用样本频率分布估计总体分布第二课
- 格式:ppt
- 大小:762.50 KB
- 文档页数:28
,nx +)标准差与方差据1x ,nx +,标22()(n x x x x +-++-2(n x x ++-知识点三:在频率分布直方图中,众数,中位数,平均数的估计值最高的小矩形底边中点的横坐标即是众数中位数左边和右边的所有小矩形的面积和是相等的“重心”,等于频率分布直方图中每个小矩形的面积乘小矩形底边中点的横坐标3,b ,3,b ,【答案】45 45.85379⨯=975%∴+=25m故选:B.例题4.(PM2.5的浓度(单位:知这组数据的极差为A.73 B.75 C.77 D.79,,n x 的平均数个分数分别为18,,,x x ,6,8,,x 的平均数为228361001081210++++-=x ,28624++=x 8610++++x ,即12864+++=x x x 2624888-⨯=故答案为:14..(2022·全国55%分位数,②众数这两个条件中任选一个,补充在下面问题中的横线上,并解答问题抗坏血酸,是一种水溶性维生素,是高等灵长类动物与其他少数2,3,,)n ,则下列结论正确的是(2,3,,)n ,则它们的众数也满足该关系,12(21)(21)(21)nn y x x x nn++-+-++-=1nx n++- 121b =-,故B 正确;由方差的性质可得2c =C 正确;23,x x ,…,,假设其第80百分位数为1d , 是整数时,x 21,2x x --30,,x 的平均数为10,,x 这10个数的平均数为8,方差为30,,x ___________. 【详解】由题意得12306x x x +++=2309x ++=⨯1081080x ++=⨯=,222121058690x x x =⨯+=++,所以剩余的20个数的平均数为18080520-=, 30221350690660x +=-=+,所以剩余的20个数的方差为66020258-=,故答案为:82022·全国·高一单元测试)敢于冒险奋进精神的载体,A.这组数据的极差为50 B.这组数据的众数为76(0.005+0.75800.3-+故选:CD例题2.(学生人数比例、[(1)估计总体400名学生中分数小于60的人数;分数小于60的频率为()10.020.040.02100.2-++⨯=,所以[)60,70x ∈,即()0.2600.010.25x +-⨯=,解得65x =,则本次考试的及格分数线为65分.例题3.(2022·全国·高一单元测试)中秋佳节来临之际,小李准备销售一种农特产,这段时间内,每售出1箱该特产获利50元,未售出的,每箱亏损30元.经调查,市场需求量的频率分布直方图如图所示.小李购进了160箱该特产,以x (单位:箱,100200x ≤≤)表示市场需求量,y (单位:元)表示经销该特产的利润.(1)根据频率分布直方图估计市场需求量的众数和平均数;(2)将y 表示为x 的函数;(3)根据频率分布直方图求利润不少于4800元的频率.【答案】(1)150,153(2)804800,1001608000,160200x x y x -≤<⎧=⎨≤≤⎩(3)0.9(1)由频率分布直方图,得市场需求量的众数的估计值是150,需求量为[100,120)的频率为0.005×20=0.1,需求量为[120,140)的频率为0.01×20=0.2,需求量为[140,160)的频率为0.015×20=0.3,需求量为[160,180)的频率为0.0125×20=0.25,需求量为[180,200]的频率为0.0075×20=0.15,则市场需求量的平均数约为110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153.(2)因为每售出1箱该特产获利50元,未售出的,每箱亏损30元,所以当100160≤<x 时,5030(160)804800y x x x =-⨯-=-,当160200x ≤≤时,160508000y =⨯=,所以804800,1001608000,160200x x y x -≤<⎧=⎨≤≤⎩. (3)当100160≤<x 时,由8048004800x -≥,得120160x ≤<;当160200x ≤≤时,80004800y =>,所以当120200x ≤≤时,利润不少于4800元,所以由(1)知利润不少于4800元的频率为10.10.9-=.同类题型归类练A.此次测试众数的估计值为85(1)求频率分布直方图中a的值;(1)求本次初赛成绩的平均数;(每组数据以区间中点值为代表)(1)求出表中m,p的值;(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均数;(1)请你估计该地区所有用户评分的25%,95%分位数;(1)求频率分布直方图中x的值以及样本中身高不低于175cm的学生人数;(1m ii x x =-∑同理可得21s m ∴=+1⎡、、A .20B .40C .64D .80根据此频率分布直方图,下面结论中不正确的是( ) A .该地农户家庭年收入低于4.5万元的农户比率估计为6% B .该地农户家庭年收入不低于10.5万元的农户比率估计为10% C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间 【答案】C【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确; 该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确; 该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.68⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C. 故选:C.3.(多选)(2021·全国·高考真题)下列统计量中,能度量样本12,,,n x x x 的离散程度的是( )A .样本12,,,n x x x 的标准差B .样本12,,,n x x x 的中位数C .样本12,,,n x x x 的极差D .样本12,,,n x x x 的平均数【答案】AC【详解】由标准差的定义可知,标准差考查的是数据的离散程度; 由中位数的定义可知,中位数考查的是数据的集中趋势; 由极差的定义可知,极差考查的是数据的离散程度;。
