函数值的大小比较
- 格式:doc
- 大小:272.50 KB
- 文档页数:5
解题宝典高中数学各类试题中经常会出现比较函数式大小的题目.此类问题主要考查函数式的运算法则、函数的图象和性质、对数与指数的互化等,属于基础题目.本文重点介绍三种比较函数式大小的方法,以帮助同学们提升解答此类问题的效率.一、同类式法同类式法是指将所要比较的两个函数式化为同一种类型的式子进行比较的方法.同类式法常用于比较形式、结构均不同的两个函数式.在解题时,我们要运用函数运算法则和换底公式将两个函数式化为底数、真数、指数相同的式子,然后根据函数的单调性、对称性来比较两个式子的大小.例1.比较log 23和32的大小.分析:这两个函数属于不同类型的函数,一个是对数,一个是常数,可以采用同类式法来比较它们的大小.需将32转化为与对数函数底数相同的函数,然后利用对数函数的性质来比较它们的大小.解:32=log 2232=log 28,而log 23=log 29,则log 28<log 29,所以32<log 23.二、中间值法中间值法是比较函数式大小的基本方法,是指借助中间值来比较两个函数式的大小.有些函数式的大小很难比较,此时,我们可以将中间值分别与两个函数式进行比较,以解答问题.选择合适的中间值是运用该方法解题的关键.例2.设x 、y 、z 为正数,且2x =3y =5z ,比较2x 、3y 、5z 三者的大小.解:设2x =3y =5z =t >1,则x =log 2t ,y =log 3t ,z =log 5t ,那么2x 3y =2log 2t 3log 3t =2ln 33ln 2=ln 9ln 8>1,则3y <2x ,而2x 5z =2log 2t 5log 5t =2ln 55ln 2=ln 25ln 32<1,则2x <5z ,所以3y <2x <5z .通过观察、分析可知,x 、y 、z 分别是三个指数函数的指数,且三个指数函数的底数并不相同,很难快速比较出它们的大小.不妨将指数函数转化为对数函数x =log 2t ,y =log 3t ,z =log 5t ,然后运用中间值法来求解,将它们的值分别与1进行比较,便可得出问题的答案.三、构造函数法构造函数法是解答函数问题的重要方法.在运用构造函数法比较两个函数式的大小时,需首先结合所要比较的两个函数式的结构和特点,构造出合适的函数模型,然后对新函数进行求导,根据函数的单调性与其导函数的关系判断函数在定义域内的单调性,进而比较出两个函数式的大小.例3.已知a >b ≥3,请比较ln a a 与ln bb的大小.分析:通过观察,可以发现,要比较的两式的结构相同,可构造函数f ()x =ln xx,对函数进行求导,便可判定函数的单调性,再根据a >b ≥3比较出两函数式的大小.解:设f ()x =ln x x ,f ′()x =1-ln xx 2,当0<x <e 时,ln x <1,f ′()x >0,此时f ()x 在(]0,e 上单调递增;当x >e 时,ln x >1,f ′()x <0,此时f ()x 在[)e ,+∞上单调递减;∵a >b ≥3>e ,∴f (a )<f ()b ,∴ln a a <ln bb.综上所述,同类式法、中间值法、构造函数法都是比较函数式大小的重要方法.同类式法、中间值法是常用的两种方法,较为简单,只需灵活运用函数的运算法则即可解出;而构造函数法比较复杂,需结合函数的特点来构造函数.但无论运用哪种方法,同学们都要注意有解题中灵活运用函数的图象和性质以及数形结合思想.(作者单位:甘肃省民勤县第四中学)43Copyright©博看网 . All Rights Reserved.。
一次函数与反比例函数值的大小比较方法一次函数和反比例函数是两种常见的函数类型。
在一次函数中,函数的值随着自变量的增加而线性增加或减少;而在反比例函数中,函数的值随着自变量的增加而减小。
在这两种函数中,比较函数值的大小是非常常见的问题。
本文将介绍两种函数值的大小比较方法,并给出具体的例子来解释这些方法。
方法一:代入法代入法是将自变量的值代入函数中,比较函数值的大小。
例如,对于一次函数 y = 2x + 1 和反比例函数 y = 1/x,我们可以将x的值代入函数中比较函数值的大小。
当 x = 0 时,一次函数 y = 2(0) + 1 = 1,反比例函数 y = 1/0不存在。
因此,在一次函数中,当x = 0 时,函数值最小,即 y = 1。
当 x = 1 时,一次函数 y = 2(1) + 1 = 3,反比例函数 y = 1/1 = 1。
因此,在一次函数中,当 x = 1 时,函数值最大,即 y = 3。
因此,我们可以得出结论,在一次函数中,当自变量的值越大,函数值也越大;而在反比例函数中,当自变量的值越大,函数值越小。
方法二:图像法图像法是通过绘制函数的图像来比较函数值的大小。
对于一次函数和反比例函数,它们的图像分别是一条直线和一个双曲线。
例如,对于一次函数 y = 2x + 1 和反比例函数 y = 1/x,我们可以将它们的图像绘制在同一个坐标系中,比较函数值的大小。
在一次函数的图像中,当自变量的值越大,函数值也越大,因此函数的图像是一条向右上方倾斜的直线。
在反比例函数的图像中,当自变量的值越大,函数值越小,因此函数的图像是一个向左上方弯曲的双曲线。
通过比较两个函数的图像,我们可以发现,在一次函数中,函数值随着自变量的增加而线性增加;而在反比例函数中,函数值随着自变量的增加而减小。
综上所述,我们可以得出结论,在一次函数中,当自变量的值越大,函数值也越大;而在反比例函数中,当自变量的值越大,函数值越小。
c语言比较大小的函数C语言中比较大小的函数有很多种,下面我将介绍几种常用的方法。
1. if-else语句最简单常用的比较大小方法是使用if-else语句。
该语句根据给定的条件执行相应的代码块。
以下是一个示例:```cint max(int a, int b)if (a > b)return a;} elsereturn b;}```2.三元运算符三元运算符是一种简洁的比较大小的方法。
它的语法是:条件?表达式1:表达式2、以下是使用三元运算符的示例:```cint max(int a, int b)return (a > b) ? a : b;```3. switch语句在一些情况下,可能需要比较多个值的大小。
