <=<==<=>=⇒b a c <<,故选C .3.【2014某某文3】已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 【答案】C 【解析】因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.【点睛】本题考查指数函数、对数函数的性质,比较函数值大小问题,往往结合函数的单调性,通过引入“-1,0,1”等作为“媒介”.本题属于基础题,注意牢记常见初等函数的性质并灵活运用. 4. 【2015高考某某】设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是( ) (A )a b c << (B ) a c b <<(C )b a c << (D )b c a << 【答案】C【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .5. 【2014某某文5】设 1.13.13log 7,2,0.8a b c ===则( )A .c a b <<B .b a c <<C .a b c <<D .b c a << 【答案】B .【点睛】指对数比较大小也是高考中常见的考题,常见的方法有:①比较同底数对数的大小利用函数单调性;②底数不同的对数比较,利用函数图像及相互位置关系比较大小;③既有指数又有对数,或对数底数与真数都不同时,常采用放缩法或找中间值法,多选0和1等. 6.【2014某某高考】设,,log ,log 2212-===πππc b a 则( )A.c b a >>B.c a b >>C.b c a >>D.a b c >> 【答案】C.【解析】因为2221122log log 21,log log 10,(0,1),a b c πππ-=>==<==∈所以b c a >>,选C.7.已知01a <<,log 2log 3a a x =1log 52a y =,log 21log 3a a z =,则( )A .x y z >>B .z y x >>C .y x z >>D .z x y >>【解析】log 6,a x =log 5,a y =log 7,a z =由01a <<知xa y log =为减函数,y x z ∴>>,选C.8. 【2014某某高考】已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >>B .a c b >> C .c a b >> D .c b a >>【答案】C【解析】1032122110221,log 0,log log 31,33a b c -<=<==<==>所以c a b >>,故选C .9.【2014某某高考】 已知实数,x y 满足(01)xy a a a <<<,则下列关系式恒成立的是( ) A.33xy > B.sin sin x y >C.22ln(1)ln(1)xy +>+ D.221111x y >++ 【答案】A10.【2015高考某某】设()ln ,0f x x a b =<<,若)p f ab =,()2a bq f +=, 1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q =>【答案】C【解析】1()ln 2p f ab ab ab ===;()ln 22a b a b q f ++==;11(()())ln 22r f a f b ab =+=因为2a b ab +>,由()ln f x x =是个递增函数,()(2a bf f ab +> 所以q p r >=,故答案选C【点睛】1.本题考查函数单调性,因为函数()ln f x x =是个递增函数,所以只需判断2a b+和ab 的大小关系即可;2.本题属于中档题,注意运算的准确性.11.已知)(x f 的定义在()+∞,0的函数,对任意两个不相等的正数21,x x ,都有0)()(212112<--x x x f x x f x ,记5log )5(log ,2.0)2.0(,2)2(22222.02.0f c f b f a ===,则( ) A.c b a << B.c a b << C.b a c << D.a b c << 【答案】.C【解析】因为函数)(x f 的定义在()+∞,0的函数,对任意两个不相等的正数21,x x , 都有0)()(212112<--x x x f x x f x ,所以函数()f x y x=是()+∞,0上的减函数. 又因为0.22122,00.21<<<<,2log 52>,所以20.220.22log 5<<,c a b ∴<<,故选C.12.【2017某某高考理】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c <<(B )c b a <<(C )b a c <<(D )b c a << 【答案】C【点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式. 13. 【2015高考,文10】32-,123,2log 5三个数中最大数的是. 【答案】2log 5【解析】31218-=<,12331=>,22log 5log 423>>>,所以2log 5最大.14. 【2014某某,理9】若2132)(x x x f -=,则满足0)(<x f 的x 取值X 围是. 【答案】(0,1)【点睛】1.幂函数y =x α的图像与性质由于α的值不同而比较复杂,一般从两个方面考查: (1)α的正负:α>0时,图像过原点和(1,1),在第一象限的图像上升;α<0时,图像不过原点,在第一象限的图像下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸;0<α<1时,曲线上凸;α<0时,曲线下凸.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图像和性质是解题的关键. 15.已知()1145279722,,,log 979xxf x a b c --⎛⎫⎛⎫=-===⎪ ⎪⎝⎭⎝⎭,则()()(),,f a f b f c 的大小顺序为( )【答案】()()()f c f b f a <<【解析】()22xxf x -=-为单调递增函数,而11144527997,log 09779a b c -⎛⎫⎛⎫⎛⎫==>==<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()()()f c f b f a <<,选B .。
