函数值比较大小(人教A版)(含答案)
- 格式:doc
- 大小:560.50 KB
- 文档页数:7
第2课时 函数的最大(小)值1.理解函数的最大(小)值的概念及其几何意义.(重点)2.了解函数的最大(小)值与定义区间有关,会求一次函数、二次函数及反比例函数在指定区间上的最大(小)值.(重点、难点)[基础·初探]教材整理 函数的最大(小)值阅读教材P 30至“例3”以上部分,完成下列问题.1.函数f (x )=1x ,x ∈[-1,0)∪(0,2]( ) A .有最大值12,最小值-1 B .有最大值12,无最小值 C .无最大值,有最小值-1D .无最大值,也无最小值【解析】 函数f (x )=1x 在[-1,0)上单调递减,在(0,2]上也单调递减,所以无最大值,也无最小值,故选D.【答案】 D2.函数f (x )=x 2-2x +2,x ∈[-1,2]的最小值为________;最大值为________.【解析】 因为f (x )=x 2-2x +2=(x -1)2+1,x ∈[-1,2],所以f (x )的最小值为f (1)=1,最大值为f (-1)=5.【答案】 1 5[小组合作型]【精彩点拨】 先把y =x -|x -1|化成分段函数的形式,再画出其图象,并由图象求值域. 【自主解答】 y =x -|x -1|=⎩⎨⎧1,x≥12x -1,x<1,画出该函数的图象如图所示.由图可知,函数y =x -|x -1|的值域为(-∞,1].1.函数的最大值、最小值分别是函数图象的最高点、最低点的纵坐标.对于图象较容易画出来的函数,可借助于图象直观的求出其最值,但画图时要求尽量精确.2.利用图象法求函数最值的一般步骤作图象→找图象的最高点和最低点→确定最高点和最低点的纵坐标→确定最值[再练一题]1.已知函数f (x )=错误!(1)在如图1-3-2给定的直角坐标系内画出f (x )的图象; (2)写出f (x )的单调递增区间及值域. 【导学号:97030053】图1-3-2【解】 (1)图象如图所示:(2)由图可知f (x )的单调递增区间为[-1,0),(2,5],值域为[-1,3].求函数f (x )=x +4x 在[1,4]上的最值.【精彩点拨】 先利用单调性的定义判断函数的单调性,再根据单调性求最值即可. 【自主解答】 设1≤x 1<x 2≤2,则f (x 1)-f (x 2)=x 1+4x1-x 2-4x2=x 1-x 2+错误!=(x 1-x 2)·⎝ ⎛⎭⎪⎫1-4x1x2=(x 1-x 2)x1x2-4x1x2=错误!. ∵1≤x 1<x 2≤2,∴x 1-x 2<0,x 1x 2-4<0,x 1x 2>0,∴f (x 1)>f (x 2),∴f (x )是减函数. 同理f (x )在(2,4]上是增函数.∴当x =2时,f (x )取得最小值4,当x =1或x =4时,f (x )取得最大值5.函数的单调性与其最值的关系1.若函数f(x)在闭区间[a,b]上是减函数,则f(x)在闭区间[a,b]上的最大值为f(a),最小值为f(b).2.若函数f(x)在闭区间[a,b]上是增函数,则f(x)在闭区间[a,b]上的最大值为f(b),最小值为f(a).3.求函数的最值时一定要注意所给的区间是闭区间还是开区间,若是开区间,则不一定有最大值或最小值.[再练一题]2.已知函数f(x)=1x-2,(1)判断f(x)在[3,5]上的单调性,并证明;【导学号:97030054】(2)求f(x)在[3,5]上的最大值和最小值.【解】(1)f(x)在[3,5]上为减函数.证明:任取x1,x2∈[3,5],有x1<x2,∴f(x1)-f(x2)=1x1-2-1x2-2=错误!.∵x1<x2,∴x2-x1>0.又∵x1,x2∈[3,5],∴(x1-2)(x2-2)>0,∴错误!>0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),∴f(x)在[3,5]上是减函数.(2)∵f(x)在[3,5]上是减函数,∴f(x)在[3,5]上的最大值为f(3)=1,f(x)在[3,5]上的最小值为f(5)=1 3.某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.规定:每辆自行车的日租金不超过20元,每辆自行车的日租金x 元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y 表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).(1)求函数y =f (x )的解析式及定义域;(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元? 【精彩点拨】 (1)函数y =f (x )=出租自行车的总收入-管理费;当x ≤6时,全部租出;当6<x ≤20时,每提高1元,租不出去的就增加3辆,所以要分段求出解析式;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值. 【自主解答】 (1)当x ≤6时,y =50x -115,令50x -115>0,解得x >2.3. ∵x ∈N ,∴3≤x ≤6,且x ∈N .当6<x ≤20时,y =[50-3(x -6)]x -115=-3x 2+68x -115, 综上可知y =⎩⎨⎧50x -115,3≤x≤6,x ∈N-3x2+68x -115,6<x≤20,x ∈N.