这时可以使用switch 语句来实现。
以下是一个用switch语句比较大小的示例:```cint max(int a, int b)int result;switch(a > b)case 1:result = a;break;case 0:result = b;break;default:break;}return result;```4.数组排序如果需要比较一组数的大小,可以使用数组排序的方法。
C语言中有多种排序算法,如冒泡排序、选择排序、插入排序等。
以下是一个示例使用冒泡排序比较大小的函数:```cvoid bubble_sort(int arr[], int n)int i, j, temp;for (i = 0; i < n-1; i++)for (j = 0; j < n-i-1; j++)if (arr[j] > arr[j+1])temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}int max(int arr[], int n)bubble_sort(arr, n);return arr[n-1];```5.标准库函数C语言的标准库中也提供了一些比较大小的函数,如cmp、qsort等。
指数函数对数函数大小比较的技巧介绍指数函数和对数函数是数学中常见的函数类型,它们在各种科学和工程应用中起着重要的作用。
本文将介绍一些比较指数函数和对数函数大小的技巧,帮助读者更好地理解和应用这两种函数。
指数函数的性质指数函数的一般形式为 y = a^x,其中 a>0 且a≠1。
指数函数的性质如下:1. 当 a>1 时,函数呈现递增趋势,即 x 增大时,y 也增大。
2. 当 0<a<1 时,函数呈现递减趋势,即 x 增大时,y 减小。
3. 当 x=0 时,指数函数的值为 1,无论 a 的取值如何。
对数函数的性质对数函数的一般形式为y = logₐx,其中 a>0 且a≠1。
对数函数的性质如下:1. 对数函数是指数函数的反函数,即a^logₐx = x。
2. 当 0<x<1 时,对数函数的值为负数。
3. 当 x=1 时,对数函数的值为 0。
4. 当 x>1 时,函数呈现递增趋势,即 x 增大时,y 也增大。
5. 当 0<x<1 时,函数呈现递减趋势,即 x 增大时,y 减小。
6. 当 x=0 时,对数函数的值为负无穷大,即logₐ0 = -∞。
比较指数函数和对数函数大小的技巧1. 当 a>1 时,指数函数的值始终大于对数函数的值。
2. 当 0<a<1 时,指数函数的值始终小于对数函数的值。
3. 当 a=1 时,指数函数和对数函数的值相等。
4. 当 x 相同时,指数函数的值通常大于对数函数的值,但有特殊情况,例如 x=0 时,指数函数和对数函数的值相等,都为 1 或 0。
总结通过比较指数函数和对数函数的性质,我们可以得出一些比较大小的技巧。
在应用中,我们可以利用这些技巧更好地理解和使用指数函数和对数函数,从而更好地解决相关问题。
以上是关于指数函数对数函数大小比较的技巧的介绍。
希望本文能对读者有所帮助,谢谢阅读!。
excel大小比较公式在Excel中,可以使用一些公式来比较大小。
下面是一些常用的公式和示例说明。
1.IF函数:IF函数根据一个逻辑表达式的结果返回不同的值。
可以使用IF函数进行大小比较。
示例:=IF(A1>B1,"A大于B","A不大于B")在这个示例中,如果单元格A1的值大于单元格B1的值,则返回"A 大于B";否则返回"A不大于B"。
2.MAX函数和MIN函数:MAX函数返回一组值中的最大值,MIN函数返回一组值中的最小值。
示例:=MAX(A1:A5)在这个示例中,MAX函数将返回A1到A5中的最大值。
3.COUNTIF函数:COUNTIF函数计算一组单元格中满足指定条件的单元格的个数。
示例:=COUNTIF(A1:A5,">10")在这个示例中,COUNTIF函数将计算A1到A5中大于10的单元格的个数。
4.AVERAGE函数:AVERAGE函数计算一组值的平均值。
示例:=AVERAGE(A1:A5)在这个示例中,AVERAGE函数将计算A1到A5的平均值。
5.SUM函数:SUM函数计算一组值的总和。
示例:=SUM(A1:A5)在这个示例中,SUM函数将计算A1到A5的总和。
6.VLOOKUP函数:VLOOKUP函数根据一个值在查找表中查找对应的值。
示例:=VLOOKUP(A1, lookupTable, 2, FALSE)在这个示例中,VLOOKUP函数将在名为lookupTable的查找表中查找A1的值,并返回对应的第2列的值。
这些公式可以根据具体的需求进行修改和组合,以满足不同的大小比较需求。
使用这些公式可以简化在Excel中进行大小比较的过程,提高工作效率。
一、两幂值比大小的方法:(1)同底数的两幂值比大小时,利用指数函数的单调性可直接比较大小;(2)底、指都不同的两幂值比大小时,可借用中间值间接比较大小,也可利用函数图象的位置关系来比较大小。
例2 :比较下列各组中各数的大小.(1)0.40.3与0.40.2;(2)-0.75-0.1与-0.750.1(3)()1/5与()3/4;(4) ()-2/3与 ()-3/2解:(1)考察指数函数y=0.4x,∵0<0.4<1,此函数为减函数,而0.3>0.2,∴0.40.3<0.40.2(2)∵0<0.75<1,-0.1<0.1,∴0.75-0.1>0.750.1,故-0.75-0.1<-0.750.1.另解:分别画出函数y=()x和y=()x的图象,图象中A点的纵坐标为()1/5,B点的纵坐标为()3/4,C点的纵坐标为()1/5由于A点高于C点,C点又高于B点,所以()1/5>()3/4(4)∵()-2/3>()0=1, ()-3/2<()0=1,∴ ()-2/3>()-3/2二、两对数值比大小的方法:(1)同底数的两对数值比大小时,利用对数函数的单调性可直接比较大小;(2)同真数的两对数值比大小时,可换底后比较大小,也可利用同类函数图象的高低比大小;(3)底与真数都不同的两对数值比大小时,可以借用中间值间接比较大小,也可利用函数图象的位置关系来比较大小。