高三数学专项训练:函数值的大小比较一、选择题1.设112450.5,0.9,log 0.3a b c,则c b a ,,的大小关系是(). A. bca B. bacC. c b aD. ca b2.设则()A .B .C .D .3.设a b c ,,分别是方程11222112=log ,()log ,()log ,22xxxx x x 的实数根, 则有()A.a b c B.c b a C.b a c D.ca b4.若13(1)ln 2ln ln xe ax bx c x ,,,,,则()A .a <b <c B .c <a <b C .b <a <cD .b <c <a5.设a=54log ,b= (53log )2,c=45log ,则( )A. a<c<bB. b<c<aC. a<b<cD. b<a<c6.设0.220.20.2log 2,log 3,2,0.2ab cd,则这四个数的大小关系是()A.a b cd B.dca b C.ba cd D.ba d c7.下列大小关系正确的是()A. 3log 34.044.03B. 4.03434.03log C.4.04333log 4.0 D.34.044.033log 8.设0.33log 3,2,log sin 6a b c,则()A 、a bcB 、cabC 、ba c D 、bc a9.若)1,0(x,则下列结论正确的是()A .xx x2lg 21B .21lg 2x xxC .xxxlg 221D .xx xlg 22110.若0mn ,则下列结论正确的是()A .22mnB .1122mnC .22log log m nD .1122log log mn2lg ,(lg ),lg ,ae be ce a bcacbca b c b a11.a b ,满足01a b,下列不等式中正确的是()A .abaaB .abbbC .aaab D .bbba12.三个数231.0a ,31.0log 2b,31.02c 之间的大小关系为()A .a cb B .a bcC .ba cD .bc a13.已知实数4log 5a,01(),2b0.3log 0.4c ,则,,a b c 的大小关系为()A .b c aB .b a cC .cab D .cba14.实数0.2220.2,log 0.2,2a bc 的大小关系正确的是A.a c bB.a b cC.b acD.bca15.设,则的大小关系为()A .B .C .D .16.三个数,,的大小顺序是()A. B.C .D .17.已知10.20.7321.5, 1.3,()3a b c ,则,,a b c 的大小为( )A.c a bB.c b aC.abcD.acb18.设 1.50.90.4812314,8,2y y y ,则()A 、312y y y B 、213y y y C 、123y y y D 、132y y y 19.已知0ba ,则3,3,4aba的大小关系是()A .334abaB .343baaC .334baaD .343aab20.已知,,,则,,的大小关系为3.0log ,3.0,2223.0cbac b a ,,c b a c a b bacabc7.0667.06log 7.07.07.0666log 7.06log 67.07.07.0667.07.07.066log 7.067.067.06log 30.3a 0.33b0.3log 3ca b cA .B .C .D .21.当0<a<b<1时,下列不等式中正确的是()A .bba a )1()1(1B .bab a )1()1(C .2)1()1(bba a D .bab a )1()1(22.设1,01,x y a 则下列关系正确的是:()A.aayxB. ayax C. yxaaD.yx a a log log 23.设,那么()A .B .C .D .24.已知0.30.2a ,0.2log 3b,0.2log 4c ,则()A. a>b>cB. a>c>bC. b>c>aD. c>b>a 25.设0.53a ,3log 2b,2cos c ,则()A.c b a B.c ab C .ab cD.bc a26.已知函数f (x )(x ∈R )满足()f x >f (x ),则()A .f (2)<2e f (0)B .f (2)≤2e f (0)C .f (2)=2e f (0)D .f (2)>2e f (0)27.设函数定义在实数集上,它的图像关于直线对称,且当时,,则有A . B. C. D. 28.若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()xf xg x e ,则有()A .(2)(3)(0)f f gB .(0)(3)(2)g f fC .(2)(0)(3)f g f D .(0)(2)(3)g f f abc cab bac cba111()()1555baabab a a aabb aa baa abaaababax f 1x 1x 13xxf 322331fff312332f ff233132f f f 313223ff f29.设9log ,6log ,3log 842cba ,则cb a ,,的大小关系是.30.