(2)当3≤x ≤6,且x ∈N 时,∵y =50x -115是增函数,∴当x =6时,y m ax =185元. 当6<x ≤20,x ∈N 时,y =-3x 2+68x -115=-3⎝ ⎛⎭⎪⎫x -3432+8113,∴当x =11时,y m ax =270元.综上所述,当每辆自行车日租金定在11元时才能使日净收入最多,为270元.1.本题建立的是分段函数模型,分段求出各段的最大值,两段中的最大值即为所求,其中求一次函数的最值应用单调性,求二次函数的最值则应用配方法.2.解决实际应用问题,首先要理解题意,然后建立数学模型转化成数学模型解决;分清各种数据之间的关系是正确构造函数关系式的关键.[再练一题]3.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为G (x )(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R (x )(万元)满足R (x )=错误!假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y =f (x )的解析式(利润=销售收入-总成本); (2)工厂生产多少台产品时,可使盈利最多? 【解】 (1)由题意得G (x )=2.8+x . ∵R (x )=错误! ∴f (x )=R (x )-G (x ) =错误!(2)当x >5时,函数f (x )递减, ∴f (x )<f (5)=3.2(万元).当0≤x ≤5时,函数f (x )=-0.4(x -4)2+3.6, 当x =4时,f (x )有最大值为3.6(万元).所以当工厂生产4百台时,可使盈利最大为3.6万元.[探究共研型]探究1 函数f (x )=x 1,0],[-1,2],[2,3]上的最大值和最小值分别是什么?【提示】 函数f (x )=x 2-2x +2的图象开口向上,对称轴为x =1.(1)因为f (x )在区间[-1,0]上单调递减,所以f (x )在区间[-1,0]上的最大值为f (-1)=5,最小值为f (0)=2.(2)因为f (x )在区间[-1,1]上单调递减,在[1,2]上单调递增,则f (x )在区间[-1,2]上的最小值为f (1)=1,又因为f (-1)=5,f (2)=2,f (-1)>f (2),所以f (x )在区间[-1,2]上的最大值为f (-1)=5.(3)因为f (x )在区间[2,3]上单调递增,所以f (x )在区间[2,3]上的最小值为f (2)=2,最大值为f (3)=5.探究2 你能说明二次函数f (x )=ax 2+bx +c 的单调性吗?若求该函数f (x )在[m ,n ]上的最值,应考虑哪些因素?【提示】 当a >0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递减,在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递增;当a <0时,f (x )在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递增.若求二次函数f (x )在[m ,n ]上的最值,应考虑其开口方向及对称轴x =-b2a 与区间[m ,n ]的关系.已知函数f (x )=x 2-ax +1, (1)求f (x )在[0,1]上的最大值;(2)当a =1时,求f (x )在闭区间[t ,t +1](t ∈R )上的最小值. 【精彩点拨】 (1)根据二次函数图象的对称性求函数的最大值.(2)根据函数在区间[t ,t +1]上的单调性分三种情况讨论,分别求出f (x )的最小值. 【自主解答】 (1)因为函数f (x )=x 2-ax +1的图象开口向上,其对称轴为x =a2,所以区间[0,1]的哪一个端点离对称轴远,则在哪个端点取到最大值,当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ; 当a 2>12,即a >1时,f (x )的最大值为f (0)=1.(2)当a =1时,f (x )=x 2-x +1,其图象的对称轴为x =12, ①当t ≥12时,f (x )在其上是增函数,∴f (x )min =f (t )=t 2-t +1; ②当t +1≤12,即t ≤-12时,f (x )在其上是减函数, ∴f (x )min =f (t +1)=⎝ ⎛⎭⎪⎫t +122+34=t 2+t +1;③当t <12<t +1,即-12<t <12时,函数f (x )在⎣⎢⎡⎦⎥⎤t ,12上单调递减,在⎣⎢⎡⎦⎥⎤12,t +1上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫12=34.探求二次函数的最值问题,要根据函数在已知区间上的单调性求解,特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,如果二者的位置关系不确定,那么就应对其位置关系进行分类讨论来确定函数的最值.[再练一题]4.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.【导学号:97030055】【解】f(x)=(x-a)2-1-a2,对称轴为x=a.(1)当a<0时,由图①可知,f(x)在区间[0,2]上是增函数,所以f(x)min=f(0)=-1,f(x)m ax=f(2)=3-4a.(2)当0≤a≤1时,由图②可知,对称轴在区间[0,2]内,所以f(x)min=f(a)=-1-a2,f(x)m ax =f(2)=3-4a.