例3:比较下列各组中两个对数值的大小.(1)log0.20.5, log0.20.3; (2) log23, log1.53(3) log59, log68 ; (4) log1/50.3, log20.8 .解:(下面的解答由师生共同完成)(2)考察指数函数y=log0.2x,∵0<0.2<1, 此函数为减函数,而0.5>0.3,∴log0.20.5< log0.20.3(3)log23=, log1.53=,∵lg3>0,lg2>lg1.5>0,∴ log23< log1.53另解:分别画出函数y=log1.5x,y=log2x的图象,x>1以后y=log1.5x的图象在y=log2x的图象的上方。
高三数学专项训练:函数值的大小比较一、选择题1.设112450.5,0.9,log 0.3a b c,则c b a ,,的大小关系是(). A. bca B. bacC. c b aD. ca b2.设则()A .B .C .D .3.设a b c ,,分别是方程11222112=log ,()log ,()log ,22xxxx x x 的实数根, 则有()A.a b c B.c b a C.b a c D.ca b4.若13(1)ln 2ln ln xe ax bx c x ,,,,,则()A .a <b <c B .c <a <b C .b <a <cD .b <c <a5.设a=54log ,b= (53log )2,c=45log ,则( )A. a<c<bB. b<c<aC. a<b<cD. b<a<c6.设0.220.20.2log 2,log 3,2,0.2ab cd,则这四个数的大小关系是()A.a b cd B.dca b C.ba cd D.ba d c7.下列大小关系正确的是()A. 3log 34.044.03B. 4.03434.03log C.4.04333log 4.0 D.34.044.033log 8.设0.33log 3,2,log sin 6a b c,则()A 、a bcB 、cabC 、ba c D 、bc a9.若)1,0(x,则下列结论正确的是()A .xx x2lg 21B .21lg 2x xxC .xxxlg 221D .xx xlg 22110.若0mn ,则下列结论正确的是()A .22mnB .1122mnC .22log log m nD .1122log log mn2lg ,(lg ),lg ,ae be ce a bcacbca b c b a11.a b ,满足01a b,下列不等式中正确的是()A .abaaB .abbbC .aaab D .bbba12.三个数231.0a ,31.0log 2b,31.02c 之间的大小关系为()A .a cb B .a bcC .ba cD .bc a13.已知实数4log 5a,01(),2b0.3log 0.4c ,则,,a b c 的大小关系为()A .b c aB .b a cC .cab D .cba14.实数0.2220.2,log 0.2,2a bc 的大小关系正确的是A.a c bB.a b cC.b acD.bca15.设,则的大小关系为()A .B .C .D .16.三个数,,的大小顺序是()A. B.C .D .17.已知10.20.7321.5, 1.3,()3a b c ,则,,a b c 的大小为( )A.c a bB.c b aC.abcD.acb18.设 1.50.90.4812314,8,2y y y ,则()A 、312y y y B 、213y y y C 、123y y y D 、132y y y 19.已知0ba ,则3,3,4aba的大小关系是()A .334abaB .343baaC .334baaD .343aab20.已知,,,则,,的大小关系为3.0log ,3.0,2223.0cbac b a ,,c b a c a b bacabc7.0667.06log 7.07.07.0666log 7.06log 67.07.07.0667.07.07.066log 7.067.067.06log 30.3a 0.33b0.3log 3ca b cA .B .C .D .21.当0<a<b<1时,下列不等式中正确的是()A .bba a )1()1(1B .bab a )1()1(C .2)1()1(bba a D .bab a )1()1(22.设1,01,x y a 则下列关系正确的是:()A.aayxB. ayax C. yxaaD.yx a a log log 23.设,那么()A .B .C .D .24.已知0.30.2a ,0.2log 3b,0.2log 4c ,则()A. a>b>cB. a>c>bC. b>c>aD. c>b>a 25.设0.53a ,3log 2b,2cos c ,则()A.c b a B.c ab C .ab cD.bc a26.已知函数f (x )(x ∈R )满足()f x >f (x ),则()A .f (2)<2e f (0)B .f (2)≤2e f (0)C .f (2)=2e f (0)D .f (2)>2e f (0)27.设函数定义在实数集上,它的图像关于直线对称,且当时,,则有A . B. C. D. 28.若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()xf xg x e ,则有()A .(2)(3)(0)f f gB .(0)(3)(2)g f fC .(2)(0)(3)f g f D .(0)(2)(3)g f f abc cab bac cba111()()1555baabab a a aabb aa baa abaaababax f 1x 1x 13xxf 322331fff312332f ff233132f f f 313223ff f29.设9log ,6log ,3log 842cba ,则cb a ,,的大小关系是.30.设,则的大小关系为52535252,52,53cbacb a ,,高三数学专项训练:函数值的大小比较参考答案1.D 【解析】试题分析:11110.3244450.50.25,0.90.250,log0a bc ,故选 D.考点:指数函数和对数函数的性质.2.B 【解析】试题分析:由21lg 0e可知e eelg lg 21lg 2,即.