必修3《2.2.1 用样本的频率分布估计总体的分布》教学设计北京师范大学附属实验中学曹付生一、教学内容分析1.教学主要内容:本节课选自人教B版必修三,第二章第二小节,《用样本的频率分布估计总体的分布》,需要2课时完成,本节课是第一课时。
主要是画出样本的频率分布直方图,并能通过频率分布直方图对总体进行简单的估计。
2.教材编写特点本节是本章教材的第二小节,前面研究了随机抽样的方法及数据收集。
本节课主要研究对收集样本如何进行处理,突出对数据描述、处理的方法,特别是频率分布直方图画法,后面接着研究总体密度曲线、用样本的数字特征估计总体的数字特征以及正态曲线等,可以说本节课内容承上启下,地位非常重要。
从教材编写的角度来看,也正是要体现这一特点。
教材编写,通过对样本分析和总体估计的过程,突出了统计的实用性,从实际出发,收集数据,进行分析整理,再回到实际问题,感受数学对实际生活的需要,体现了统计的思想及其在实际问题中的应用价值,真正体会数学知识与现实生活的联系。
3.教材内容的数学核心思想教材内容的数学核心思想是用样本的频率分布直方图估计总体的统计思想方法。
4.我的思考:本节课重在教会学生绘制频率分布直方图,引导学生通过频率分布直方图分析总体的分布,体会统计的思想、方法。
在通读了教材的基础上,与人教A版的相应内容作了比较,再结合学生的情况,最终选择A版内容,更利于完成教学目标。
(1)人教A版教材中的例子与学生关系紧密,提出的问题更切合学生实际。
背景的熟悉使学生易于课堂参与。
(2)教材中问题的设计利于学生统计思想的建立等。
统计思想方法是数学的一个重要的思想方法,中学学习统计,除了掌握必要的统计知识之处,关键是让学生建立统计在现实生活中具有重要的作用,具有统计意识,同时体会到统计结果随机性、科学性,能作为总体的分布的合理性,是生活中某些问题决策必不可少的依据。
统计教学的核心目标正是让学生体会统计思维的特点和作用。
因此在设计中,从实际问题出发,再回到实际问题的决策,前后呼应,使学生真正体会数据处理的全过程、统计应用于现实生活的全过程,突出统计的思想、方法。
第二讲 用样本估计总体知识梳理·双基自测 知识梳理知识点一 用样本的频率分布估计总体分布 (1)频率分布表与频率分布直方图频率分布表和频率分布直方图,是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布规律,从中可以看到整个样本数据的频率分布情况.绘制频率分布直方图的步骤为:①_求极差__;②_决定组距与组数__;③_将数据分组__;④_列频率分布表__;⑤_画频率分布直方图__.(2)频率分布折线图顺次连接频率分布直方图中_各小长方形上端的中点__,就得到频率分布折线图. (3)总体密度曲线总体密度曲线反映了总体在各个范围内取值的百分比,它能提供更加精细的信息. 知识点二 茎叶图(1)茎叶图中茎是指_中间__的一列数,叶是从茎的_旁边__生长出来的数.(2)茎叶图的优点是可以_保留__原始数据,而且可以_随时__记录,这对数据的记录和表示都能带来方便.知识点三 样本的数字特征(1)众数:一组数据中出现次数最多的数.(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.(3)平均数:x =_x 1+x 2+…+x nn__,反映了一组数据的平均水平.(4)标准差: s =_1n[x 1-x2+x 2-x2+…+x n -x2]__,反映了样本数据的离散程度.(5)方差:s 2=_1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]__,反映了样本数据的离散程度.重要结论(1)若一组数据x i (i =1,2,…,n)的平均数为x -,方差为s 2,则数据组ax i +b(i =1,2,…,n ,a ,b 为常数)的平均数为a x -+b ,方差为a 2·s 2.(2)频率分布直方图与众数、中位数与平均数的关系 ①最高的小长方形底边中点的横坐标即是众数.②中位数左边和右边的小长方形的面积和是相等的,均为12.③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √ ) (2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × )(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( √ )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( × )(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √ ) (6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( × ) 题组二 走进教材2.