(3)当1<a≤2时,由图③可知,对称轴在区间[0,2]内,所以f(x)min=f(a)=-1-a2,f(x)m ax =f(0)=-1.(4)当a>2时,由图④可知,f(x)在[0,2]上为减函数,所以f(x)min=f(2)=3-4a,f(x)m ax=f(0)=-1.1.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为( )A.3,5 B.-3,5C.1,5 D.5,-3【解析】因为f(x)=-2x+1(x∈[-2,2])是单调递减函数,所以当x=2时,函数的最小值为-3.当x=-2时,函数的最大值为5.【答案】 B2.函数y=x2-2x,x∈[0,3]的值域为( )A.[0,3] B.[-1,0]C.[-1,+∞) D.[-1,3]【解析】∵函数y=x2-2x=(x-1)2-1,x∈[0,3],∴当x=1时,函数y取得最小值为-1,当x=3时,函数取得最大值为3,故函数的值域为[-1,3],故选D.【答案】 D3.若函数y=ax+1在[1,2]上的最大值与最小值的差为2,则实数a的值是( )【导学号:97030056】A.2 B.-2C.2或-2 D.0【解析】由题意,a≠0,当a>0时,有(2a+1)-(a+1)=2,解得a=2;当a<0时,有(a +1)-(2a+1)=2,解得a=-2.综上知a=±2.【答案】 C4.函数f(x)=6-x-3x在区间[2,4]上的最大值为________.【解析】∵6-x在区间上是减函数,-3x在区间上是减函数,∴函数f(x)=6-x-3x在区间上是减函数,∴f(x)m ax=f(2)=6-2-3×2=-4.【答案】-45.已知函数f(x)=2x-1(x∈[2,6]).(1)判断函数f(x)的单调性,并证明;(2)求函数的最大值和最小值.【解】(1)函数f(x)在x∈[2,6]上是增函数.证明:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2,则f(x1)-f(x2)=2x1-1-2x2-1=错误!=错误!.由2≤x1<x2≤6,得x2-x1>0,(x1-1)(x2-1)>0,于是f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数f(x)=2x-1是区间[2,6]上的减函数.(2)由(1)可知,函数f(x)=2x-1在区间[2,6]的两个端点处分别取得最大值与最小值,即在x=2时取得最大值,最大值是2,在x=6时取得最小值,最小值是0.4.。
【新教材】3.2.1 单调性与最大(小)值(人教A版)1、理解增函数、减函数的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.重点:1、函数单调性的定义及单调性判断和证明;2、利用函数单调性或图像求最值.难点:根据定义证明函数单调性.一、预习导入阅读课本76-80页,填写。
1.增函数、减函数的定义2、单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)________,区间D叫做y=f(x)的________.[点睛] 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“,”连接.如函数y=1x在(-∞,0),(0,+∞)上单调递减,却不能表述为:函数y=1x在(-∞,0)∪(0,+∞)上单调递减.3、函数的最大(小)值1.判断(正确的打“√”,错误的打“×”)(1)所有的函数在其定义域上都具有单调性.( )(2)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”.( )(3)任何函数都有最大值或最小值.( )(4)函数的最小值一定比最大值小.( )2.函数y=f(x)的图象如图所示,其增区间是( )A.[-4,4] B.[-4,-3],[1,4]C.[-3,1] D.[-3,4]3.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( )A .-1,0B .0,2C .-1,2 D.12,2 4.下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( )A .f (x )=x 2B .f (x )=1xC .f (x )=|x |D .f (x )=2x +15.函数f (x )=2x,x ∈[2,4],则f (x )的最大值为______;最小值为________. 题型一 利用图象确定函数的单调区间例1求下列函数的单调区间,并指出其在单调区间上是增函数还是减函数:(1)y=3x-2;(2)y=-1x . 跟踪训练一1. 已知x ∈R,函数f(x)=x|x-2|,试画出y=f(x)的图象,并结合图象写出函数的单调区间.题型二 利用函数的图象求函数的最值例2 已知函数y=-|x-1|+2,画出函数的图象,确定函数的最值情况,并写出值域.跟踪训练二1.已知函数f(x)={1x ,0<x<1,x,1≤x ≤2.(1)画出f(x)的图象;(2)利用图象写出该函数的最大值和最小值.题型三 证明函数的单调性 例3 求证:函数f(x)=x+1x 在区间(0,1)内为减函数. 跟踪训练三1.求证:函数f(x)=21x在(0,+∞)上是减函数,在(-∞,0)上是增函数. 题型四 利用函数的单调性求最值例4 已知函数f(x)=x+ 4x .