考点:本小题主要考查对数的基本运算.3.A 【解析】试题分析:由指数函数2xy,12xy与对数函数2log yx ,12log yx 的图象可得,故选A .考点:指数函数、对数函数的图像和方程4.C 【解析】试题分析:因为1(1)x e ,,所以1ln 0a x ,而l n 0b a x ,故ba ,又2l n (l n 1)c a x x ,而2ln 1x,故2ln (ln 1)0,c ax x c a ,综上,b ac ,选 C.考点:对数函数. 5.D 【解析】试题分析:由对数函数的性质可知,当底数1a时,函数log 0a yx x 是单调增函数,∴550log 3log 41且451log ,∴2554log 3log 4log 5,即bac .考点:对数函数的单调性及应用.6.D.【解析】试题分析:0.2log yx 是0,上的减函数,0b a ,又0.22221,00.21,c d b a d c .acb abc考点:指数函数、对数函数及幂函数单调性的应用.7.C. 【解析】试题分析:因为0.4331,310.40.0642,4441log 2log 3log 412,所以0.4343log 30.4,选C.考点:对数式与指数式比较大小.8.C 【解析】试题分析:0.330log 31,21,log sin06ab c,所以ba c .考点:比较数的大小.9.D 【解析】试题分析:当(0,1)x时:122(1,2),(0,1),lg (,0)xxx ,所以x x xlg 221.考点:指数函数、对数函数、幂函数图象及其性质(单调性).10.D 【解析】试题分析:指数函数、对数函数的底数大于0 时,函数为增函数,反之,为减函数,而0mn ,所以1122log log mn ,选 D.考点:本题主要考查指数函数、对数函数、幂函数的性质。
比较二次函数值大小的方法二次函数在我们的生活和数学学习中有着广泛的应用,而正确比较二次函数值的大小对于解决实际问题具有重要意义。
本文将介绍几种比较二次函数值大小的方法,并对其进行深入的探讨。
一、图像比较法图像是比较二次函数大小最直观的方法,利用函数的图像可以清晰地看出两个函数的大小关系。
首先,画出需要比较的二次函数的图像,根据图像上点的位置关系来判断大小。
具体步骤如下:1. 确定开口方向:二次函数的开口方向取决于系数a的值,如果a>0,则开口向上;如果a<0,则开口向下。
2. 确定对称轴:二次函数的对称轴是其顶点坐标的横坐标,通过对称轴可以判断两个函数的大小关系。
3. 比较函数图像上的点:根据图像上点的位置关系,可以直观地判断两个函数的大小关系。
二、公式法除了图像比较法外,还可以使用公式法比较二次函数值的大小。
二次函数的解析式为y=ax^2+bx+c(a≠0),当a>0时,抛物线开口向上,y随x的增大而增大;当a<0时,抛物线开口向下,y随x的增大而减小。
因此,可以通过比较a、b、c的值来判断两个二次函数的大小关系。
具体步骤如下:1. 确定系数a、b、c的值:根据需要比较的二次函数的表达式,求出a、b、c的值。
2. 比较系数的大小:根据系数a、b、c的绝对值大小,可以初步判断两个二次函数的大小关系。
一般来说,如果|a|>|b|,则y=ax^2+bx+c的值域大于y=bx^2+cx+d的值域;反之亦然。
3. 根据对称轴和函数值的关系进行比较:如果对称轴在y轴左侧还是右侧,以及对应的函数值的大小关系如何,就可以判断两个二次函数的大小关系。
三、求根公式法对于一般形式的二次函数y=ax^2+bx+c(a≠0),可以使用求根公式法比较两个二次函数值的大小。
首先用配方法将一般形式的二次函数化成y=a(x-h)^2+k的形式,再使用求根公式求出x1和x2的值。
最后根据x1和x2的大小关系以及对应的函数值的大小关系来判断两个二次函数的大小关系。
比较三角函数值大小的常用方法
只要记住了函数曲线,很容易解决的,正弦函数在零到九十度是递增的,因此第一个很好解决,第二个因为正切等于正弦除以余弦,而余弦是小余1的,
因此正切在零到九十度间一定大于正弦,而正弦在零到九十度递增,余弦在零到九十度递减,四十五度时相等,因此题目的度数一定余弦大于正弦。
三角函数比大小,可做两个三角函数的差。
如:两个三角函数分别为,f(x)和g(x);令:h(x)=f(x)-g(x); 若h(x) 在定义域范围内恒大于0,则:f(x)>g(x); 反之,h(x),恒小于0. 则f(x)<g(x); 如果恒等于0,则f(x)=g(x)。
如果是在某一定义域范围内h(x)>=0; 某一定义域范围又有h(x)<0;就属于有条件的比较大小,找出这样的变化范围,加以说明即可。
函数值的大小比较 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT二次函数、反比例函数比较大小一、二次函数的大小比较方法:1、特殊值代入法:直接根据题目要求,分别代入具体的数值,再比较大小。
2、利用函数的增减性:当各点都在对称轴的一侧时,利用函数的增减性进行比较。
3、计算各点到对称轴的距离,结合抛物线的开口方向比较大小:(本法适用于各点在对称轴同侧和异侧的大小比较,尤其是异侧。
)(1)当抛物线开口向上时(即a>0时),离对称轴距离越远,函数值越大,反之越小。
当抛物线开口向上与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1<y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1>y 2【推理:由x 2-(a b 2-)>a b 2--x 1得x 2+x 1>ab -得221x x +>a b 2-;即x 2离对称轴距离较远;由x 2-(a b 2-)<a b 2--x 1,得x 2+x 1<ab -,得221x x +<ab 2-,即x 1离对称轴距离较远.】 (2)当抛物线开口向下时(即a <0时),离对称轴距离越远,函数值越小,反之越大。
当抛物线开口向下与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1>y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1<y 2,推理同(1)4、图象法:结合具体图象,利用y 轴“上大下小”的特点比较具体各点的函数值的大小。