设,则的大小关系为52535252,52,53cbacb a ,,高三数学专项训练:函数值的大小比较参考答案1.D 【解析】试题分析:11110.3244450.50.25,0.90.250,log0a bc ,故选 D.考点:指数函数和对数函数的性质.2.B 【解析】试题分析:由21lg 0e可知e eelg lg 21lg 2,即.考点:本小题主要考查对数的基本运算.3.A 【解析】试题分析:由指数函数2xy,12xy与对数函数2log yx ,12log yx 的图象可得,故选A .考点:指数函数、对数函数的图像和方程4.C 【解析】试题分析:因为1(1)x e ,,所以1ln 0a x ,而l n 0b a x ,故ba ,又2l n (l n 1)c a x x ,而2ln 1x,故2ln (ln 1)0,c ax x c a ,综上,b ac ,选 C.考点:对数函数. 5.D 【解析】试题分析:由对数函数的性质可知,当底数1a时,函数log 0a yx x 是单调增函数,∴550log 3log 41且451log ,∴2554log 3log 4log 5,即bac .考点:对数函数的单调性及应用.6.D.【解析】试题分析:0.2log yx 是0,上的减函数,0b a ,又0.22221,00.21,c d b a d c .acb abc考点:指数函数、对数函数及幂函数单调性的应用.7.C. 【解析】试题分析:因为0.4331,310.40.0642,4441log 2log 3log 412,所以0.4343log 30.4,选C.考点:对数式与指数式比较大小.8.C 【解析】试题分析:0.330log 31,21,log sin06ab c,所以ba c .考点:比较数的大小.9.D 【解析】试题分析:当(0,1)x时:122(1,2),(0,1),lg (,0)xxx ,所以x x xlg 221.考点:指数函数、对数函数、幂函数图象及其性质(单调性).10.D 【解析】试题分析:指数函数、对数函数的底数大于0 时,函数为增函数,反之,为减函数,而0mn ,所以1122log log mn ,选 D.考点:本题主要考查指数函数、对数函数、幂函数的性质。
高三数学专项训练:函数值的大小比较一、选择题1c b a ,,的大小关系是( ). A. b c a >> B. b a c >> C. c b a >> D. c a b >> 2.设( )A .B .C .D .3.设a b c ,,分别是方程11222112=log ,()log ,()log ,22x x x x x x ==的实数根 , 则有( )A.a b c <<B.c b a <<C.b a c <<D.c a b << 4.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则() A .a <b <c B .c <a <bC .b <a <cD .b <c <a5.设a=54log ,b= (53log )2,c=45log ,则( ) A. a<c<bB. b<c<aC. a<b<cD. b<a<c6.设0.220.20.2log 2,log 3,2,0.2a b c d ====,则这四个数的大小关系是() A.a b c d <<< B.d c a b <<< C.b a c d <<< D.b a d c <<< 7.下列大小关系正确的是( )A. 3log 34.044.03<<B. 4.03434.03log <<C. 4.04333log 4.0<<D. 34.044.033log <<8.设0.33log 3,2,log sin6a b c ππ===,则()A 、a b c >>B 、c a b >>C 、b a c >>D 、b c a >> 9.若)1,0(∈x ,则下列结论正确的是()A .xx x 2lg 21>> B .21lg 2x x x>> C .x x x lg 221>>D .x x xlg 221>>10.若0m n <<,则下列结论正确的是()A .22mn> B .1122m n⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ C .22log log m n > D .1122log log m n >2lg ,(lg ),a e b e c ===a b c >>a c b >>c a b >>c b a >>11.a b ,满足01a b <<<,下列不等式中正确的是() A .a b a a <B .a b b b <C .a a a b <D .b b b a <12.三个数231.0=a ,31.0log 2=b ,31.02=c 之间的大小关系为() A .a c b << B .a b c << C .b a c << D .b c a <<13.已知实数4log 5a =,01(),2b =0.3log 0.4c =,则,,a b c 的大小关系为( ) A .b c a << B .b a c << C .c a b << D .c b a << 14.实数a b c ===的大小关系正确的是A.a c b <<B.a b c <<C.b a c <<D.b c a <<15.设,则的大小关系为() A . B . C . D .16.三个数,,的大小顺序是 ()A. B. C .D . 17.已知10.20.7321.5, 1.3,()3a b c -===,则,,a b c 的大小为 ( )A.c a b <<B.c b a <<C.a b c <<D.a c b <<18.设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则()A 、312y y y >> B 、213y y y >> C 、123y y y >> D 、132y y y >>19.已知0>>b a ,则3,3,4ab a 的大小关系是()A .334a b a >>B .343b a a <<C .334b a a <<D .343a a b<< 20.