(1)判断f(x)在区间[1,2]上的单调性;(2)根据f(x)的单调性求出f(x)在区间[1,2]上的最值.跟踪训练四1.已知函数f(x)=6x−1(x∈[2,6],)求函数的最大值和最小值.题型五函数单调性的应用例5已知函数f(x)在区间(0,+∞)上是减函数,试比较f(a2-a+1)与f34⎛⎫⎪⎝⎭的大小.跟踪训练五1.已知g(x)是定义在[-2,2]上的增函数,且g(t)>g(1-3t),求t的取值范围.题型六单调性最值的实际应用例6“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h(单位:m)与时间t(单位:s)之间的关系为h(t)=-4.9t2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)?跟踪训练六1. 某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3 600元时,能租出多少辆?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?1.f(x)对任意两个不相等的实数a,b,总有f(a)−f(b)a−b>0,则必有( )A.函数f(x)先增后减 B.函数f(x)先减后增C.函数f(x)是R上的增函数 D.函数f(x)是R上的减函数2.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)的最小值为-2,则f(x)的最大值为( )A.-1 B.0C.1 D.23.已知函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,则实数k的取值范围是( ) A.[160,+∞) B.(-∞,40]C.(-∞,40]∪[160,+∞) D.(-∞,20]∪[80,+∞)4.若函数y=f(x)的定义域为R,且为增函数,f (1-a)<f(2a-1),则a的取值范围是。
[课时作业] [A 组 基础巩固]1.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9 B .9(1-a ) C .9-a D .9-a 2解析:∵a >0,∴f (x )=9-ax 2(a >0)开口向下以y 轴为对称轴, ∴f (x )=9-ax 2(a >0)在[0,3]上单调递减, ∴x =0时,f (x )最大值为9. 答案:A 2.函数y =1x -1在[2,3]上的最小值为( ) A .2 B.12 C.13D .-12解析:函数y =1x -1在[2,3]上为减函数,∴y min =13-1=12. 答案:B3.函数y =|x +1|-|2-x |的最大值是( ) A .3 B .-3 C .5D .-2解析:由题意可知y =|x +1|-|2-x |=⎩⎨⎧-3, x <-1;2x -1, -1≤x ≤2;3, x >2.画出函数图象即可得到最大值3.故选A.答案:A4.函数y =x +2x -1( ) A .有最小值12,无最大值 B .有最大值12,无最小值 C .有最小值12,有最大值2D .无最大值,也无最小值解析:f (x )=x +2x -1的定义域为⎣⎢⎡12,+∞),在定义域内单调递增,∴f (x )有最小值f ⎝ ⎛⎭⎪⎫12=12,无最大值.答案:A5.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0] C .(-∞,0)D .(0,+∞)解析:a <-x 2+2x 恒成立,即a 小于函数f (x )=-x 2+2x ,x ∈[0,2]的最小值, 而f (x )=-x 2+2x ,x ∈ [0,2]的最小值为0,∴a <0. 答案:C6.函数y =-x 2+6x +9在区间[a ,b ](a <b <3)有最大值9,最小值-7.则a =________,b =________.解析:∵y =-x 2+6x +9的对称轴为x =3,而a <b <3. ∴函数在[a ,b ]单调递增.∴⎩⎨⎧f (a )=-a 2+6a +9=-7,f (b )=-b 2+6b +9=9, 解得⎩⎨⎧ a =-2,b =0或⎩⎨⎧a =8,b =6,又∵a <b <3, ∴⎩⎨⎧a =-2,b =0. 答案:-2 07.若一次函数y =f (x )在区间[-1,2]上的最小值为1,最大值为3,则y =f (x )的解析式为________. 解析:设f (x )=kx +b (k ≠0) 当k >0时,⎩⎨⎧ -k +b =1,2k +b =3即⎩⎪⎨⎪⎧k =23,b =53.∴f (x )=23x +53.当k <0时,⎩⎨⎧-k +b =3,2k +b =1,即⎩⎪⎨⎪⎧k =-23,b =73∴f (x )=-23x +73.∴f (x )的解析式为f (x )=23x +53或f (x )=-23x +73. 答案:f (x )=23x +53或f (x )=-23x +738.已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则a =________. 解析:f (x )=4x +a x (x >0,a >0)在(0,a 2]上单调递减,在(a2,+∞)上单调递增,故f (x )在x =a 2时取得最小值,由题意知a2=3,∴a =36. 答案:369.已知函数f (x )=x -1x +2,x ∈[3,5].(1)判断函数f (x )的单调性; (2)求函数f (x )的最大值和最小值.