(第一、二象限的函数值总是大于第三、四象限的函数值)5、移点法:利用抛物线的对称性将各点转化到对称轴的同一侧,再利用函数的增减性比较大小。
二、反比例函数的大小比较方法由于反比例函数图象为双曲线,所以比较大小时,首先应注意利用k 值弄清各点所处的象限。
点击近几年中考中比较函数值大小问题
比较函数值大小是中考考试中常见的一种考题,它涉及到函数的概念,考生需要熟悉函数概念,熟悉比较函数值大小的方法,以便在考试中正确解答比较函数值大小的问题。
其次,考生需要熟悉比较函数值大小的方法。
比较函数值大小的方法主要有三种:比较函数值的绝对值大小、比较函数在某一点处的值大小、比较函数的导数大小。
首先,如果函数的定义域和值域都是实数,那么可以直接比较函数的绝对值大小;其次,如果函数的定义域和值域都是实数,而且函数在某一点上有定义,那么可以比较函数在该点处的值大小;最后,如果函数的定义域和值域都是实数,而且函数在某一点处有导数,那么可以比较函数的导数大小。
最后,考生需要加强对函数概念及比较函数值大小方法的练,以便在中考考试中正确解答比较函数值大小的问题。
正确使用比较函数值大小的方法,能够帮助考生正确求解函数的值,进而提高中考的成绩。
因此,考生在准备中考考试时,一定要加强对比较函数值大小的知识掌握,并多加练,以便在考试中取得优异的成绩。
一一一一一一一一一一一一一一一一一一λ+μ=k (定值),此时直线AB 及平行于AB 的直线为等和线,即可根据等和线的性质求得最值.五、利用极化恒等式极化恒等式:a ⋅b =14[(a +b )2-(a -b )2]是解答向量问题的重要工具.当遇到共起点的两向量的数量积最值问题时,可以考虑根据三角形法则和平行四边形法则,将两个向量的数量积的最值问题转化为两个向量的和、差的最值问题,利用极化恒等式求解.例6.如图6,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且 AD =λ BC ,AD ∙ AB =-32,则实数λ的值为,若M ,N 是线段BC 上的动点,且MN =1,则DM ∙DN 的最小值为.图6解:由 AD ∙ AB =-32,得(λ BC )∙ AB =λ| BC || AB |cos ∠B=λ×6×3æèöø-12=-32,解得λ=16.分别过D ,A 作BC 的垂线,垂足分别为E ,F ,由极化恒等式得,DM ∙ DN =||DQ 2-||QM 2=|| DQ 2-æèöø122≥|| DE 2-æèöø122=|| AF 2-æèöø122=132.一般地,若在三角形ABC 中,M 为BD 的中点,由极化恒等式可得: AB ∙ AD =| AM |2-| BM |2;在平行四边形ABCD 中, AB ∙ AD =14(| AC |2-| BD |2),这样就将向量的数量积问题转化为两条线段长度的平方差问题.解答本题,需先找到定点,再根据动点的变化情况求最值可见,求解平面向量最值问题的措施很多.解题的关键是要根据解题的需求,建立合适的平面直角坐标系和关系式,灵活运用函数的性质、等和线的性质、向量的几何意义、极化恒等式进行求解.(作者单位:云南省曲靖市会泽县茚旺高级中学)探索探索与与研研究究比较函数式的大小问题通常会综合考查一次函数、二次函数、指数函数、对数函数、幂函数的性质和图象.解答这类问题的常用方法有:特殊值法、放缩法、中间值法、基本不等式法等.在解题时,若能选用恰当的方法,就能达到事半功倍的效果.本文主要谈一谈下列三种比较函数式大小的思路.一、利用重要不等式在比较函数式的大小时,可根据已有的经验和不等式结论来进行比较,这样能有效地提升解题的效率.常用的重要不等式有:(1)基本不等式及其变形式:若ab >0,a 、b >0,则a +b ≥2ab 、21a +1b≤ab ≤a +b 2≤,当且仅当a =b 时等号成立;(2)切线不等式:e x +1、ln x ≤x -1;(3)柯西不等式:a ,b ,x ,y ∈R ,()a2+b 2()x 2+y 2≥(ax +by )2,(ax -by )2≥()a 2-b 2()x 2-y 2;等等.例1.设a =0.1e 0.1,b =19,c =-ln 0.9,请比较a ,b ,c的大小.解:由于b =19=109-1,c =-ln 0.9=ln 109,令x =-0.1,由切线不等式:e x ≥x +1,当且仅当x =0时等号成立,可得e -0.1>-0.1+1=0.9,则e 0.1<109,所以0.1e 0.1<0.1×109=19,即a <b ,令x =109,由切线不等式:e x≥x +1,得:ln 109<109-1=19,即c <b ,而e 0.1>0.1+1=1.1,则0.1e 0.1>0.1×1.1=0.11,由重要不等式:当x >1时,恒有ln x <12(x -1x )成立,可知-ln 0.9=ln 109<12(109-910)=19180<0.11,50探索探索与与研研究究即a >c ,综上所述,c <a <b .解答本题,要先将三个函数式进行化简,得b =19=109-1,c =-ln 0.9=ln 109;然后利用重要不等式:e x ≥x +1、ln x ≤x -1、ln x <12(x -1x )()x >1分别判断出a 、b 、c 三者的大小关系.函数与不等式之间联系紧密,在比较较为复杂的函数式的大小时,往往要灵活运用函数的性质以及与函数相关的重要不等式结论来辅助解题.二、借助中间值中间值法是比较函数式大小的一种常用方法.有时我们很难直接判断出要比较的函数式的大小,此时可采用中间值法来解题.首先将函数式分别进行化简,以确定其大概的取值范围,并判断其正负;然后选取合适的中间值,如0、1、-1等特殊值,分别比较出函数式与中间值的大小;再根据不等式的传递性来判断出几个函数式之间的大小关系.例2.已知a =0.70.7,b =0.71.5,c =1.50.7,试比较a ,b ,c 的大小.解:由于0<b =0.71.5<0.70.7=a <0.70=1,c =1.50.7>1.50=1,所以b <a <c .先利用指数函数y =0.7x的单调性比较出a 、b 之间的大小,并确定其取值范围为(0,1);然后根据指数函数y =1.5x的单调性比较出c 与1的大小,这样便以1为中间值,根据不等式的传递性来判断出a 、b 、c 的大小关系.