(P 81A 组T1改编)已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( B )A .95,94B .92,86C .99,86D .95,91[解析]由茎叶图可知,此组数据由小到大排列依次76,79,81,83,86,86,87,91,92,94,95,96,98,99,101,103,114,共17个,故92为中位数,出现次数最多的为众数,故众数为86,故选B .3.(P 7T1)如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民有_25__人.[解析]100×(0.5×0.5)=25(人).题组三走向高考4.(2020·新课标Ⅲ)设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为( C )A.0.01 B.0.1C.1 D.10[解析]∵样本数据x1,x2,…,x n的方差为0.01,∴根据任何一组数据同时扩大几倍方差将变为平方倍增长,∴数据10x1,10x2,…,10x n的方差为:100×0.01=1,故选C.5.(2020·天津)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( B )A.10 B.18C.20 D.36[解析]直径落在区间[5.43,5.47)的频率为(6.25+5)×0.02= 0.225,则被抽取的零件中,直径落在区间[5.43,5.47)内的个数为0.225×80 =18个,故选B.考点突破·互动探究考点一频率分布直方图——自主练透例1 (1)(2021·江西赣州十四县联考)中央电视台播出《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示:组号分组频数频率第1组[160,165) 0.100笫2组[165,170) ①第3组[170,175) 20 ②第4组[175,180) 20 0.200第5组[180,185) 10 0.100合计100 1.00(ⅰ)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示).(ⅱ)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3,4,5组中用分层抽样抽取5名选手进入第二轮面试,则第3,4,5组每组各抽取多少名选手进入第二轮面试?(ⅲ)在(ⅱ)的前提下,组委会决定在5名选手中随机抽取2名选手接受考官A面试,求第4组至少有一名选手被考官A面试的概率.(2)(2021·福建漳州质检)2018年9月的台风“山竹”对我国多个省市的财产造成重大损害,据统计直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的损失数据分成五组:[0,2 000],(2 000,4 000],(4 000,6 000],(6 000,8 000],(8 000,10 000](单位:元),得到如图所示的频率分布直方图.(ⅰ)试根据频率分布直方图估计该地区每个农户的损失(同一组中的数据用该区间的中点值代表);(ⅱ)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户损失超过4 000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8 000元的农户数为X,求X的分布列和数学期望.[解析](1)(ⅰ)第1组的频数为100×0.100=10,所以①处应填的数为100-(10+20+20+10)=40, 从而第2组的频率为40100=0.400.②处应填的数为1-(0.1+0.4+0.2+0.1)=0.200. 频率分布直方图如图所示.(ⅱ)因为第3,4,5组共有50名选手,所以利用分层抽样在50名选手中抽取5名选手进入第二轮面试时,每组抽取的人数分别为:第3组:2050×5=2,第4组:2050×5=2,第5组:1050×5=1,所以第3,4,5组分别抽取2人,2人,1人进入第二轮面试. (ⅲ)记“第4组至少有一名选手被考官A 面试”为事件A , 则P(A)=C 12C 13+C 22C 25=710. ⎝ ⎛⎭⎪⎫或P A =1-P A -=1-C 23C 25=710 (2)(ⅰ)记每个农户的平均损失为x -元,则x -=1 000×0.3+3 000×0.4+5 000×0.18+7 000×0.06+9 000×0.06=33 601;(ⅱ)由频率分布直方图,可得损失超过 4 000元的农户共有(0.000 09+0.000 03+0.000 03)×2 000×50=15(户),损失超过8 000元的农户共有0.000 03×2 000×50=3(户),随机抽取2户,则X 的可能取值为0,1,2; 计算P(X =0)=C 212C 215=2235,P(X =1)=C 112C 13C 215=1235,P(X =2)=C 23C 215=135.所以X 的分布列为:X0 1 2P2235 1235 135数学期望为E(X)=0×2235+1×1235+2×135=25.名师点拨应用频率分布直方图时的注意事项用频率分布直方图解决相关问题时,应正确理解图表中各个量的意义,识图掌握信息是解决该类问题的关键.