解析:(1)任取x 1,x 2∈[3,5]且x 1<x 2,则f (x 1)-f (x 2)=x 1-1x 1+2-x 2-1x 2+2=(x 1-1)(x 2+2)-(x 2-1)(x 1+2)(x 1+2)(x 2+2)=x 1x 2+2x 1-x 2-2-x 1x 2-2x 2+x 1+2(x 1+2)(x 2+2)=3(x 1-x 2)(x 1+2)(x 2+2). ∵x 1,x 2∈[3,5]且x 1<x 2, ∴x 1-x 2<0,x 1+2>0,x 2+2>0. ∴f (x 1)-f (x 2)<0.∴f (x 1)<f (x 2). ∴函数f (x )=x -1x +2在[3,5]上为增函数. (2)由(1)知,当x =3时,函数f (x )取得最小值,为f (3)=25;当x =5时,函数f (x )取得最大值,为f (5)=47.10.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)求实数a 的范围,使y =f (x )在区间[-5,5]上是单调函数; (2)求f (x )的最小值.解析:(1)f (x )=(x +a )2+2-a 2,可知f (x )的图象开口向上,对称轴方程为x =-a ,要使f (x )在[-5,5]上单调,则-a ≤-5或-a ≥5, 即a ≥5或a ≤-5.(2)当-a ≤-5,即a ≥5时,f (x )在[-5,5]上是增函数,所以f (x )min =f (-5)=27-10a .当-5<-a ≤5,即-5≤a <5时, f (x )min =f (-a )=2-a 2,当-a >5,即a <-5时,f (x )在[-5,5]上是减函数, 所以f (x )min =f (5)=27+10a ,综上可得,f (x )min =⎩⎨⎧27-10a (a ≥5),2-a 2(-5≤a <5),27+10a (a <-5).[B 组 能力提升]1.函数y =2x +1-2x ,则( ) A .有最大值54,无最小值 B .有最小值54,无最大值 C .有最小值12,最大值54 D .既无最大值,也无最小值解析:设1-2x =t (t ≥0),则x =1-t 22,所以y =1-t 2+t =-⎝ ⎛⎭⎪⎫t -122+54(t ≥0),对称轴t =12∈[0,+∞),所以y 在⎣⎢⎡⎦⎥⎤0,12上递增,在⎣⎢⎡⎭⎪⎫12,+∞上递减,所以y在t =12处取得最大值54,无最小值.选A. 答案:A 2.y =3x +2(x ≠-2)在区间[-5,5]上的最大值、最小值分别是 ( ) A.37,0 B.32,0C.32,37D .无最大值,无最小值解析:由图象可知答案为D.答案:D3.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________. 解析:设f (x )=x 2+mx +4,则f (x )图象开口向上,对称轴为x =-m2. (1)当-m2≤1时,即m ≥-2时,满足f (2)=4+2m +4≤0, ∴m ≤-4,又m ≥-2,∴此时无解.(2)当-m2≥2,即m ≤-4时,需满足f (1)=1+m +4≤0 ∴m ≤-5,又m ≤-4,∴m ≤-5.(3)当1<-m2<2,即-4<m <-2时,需满足⎩⎨⎧-4<m <-2,f (1)=1+m +4≤0,f (2)=4+2m +4≤0.此时无解.综上所述,m ≤-5. 答案:m ≤-54.已知函数f (x )是R 上的增函数,且f (x 2+x )>f (a -x )对一切x ∈R 都成立,则实数a 的取值范围是________.解析:解法一:因为函数f (x )是R 上的增函数,且f (x 2+x )>f (a -x )对一切x ∈R 都成立,所以不等式x 2+x >a -x 对一切x ∈R 都成立,即a <x 2+2x 对一切x ∈R 都成立.因为x 2+2x =(x +1)2-1,所以a <-1.解法二:因为函数f (x )是R 上的增函数,且f (x 2+x )>f (a -x )对一切x ∈R 都成立,所以不等式x 2+x >a -x 对一切x ∈R 都成立,即x 2+2x -a >0对一切x ∈R 都成立,所以Δ=4+4a <0即可,解得a <-1. 答案:(-∞,-1)5.设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 解析:f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,对称轴为x =1.当t +1<1,即t <0时,函数图象如图(1),函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2),最小值为f (1)=1;当t >1时,函数图象如图(3),函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t +2.6.已知(x +2)2+y 24=1,求x 2+y 2的取值范围.解析:由(x +2)2+y 24=1,得(x +2)2=1-y24≤1,∴-3≤x ≤-1,∴x 2+y 2=x 2-4x 2-16x -12=-3x 2-16x -12=-3⎝ ⎛⎭⎪⎫x +832+283,因此,当x =-1时,x 2+y 2有最小值1;当x =-83时,x 2+y 2有最大值283. 故x 2+y 2的取值范围为⎣⎢⎡⎦⎥⎤1,283.。