例3.设a =log 50.5,b =log 20.3,c =log 0.32,则a ,b ,c 的大小关系是().A.b <a <cB.b <c <aC.c <b <aD.a >b >c解:a =log 50.5>log 50.2=-1,b =log 20.3<log 20.5=-1,c =log 0.32>log 0.3103=-1,log 0.32=lg 2lg 0.3,log 50.5=lg 0.5lg 5=lg 2-lg 5=lg 2lg 0.2.∵-1<lg 0.2<lg 0.3<0,∴lg 2lg 0.3<lg 2lg 0.2,即c <a ,∴b <c <a ,本题选B.观察a 、b 、c 三个函数式,可发现三个函数式均为对数式,且底数和真数均不相同,因此需采用中间值法求解.首先根据对数函数的运算性质、公式对三个函数式进行化简;然后取中间值1、-1,根据对数函数y =log 0.3x 和y =lg x 的单调性分别判断出a 、b 、c 、1、-1之间的大小关系,进而比较出a 、b 、c 的大小.三、放缩函数式放缩法是比较函数式大小的重要方法之一.利用放缩法比较函数式的大小,需先对函数式进行恒等变形;再借助不等式的基本性质、函数的单调性对函数式进行合理放缩,进而比较出函数式的大小.例4.已知9m =10,a =10m -11,b =8m -9,请判断a ,b 的大小关系.解:∵9m =10,∴m =log 910>log 99=1,而a =10m-11=9m׿èöø109m-11=10׿èöø109m-11>10×109-11=19>0,b =8m-9=9m׿èöø89m-9=10׿èöø89m-9<10×89-9=-19<0,∴a >0>b .先根据指数幂的运算性质将指数式、对数式进行互化;再利用指数函数的单调性确定参数m 的取值范围;然后利用指数函数的单调性进行放缩,即可比较出a 、b 的大小.例5.已知7m =10,a =11m -13,b =6m -7,试判断a ,b 的大小关系.解:∵7m =10,∴m =log 710>log 77=1,而a =11m-13=7m׿èöø117m-13=10׿èöø117m-13>10×117-13>0,b =6m-7=7m׿èöø67m-7=10׿èöø67m-7<10×67-7<0,∴a >0>b .三个函数式中均含有参数m 和指数式,于是先根据指数的运算性质对函数式进行化简;再根据参数m 的取值范围,利用指数函数的单调性进行放缩,最终确定两个函数式的正负,从而比较出a ,b 的大小.解答比较函数式的大小问题,需要仔细研究要比较的函数式,找出二者之间的区别和联系,灵活运用重要不等式、中间值、函数的性质和图象,来确定函数的大小和取值范围.(作者单位:安徽省砀山第二中学)51。
二次函数、反比例函数比较大小一、二次函数的大小比较方法: 1、特殊值代入法:直接根据题目要求,分别代入具体的数值,再比较大小。
2、利用函数的增减性:当各点都在对称轴的一侧时,利用函数的增减性进行比较。
3、计算各点到对称轴的距离,结合抛物线的开口方向比较大小:(本法适用于各点在对称轴同侧和异侧的大小比较,尤其是异侧。
)(1)当抛物线开口向上时(即a>0时),离对称轴距离越远,函数值越大,反之越小。
当抛物线开口向上与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1<y 2;若221x x +<a b2-(x 1<ab2-<x 2)时,y 1>y 2 【推理:由x 2-(a b 2-)>a b 2--x 1得x 2+x 1>ab -得221x x +>a b2-;即x 2离对称轴距离较远;由x 2-(a b 2-)<a b 2--x 1,得x 2+x 1<ab-,得221x x +<ab2-,即x 1离对称轴距离较远.】 (2)当抛物线开口向下时(即a <0时),离对称轴距离越远,函数值越小,反之越大。
当抛物线开口向下与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>ab 2-(x 1<ab 2-<x 2)时,y 1>y 2;若221x x +<ab2-(x 1<ab 2-<x 2)时,y 1<y 2,推理同(1)4、图象法:结合具体图象,利用y 轴“上大下小”的特点比较具体各点的函数值的大小。
(第一、二象限的函数值总是大于第三、四象限的函数值)5、移点法:利用抛物线的对称性将各点转化到对称轴的同一侧,再利用函数的增减性比较大小。
二、反比例函数的大小比较方法由于反比例函数图象为双曲线,所以比较大小时,首先应注意利用k 值弄清各点所处的象限。
1、 同一象限时,利用函数的增减性比较大小。
K >0时,y 随x 的增大而减小;K <0时,y 随x 的增大而减大; 2、不同象限时,用图象法,利用y 轴“上大下小”的特点进行比较。
专题8余弦函数值比较大小余弦函数是一个在数学和物理学中常用的三角函数。
根据余弦函数的性质,我们可以比较不同角度的余弦值的大小。
本文将探讨如何比较余弦函数值的大小以及一些相关的例子。
比较余弦函数值的大小余弦函数的取值范围在-1到1之间,其中-1表示最小值,1表示最大值。
根据这个范围,我们可以得出以下结论:- 当角度为零度时,余弦函数的值为1,是最大值。
- 当角度为90度时,余弦函数的值为0。
此时,余弦函数的值小于角度为零度时的值,但大于其他角度的值。
- 当角度为180度时,余弦函数的值为-1,是最小值。
例子例子1假设有三个角度:30度、60度和90度。
我们可以通过计算这些角度的余弦函数值,来比较它们的大小。
具体计算如下:- 30度的余弦函数值为0.866。
- 60度的余弦函数值为0.5。
- 90度的余弦函数值为0。
根据计算结果,我们可以得出以下结论:30度的余弦函数值大于60度的余弦函数值,而60度的余弦函数值大于90度的余弦函数值。
例子2假设有两个角度:0度和180度。
我们可以通过计算这些角度的余弦函数值,来比较它们的大小。
具体计算如下:- 0度的余弦函数值为1。
- 180度的余弦函数值为-1。
根据计算结果,我们可以得出以下结论:0度的余弦函数值大于180度的余弦函数值。