已知,,,则,,的大小关系为 3.0log ,3.0,2223.0===c b a c b a ,,c b a <<c a b <<b a c <<a b c <<7.0667.06log 7.07.07.0666log 7.0<<6log 67.07.07.06<<67.07.07.066log <<7.067.067.06log <<30.3a =0.33b =0.3log 3c =a b cA .B .C .D . 21.当0<a<b<1时,下列不等式中正确的是( ) A .b ba a )1()1(1->- B .b a b a )1()1(+>+ C .2)1()1(b ba a ->-D .b a b a )1()1(->-22.设1,01,x y a >><<则下列关系正确的是:( ) A. a ay x--> B. ay ax < C. y x a a < D. y x a a log log >23.设,那么 () A . B .C .D .24.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则() A. a>b>c B. a>c>b C. b>c>a D. c>b>a 25.设0.53a =,3log 2b =,2cos =c ,则( )A.c b a <<B.c a b <<C .a b c << D.b c a << 26.已知函数f (x )(x ∈R )满足()f x '>f (x ),则() A .f (2)<2e f (0) B .f (2)≤2e f (0) C .f (2)=2e f (0) D .f (2)>2e f (0)27.设函数定义在实数集上,它的图像关于直线对称,且当时,,则有A . B.C. D.28.若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()xf xg x e -=,则有( ) A .(2)(3)(0)f f g << B .(0)(3)(2)g f f << C .(2)(0)(3)f g f << D .(0)(2)(3)g f f << a b c <<c a b <<b a c <<c b a <<111()()1555b a <<<a b a b a a <<a a b b a a <<ba a ab a <<aa b a b a <<()x f 1=x 1≥x ()13-=xx f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛322331f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛312332f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛233132f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛313223f f f29.设9log ,6log ,3log 842===c b a ,则c b a ,,的大小关系是.30.设,则的大小关系为 52535252,52,53⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=c b a c b a ,,高三数学专项训练:函数值的大小比较参考答案 1.D 【解析】试题分析:11110.3244450.5,0.90.250,log 0a b c ===>>=<,故选D.考点:指数函数和对数函数的性质. 2.B 【解析】试题分析:由21lg 0<<e 可知()e e e lg lg 21lg 2<<,即. 考点:本小题主要考查对数的基本运算. 3.A 【解析】试题分析:由指数函数2xy =,12xy ⎛⎫= ⎪⎝⎭与对数函数2log y x =,12log y x =的图象可得,故选A .考点:指数函数、对数函数的图像和方程 4.C 【解析】试题分析:因为1(1)x e -∈,,所以1ln 0a x -<=<,而l n 0b a x -=<,故b a <,又2l n (l n 1)c a x x -=-,而2ln 1x <,故2ln (ln 1)0,c a x x c a -=->>,综上,b a c <<,选C.考点:对数函数. 5.D 【解析】试题分析:由对数函数的性质可知,当底数1a >时,函数()log 0a y x x =>是单调增函数, ∴550log 3log 41<<<且451log >,∴()2554log 3log 4log 5<<,即b a c <<. 考点:对数函数的单调性及应用. 6.D. 【解析】试题分析:0.2log y x = 是()0,+∞上的减函数,0b a ∴<<,又0.202221,00.21,c d b a d c =>=<=<∴<<<.a cb >>a bc <<考点:指数函数、对数函数及幂函数单调性的应用. 7.C. 【解析】试题分析:因为0.40331>=,310.40.0642=<,4441log 2log 3log 412=<<=,所以0.4343log 30.4>>,选C.考点:对数式与指数式比较大小. 8.C 【解析】试题分析:0.330log 31,21,log sin06a b c ππ<=<=>=< ,所以b a c >>.考点:比较数的大小. 9.D 【解析】试题分析:当(0,1)x ∈时:122(1,2),(0,1),lg (,0)xx x ∈∈∈-∞,所以x x xlg 221>>. 考点:指数函数、对数函数、幂函数图象及其性质(单调性). 10.D【解析】试题分析:指数函数、对数函数的底数大于0 时,函数为增函数,反之,为减函数,而0m n <<,所以1122log log m n >,选D.考点:本题主要考查指数函数、对数函数、幂函数的性质。