第2课时函数的最大(小)值学习目标 1.理解函数的最大(小)值的概念及其几何意义.2.会借助单调性求最值.3.掌握求二次函数在闭区间上的最值.知识点一函数的最大(小)值思考在下图表示的函数中,最大的函数值和最小的函数值分别是多少?1为什么不是最小值?答案最大的函数值为4,最小的函数值为2.1没有A中的元素与之对应,不是函数值.梳理一般地,设函数y=f(x)的定义域为I.如果存在实数M满足:(1)对于任意x∈I,都有f(x)≤M.(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最大值.如果存在实数M满足:(1)对于任意x∈I,都有f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最小值.知识点二函数的最大(小)值的几何意义思考函数y=x2,x∈[-1,1]的图象如下:试指出函数的最大值、最小值和相应的x的值.答案当x=±1时,y有最大值1,对应的点是图象中的最高点,当x=0时,y有最小值0,对应的点为图象中的最低点.梳理一般地,函数最大值对应图象中的最高点,最小值对应图象中的最低点,它们不一定只有一个.1.因为f(x)=x2+1≥0恒成立,所以f(x)的最小值为0.(×)2.f (x )=1x(x >0)的最小值为0.(×)3.函数f (x )取最大值时,对应的x 可能有无限多个.(√)4.如果f (x )的最大值、最小值分别为M ,m ,则f (x )的值域为[m ,M ].(×)类型一 借助单调性求最值 例1 已知函数f (x )=xx 2+1(x >0).(1)求证:f (x )在(0,1]上为增函数; (2)求函数f (x )的最大值和最小值. 考点 函数的最值及其几何意义 题点 由函数单调性求最值(1)证明 设x 1,x 2是区间(0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1(x 22+1)-x 2(x 21+1)(x 21+1)(x 22+1)=(x 2-x 1)(x 2x 1-1)(x 21+1)(x 22+1).当0<x 1<x 2≤1时,x 2-x 1>0,x 1x 2-1<0, ∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2), ∴f (x )在(0,1]上单调递增.(2)解 当1≤x 1<x 2时,x 2-x 1>0,x 1x 2-1>0, f (x 1)-f (x 2)>0,f (x 1)>f (x 2), ∴f (x )在[1,+∞)上单调递减.∴结合(1)(2)可知,f (x )max =f (1)=12,无最小值.反思与感悟 (1)若函数y =f (x )在区间[a ,b ]上单调递增,则f (x )的最大值为f (b ),最小值为f (a ).(2)若函数y =f (x )在区间[a ,b ]上单调递减,则f (x )的最大值为f (a ),最小值为f (b ). (3)若函数y =f (x )有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.(4)如果函数定义域为开区间,则不但要考虑函数在该区间上的单调性,还要考虑端点处的函数值或者发展趋势. 跟踪训练1 已知函数f (x )=2x -1(x ∈[2,6]),求函数的最大值和最小值. 考点 函数的最值及其几何意义 题点 由函数单调性求最值解 设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=2x 1-1-2x 2-1 =2[(x 2-1)-(x 1-1)](x 1-1)(x 2-1)=2(x 2-x 1)(x 1-1)(x 2-1).由2≤x 1<x 2≤6,得x 2-x 1>0,(x 1-1)(x 2-1)>0, 于是f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2).所以,函数f (x )=2x -1在区间[2,6]上是减函数.因此,函数f (x )=2x -1在区间[2,6]的两个端点处分别取得最大值与最小值,即在x =2时取得最大值,最大值是2, 在x =6时取得最小值,最小值是25.类型二 求二次函数的最值例2 (1)已知函数f (x )=x 2-2x -3,若x ∈[0,2],求函数f (x )的最值; (2)已知函数f (x )=x 2-2x -3,若x ∈[t ,t +2],求函数f (x )的最值; (3)已知函数f (x )=x -2x -3,求函数f (x )的最值. 考点 函数的最值及其几何意义 题点 二次函数最值解 (1)∵函数f (x )=x 2-2x -3开口向上,对称轴x =1,∴f (x )在[0,1]上单调递减,在[1,2]上单调递增,且f (0)=f (2). ∴f (x )max =f (0)=f (2)=-3,f (x )min =f (1)=-4. (2)∵对称轴x =1, ①当1≥t +2即t ≤-1时, f (x )max =f (t )=t 2-2t -3,f (x )min =f (t +2)=(t +2)2-2(t +2)-3=t 2+2t -3. ②当t +t +22≤1<t +2,即-1<t ≤0时,f (x )max =f (t )=t 2-2t -3, f (x )min =f (1)=-4.③当t ≤1<t +t +22,即0<t ≤1时,f (x )max =f (t +2)=t 2+2t -3, f (x )min =f (1)=-4.