结论通过比较余弦函数值的大小,我们可以得出结论:余弦函数的值随着角度增加而减小,当角度为0度时取得最大值,当角度为180度时取得最小值。
以上是关于比较余弦函数值大小的内容。
参考文献:。
一次函数与反比例函数值的大小比较方法一次函数和反比例函数是数学中比较基础的概念,它们在实际问题中有广泛的应用。
一次函数通常表示为 y = kx + b 的形式,其中k 是斜率,b 是 y 轴截距。
反比例函数通常表示为 y = k/x 的形式,其中 k 是常数。
在一次函数中,当斜率 k 为正数时,函数值 y 随着 x 的增大而增大;当斜率 k 为负数时,函数值 y 随着 x 的增大而减小。
在反比例函数中,当常数 k 为正数时,函数值 y 随着 x 的增大而减小;当常数 k 为负数时,函数值 y 随着 x 的增大而增大。
为了比较一次函数和反比例函数的值大小,我们可以通过求解它们的交点来确定它们的大小关系。
具体来说,我们可以将一次函数和反比例函数的方程联立起来,解得它们的交点坐标,然后在这个交点处比较它们的函数值大小。
例如,假设我们有一次函数 y = 2x + 1 和反比例函数 y = 3/x,我们可以将它们的方程联立起来,得到一个二次方程 2x^2 + x - 3 = 0。
通过求解这个二次方程,我们可以得到两个交点坐标 x1 = -1 和x2 = 3/2。
在 x1 = -1 处,一次函数的函数值为 y1 = 2(-1) + 1 = -1,反比例函数的函数值为 y2 = 3/(-1) = -3。
因此,在这个交点处,反比例函数的值比一次函数的值小。
在 x2 = 3/2 处,一次函数的函数值为 y3 = 2(3/2) + 1 = 4,反比例函数的函数值为 y4 = 3/(3/2) = 2。
因此,在这个交点处,一次函数的值比反比例函数的值大。
通过这种方法,我们可以比较一次函数和反比例函数的值大小,并确定它们的大小关系。
二次函数、反比例函数比较大小一、二次函数的大小比较方法:1、特殊值代入法:直接根据题目要求,分别代入具体的数值,再比较大小。
2、利用函数的增减性:当各点都在对称轴的一侧时,利用函数的增减性进行比较。
3、计算各点到对称轴的距离,结合抛物线的开口方向比较大小:(本法适用于各点在对称轴同侧和异侧的大小比较,尤其是异侧。
)(1)当抛物线开口向上时(即a>0时),离对称轴距离越远,函数值越大,反之越小。
当抛物线开口向上与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1<y 2;若221x x +<a b 2-(x 1<ab 2-<x 2)时,y 1>y 2 【推理:由x 2-(a b 2-)>a b 2--x 1得x 2+x 1>a b -得221x x +>a b 2-;即x 2离对称轴距离较远;由x 2-(a b 2-)<a b 2--x 1,得x 2+x 1<ab -,得221x x +<a b 2-,即x 1离对称轴距离较远.】 (2)当抛物线开口向下时(即a <0时),离对称轴距离越远,函数值越小,反之越大。
当抛物线开口向下与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1>y 2;若221x x +<a b 2-(x 1<ab 2-<x 2)时,y 1<y 2,推理同(1) 4、图象法:结合具体图象,利用y 轴“上大下小”的特点比较具体各点的函数值的大小。
(第一、二象限的函数值总是大于第三、四象限的函数值)5、移点法:利用抛物线的对称性将各点转化到对称轴的同一侧,再利用函数的增减性比较大小。
二、反比例函数的大小比较方法由于反比例函数图象为双曲线,所以比较大小时,首先应注意利用k 值弄清各点所处的象限。
1、 同一象限时,利用函数的增减性比较大小。
K >0时,y 随x 的增大而减小;K <0时,y 随x 的增大而减大;2、不同象限时,用图象法,利用y 轴“上大下小”的特点进行比较。
第一、二象限的函数值总是大于第三、四象限的函数值。
通常情况下,第1和第2两种方法综合运用。
3、特殊值代入法:直接根据题目要求,分别代入具体的数值,再比较大小。
三、试题:1、(若二次函数c x x y +-=62的图像过),23(),,2(),,1(321y C y B y A +-三点,则321y y y 、、大小关系正确的是()A .321y y y >>B .231y y y >>C .312y y y >>D .213y y y >>2、点A (2,Y 1)、B (3,Y 2)是二次函数Y =X 2﹣2X +1的图象上两点,则Y 1与Y 2的大小关系为Y 1Y 2(填“>”、“<”、“=”).3、已知点A (x 1,y 1),B (x 2,y 2)是反比例函数y=的图象上的两点,若x 1<0<x 2,则有()A 、y 1<0<y 2B 、y 2<0<y 1C 、y 1<y 2<0D 、y 2<y 1<04、若点(﹣3,y 1)、(﹣2,y 2)、(1,y 3)在反比例函数的图象上,则下列结论正确的是()A 、y 1>y 2>y 3B 、y 2>y 1>y 3C 、y 3>y 1>y 2D 、y 3>y 2>y 15、若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)是反比例函数y=图象上的点,且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系正确的是()A 、y 3>y 1>y 2B 、y 1>y 2>y 3C 、y 2>y 1>y 3D 、y 3>y 2>y 16、反比例函数y=(k≠0)的图象如图所示,若点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是这个函数图象上的三点,且x 1>x 2>0>x 3,则y 1、y 2、y 3的大小关系()A 、y 3<y 1<y 2B 、y 2<y 1<y 3C 、y 3<y 2<y 1D 、y 1<y 2<y 37、若点A (x 1,y 1),B (x 2,y 2)在反比例函数y=﹣的图象上,且x 1<0<x 2,则y 1,y 2和0的大小关系是()A 、y 1>y 2>0B 、y 1<y 2<0C 、y 1>0>y 2D 、y 1<0<y 