④当1<t ,即t >1时,f (x )max =f (t +2)=t 2+2t -3, f (x )min =f (t )=t 2-2t -3.设函数f (x )的最大值为g (t ),最小值为φ(t ),则有g (t )=⎩⎪⎨⎪⎧t 2-2t -3,t ≤0,t 2+2t -3,t >0,φ(t )=⎩⎪⎨⎪⎧t 2+2t -3,t ≤-1,-4,-1<t ≤1,t 2-2t -3,t >1.(3)设x =t (t ≥0),则x -2x -3=t 2-2t -3.由(1)知y =t 2-2t -3(t ≥0)在[0,1]上单调递减,在[1,+∞)上单调递增. ∴当t =1即x =1时,f (x )min =-4,无最大值.反思与感悟 (1)二次函数在指定区间上的最值与二次函数的开口、对称轴有关,求解时要注意这两个因素.(2)图象直观,便于分析、理解;配方法说理更严谨,一般用于解答题. 跟踪训练2 (1)已知函数f (x )=x 4-2x 2-3,求函数f (x )的最值; (2)求二次函数f (x )=x 2-2ax +2在[2,4]上的最小值;(3)求函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值. 考点 函数的最值及其几何意义 题点 二次函数最值解 (1)设x 2=t (t ≥0),则x 4-2x 2-3=t 2-2t -3.y =t 2-2t -3(t ≥0)在[0,1]上单调递减,在[1,+∞)上单调递增. ∴当t =1即x =±1时,f (x )min =-4,无最大值. (2)∵函数图象的对称轴是x =a , ∴当a <2时,f (x )在[2,4]上是增函数, ∴f (x )min =f (2)=6-4a .当a >4时,f (x )在[2,4]上是减函数, ∴f (x )min =f (4)=18-8a .当2≤a ≤4时,f (x )min =f (a )=2-a 2.∴f (x )min=⎩⎪⎨⎪⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.(3)f (x )=x 2-4x -4=(x -2)2-8. 设f (x )在[t ,t +1]上的最小值为g (t ). 当t >2时,f (x )在[t ,t +1]上是增函数, ∴g (t )=f (t )=t 2-4t -4;当t ≤2≤t +1,即1≤t ≤2时,g (t )=f (2)=-8; 当t +1<2即t <1时,f (x )在[t ,t +1]上是减函数, ∴g (t )=f (t +1)=t 2-2t -7.综上,g(t)=⎩⎪⎨⎪⎧t2-2t-7,t<1,-8,1≤t≤2,t2-4t-4,t>2.类型三借助图象求最值例3(2017·昌平区检测)若x∈R,f(x)是y=2-x2,y=x这两个函数中的较小者,则f(x)的最大值为()A.2 B.1C.-1 D.无最大值考点函数的最值及其几何意义题点由函数图象求最值答案 B解析在同一坐标系中画出函数y=2-x2,y=x的图象,如图:根据题意,图中实线部分即为函数f(x)的图象.所以当x=1时,f(x)max=1.反思与感悟借助图象求最值注意两点(1)作图要准确;(2)最值的几何意义要理解.跟踪训练3已知函数f(x)=⎩⎪⎨⎪⎧-x,-1≤x≤0,x2,0<x≤1,x,1<x≤2,则f(x)的最大值为________.考点函数的最值及其几何意义题点由函数图象求最值答案 2解析f(x)的图象如图:则f(x)的最大值为f(2)=2.类型四 函数最值的应用例4 已知x 2-x +a >0对任意x ∈(0,+∞)恒成立,求实数a 的取值范围. 考点 函数的最值及其几何意义 题点 含参二次函数最值 解 方法一 令y =x 2-x +a ,要使x 2-x +a >0对任意x ∈(0,+∞)恒成立, 只需y min =4a -14>0,解得a >14. ∴实数a 的取值范围是⎝⎛⎭⎫14,+∞. 方法二 x 2-x +a >0可化为a >-x 2+x . 要使a >-x 2+x 对任意x ∈(0,+∞)恒成立, 只需a >(-x 2+x )max , 又(-x 2+x )max =14,∴a >14.∴实数a 的取值范围是⎝⎛⎭⎫14, +∞. 引申探究把本例中“x ∈(0,+∞)”改为“x ∈⎝⎛⎭⎫12,+∞”,再求a 的取值范围. 解 f (x )=-x 2+x 在⎝⎛⎭⎫12,+∞上为减函数, ∴f (x )的值域为⎝⎛⎭⎫-∞,14, 要使a >-x 2+x 对任意x ∈⎝⎛⎭⎫12,+∞恒成立, 只需a ≥14,∴a 的取值范围是⎣⎡⎭⎫14,+∞. 反思与感悟 恒成立的不等式问题,任意x ∈D ,f (x )>a 恒成立,一般转化为最值问题:f (x )min >a 来解决.任意x ∈D ,f (x )<a 恒成立一般可转化为f (x )max <a .跟踪训练4 已知ax 2+x ≤1对任意x ∈(0,1]恒成立,求实数a 的取值范围. 考点 函数的最值及其几何意义 题点 含参二次函数最值解 ∵x >0,∴ax 2+x ≤1可化为a ≤1x 2-1x.要使a ≤1x 2-1x 对任意x ∈(0,1]恒成立,只需a ≤⎝⎛⎭⎫1x 2-1x min .设t =1x ,∵x ∈(0,1],∴t ≥1.1x 2-1x=t 2-t =⎝⎛⎭⎫t -122-14. 当t =1时,(t 2-t )min =0,即当x =1时,⎝⎛⎭⎫1x 2-1x min =0, ∴a ≤0.∴实数a 的取值范围是(-∞,0].1.函数y =-x +1在区间⎣⎡⎦⎤12,2上的最大值是( ) A .-12 B .-1 C.12 D .3考点 函数的最值及其几何意义题点 利用一次函数、分式函数单调性求最值 答案 C2.函数f (x )=1x 在[1,+∞)上( )A .有最大值无最小值B .有最小值无最大值C .有最大值也有最小值D .无最大值也无最小值 考点 函数的最值及其几何意义题点 利用一次函数、分式函数单调性求最值 答案 A3.函数f (x )=x 2,x ∈[-2,1]的最大值、最小值分别为( ) A .4,1 B .4,0 C .1,0D .以上都不对考点 函数的最值及其几何意义 题点 二次函数最值 答案 B4.已知函数f (x )=⎩⎪⎨⎪⎧x +7,-1≤x <1,2x +6,1≤x ≤2,则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对考点 函数的最值及其几何意义 题点 分段函数最值 答案 A5.若不等式-x +a +1≥0对一切x ∈⎝⎛⎦⎤0,12成立,则a 的最小值为( ) A .0 B .-2 C .-52D .-12考点 函数的最值及其几何意义题点 利用一次函数、分式函数单调性求最值 答案 D1.函数的最值与值域、单调性之间的联系(1)对一个函数来说,其值域是确定的,但它不一定有最值,如函数y =1x .如果有最值,则最值一定是值域中的一个元素.(2)若函数f (x )在闭区间[a ,b ]上单调,则f (x )的最值必在区间端点处取得.即最大值是f (a )或f (b ),最小值是f (b )或f (a ). 2.二次函数在闭区间上的最值探求二次函数在给定区间上的最值问题,一般要先作出y =f (x )的草图,然后根据图象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.3.许多数学问题如不等式证明,恒成立的不等式,图象与y =a (a 为常数)的交点问题等,都与函数最值有关,所以会求函数最值是一种基础技能.。
对数函数比较大小及复合函数的单调性一、单选题(共10道,每道10分)1.设,则( )A.b<a<cB.c<a<bC.c<b<aD.a<c<b答案:B解题思路:试题难度:三颗星知识点:基本初等函数值大小的比较2.设,则( )A.a>b>cB.b>a>cC.b>c>aD.c>a>b答案:B解题思路:试题难度:三颗星知识点:基本初等函数值大小的比较3.已知,则( )A.a=b<cB.a<b<cC.a=c>bD.a>c>b答案:C解题思路:试题难度:三颗星知识点:基本初等函数值大小的比较4.设,,,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:对数值大小的比较5.已知函数是定义在上的偶函数,当时,是减函数,若,则( )A.a>b>cB.c>b>aC.c>a>bD.a>c>b答案:B解题思路:试题难度:三颗星知识点:基本初等函数值大小的比较6.已知函数在上是增函数,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:对数函数的单调性7.函数上为减函数,则a的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:对数函数的单调性8.函数的单调递增区间是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:对数函数的单调性9.若函数有最小值,则a的取值范围是( )A.0<a<1B.0<a<2且a≠1C.1<a<2D.a≥2答案:C解题思路:试题难度:三颗星知识点:对数函数的单调性10.定义在上的偶函数在上递增,,则满足的x 的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:对数函数图象与性质的综合应用。
函数值比较大小(人教A版)一、单选题(共10道,每道10分)
1.若,,,则有( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:幂函数的单调性、奇偶性及其应用
2.下列不等式在的条件下不成立的是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:幂函数的单调性、奇偶性及其应用
3.已知,,,则a,b,c的大小关系是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:指数函数的单调性
4.设,,,则( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:对数值大小的比较
5.设,,,则( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:对数值大小的比较
6.设,,,则( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:基本初等函数值大小的比较
7.设,则( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:指数函数的单调性
8.设,,则( )
A. B.
C. D.无法确定
答案:A
解题思路:
试题难度:三颗星知识点:对数的运算性质
9.设函数定义在实数集上,它的图象关于直线x=2对称,且当时,,则( )
A. B.
C. D.
答案:D
解题思路:
10.设a,b,c均为正数,且,,,则( )
A. B.
C. D.
答案:A
解题思路:。