28、反比例函数y=图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3),其中x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是()A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 1<y 2D 、y 3<y 2<y 19、已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y=的图象上的三点,且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系是()A 、y 3<y 2<y 1B 、y 1<y 2<y 3C 、y 2<y 1<y 3D 、y 2<y 3<y 110、已知反比例函数图象上三个点的坐标分别是A (﹣2,y 1)、B (﹣1,y 2)、C (2,y 3),能正确反映y 1、y 2、y 3的大小关系的是()A 、y 1>y 2>y 3B 、y 1>y 3>y 2C 、y 2>y 1>y 3D 、y 2>y 3>y 111、已知点(﹣1,y 1),(2,y 2),(3,y 3)在反比例函数y=的图象上.下列结论中正确的是()A 、y 1>y 2>y 3B 、y 1>y 3>y 2C 、y 3>y 1>y 2D 、y 2>y 3>y 112、已知:点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数y=﹣图象上的三点,且x 1<0<x 2<x 3则y 1、y 2、y 3的大小关系是()A 、y 1<y 2<y 3B 、y 2<y 3<y 1C 、y 3<y 2<y 1D 、无法确定13、设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为()A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >>14、已知二次函数y=﹣x 2﹣7x+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是()A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 115、已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x ﹣1)2+1的图象上,若x 1>x 2>1,则y 1y 2(填“>”、“<”或“=”).16、反比例函数2y x=图象上的两上点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则下列关系成立的是() A.y 1>y 2B.y 1<y 2 C.y 1=y 2D.不能确定17、已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示:… 0 1 2 3 … … 5 2 1 2 … 点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当101x <<,223x <<时,1y 与2y 的大小关系正确的是()A .1y ≥2y B .12y y >C .12y y <D .1y ≤2y18、设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为()A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >>19、已知二次函数y=﹣x 2﹣7x+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是()A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 120、若二次函数y=x 2﹣6x+c 的图象过A (﹣1,y 1),B (2,y 2),C (,y 3),则y 1,y 2,y 3的大小关系是()A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 1>y 3D .y 3>y 1>y 221、已知一元二次方程x 2+bx ﹣3=0的一根为﹣3,在二次函数y=x 2+bx ﹣3的图象上有三点、、,y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 222、已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x ﹣1)2+1的图象上,若x 1>x 2>1,则y 1y 2(填“>”、“<”或“=”).23、点A (2,y 1)、B (3,y 2)是二次函数y=x 2﹣2x+1的图象上两点,则y 1与y 2的大小关系为y 1y 2(填“>”、“<”、“=”).24、在函数1y x =的图象上有三个点的坐标分别为(1,1y )、(12,2y )、(3-,3y ),函数值y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 225、若()A a b ,,(2)B a c -,两点均在函数1y x =的图象上,且0a <,则b 与c 的大小关系为()A .b c >B .b c <C .b c =D .无法判断26、如图,一次函数y 1=x -1与反比例函数y 2=x2的图像交于点A (2,1),B (-1,-2),则使y 1>y 2的x 的取值范围是()A.x>2B.x>2或-1<x<0C.-1<x<2D.x>2或x<-127、若A (1x ,1y )、B (2x ,2y )在函数12y x=的图象上,则当1x 、2x 满足______时,1y >2y .(答案不唯一,x 1<x 2<0,或0<x 1<x 2,或210x x <<或122,3x x ==-等均可)28、在反比例函数12m y x-=的图象上有两点1122()()A x y B x y ,,,,当120x x <<时,有12y y <,则m 的取值范围是()A .0m <B .0m >C .12m <D .12m >。