频率分布直方图有以下几个要点:(1)纵轴表示频率/组距;(2)频率分布直方图中各长方形高的比也就是其频率之比;(3)频率分布直方图中每一个矩形的面积是样本数据落在这个区间上的频率,所有的小矩形的面积之和等于1,即频率之和为1.〔变式训练1〕(1)(2021·安徽“皖南八校”摸底)某校高三年级有400名学生,在一次数学测试中,成绩都在[80,130](单位:分)内,其频率分布直方图如图,则这次测试数学成绩不低于100分的人数为_220__.(2)(2021·山西适应性考试)某病毒引起的肺炎的潜伏期平均为7天左右,短的约2~3天,长的约10~14天,甚至有20余天.某医疗机构对400名确诊患者的潜伏期进行统计,整理得到以下频率分布直方图.根据该直方图估计:要使90%的患者显现出明显病状,需隔离观察的天数至少是( C )A .12B .13C .14D .15[解析] (1)根据频率分布直方图知: (2a +0.04+0.03+0.02)×10=1⇒a =0.005; 计算出数学成绩不低于100分的频率为: (0.03+0.02+0.005)×10=0.55;所以这次测试数学成绩不低于100分的人数为0.55×400=220人.(2)由题可知,第一,二,三,四,五组的频率分别为0.16,0.4,0.32,0.08,0.04. 因为前三组的频率和为0.88, 故要使90%的患者显现出明显病状,则需隔离观察的天数至少是:13+0.9-0.880.02=14,故选C .考点二 茎叶图——师生共研例2 (多选题)(2021·四川省乐山市调研改编)胡萝卜中含有大量的β-胡萝卜素,摄入人体消化器官后,可以转化为维生素A ,现从a ,b 两个品种的胡萝卜所含的β-胡萝卜素(单位mg)得到茎叶图如图所示,则下列说法正确的是( ABD )A .x a <x bB .a 的方差大于b 的方差C .b 品种的众数为3.31D .a 品种的中位数为3.27 [解析] 由茎叶图得:b 品种所含β-胡萝卜素普遍高于a 品种, ∴x a <x b ,故A 正确;a 品种的数据波动比b 品种的数据波动大, ∴a 的方差大于b 的方差,故B 正确; b 品种的众数为3.31与3.41,故C 错误; a 品种的数据的中位数为:3.23+3.312=3.27,故D 正确.名师点拨茎叶图的绘制及应用(1)茎叶图的绘制需注意:①“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;②重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.(2)茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.〔变式训练2〕(2019·山东)如图所示的茎叶图记录了甲,乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 与y 的值分别为( A )A .3,5B .5,5C .3,7D .5,7[解析] 甲组数据的中位数为65,由甲、乙两组数据的中位数相等,得y =5.又甲、乙两组数据的平均值相等,∴15×(56+65+62+74+70+x)=15×(59+61+67+65+78),∴x =3.故选A . 考点三 样本数字特征——多维探究 角度1 样本数字特征与频率分布直方图例3 (1)如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是( B )A .12.5,12.5B .12.5,13C .13,12.5D .13,13[解析] 由频率分布直方图可知,众数为10+152=12.5,因为0.04×5=0.2,0.1×5=0.5,在频率分布直方图中,中位数左边和右边的面积相等,所以中位数在区间[10,15)内.设中位数为x ,则(x -10)×0.1=0.5-0.2,解得x =13.角度2 样本数字特征与茎叶图(2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:⎪⎪⎪897 74 0 1 0 x 9 1则7个剩余分数的方差为_367__.[解析] 由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4,∴s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.角度3 样本数字特征的计算(3)(2021·湖北武汉、襄阳、荆门、宜昌四地六校考试联盟联考)已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差s 2为( C )A .52B .3C .72D .4[解析] 设某7个数据分别为a 1,a 2,…,a 7, 则由题意得a 1+a 2+…+a 7=5×7=35, (a 1-5)2+(a 2-5)2+…+(a 7-5)2=4×7=28, 加入新数据5后的平均数x -=35+58=5,方差s 2=a 1-52+a 2-52+…+a 7-52+5-528=288=72.故选C .名师点拨平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数,中位数,众数描述其集中趋势,方差和标准差描述其波动大小.〔变式训练3〕(1)(角度1)某小区共有1 000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为_155__,平均数为_156.8__.(2)(角度2)(2021·陕西西安八校联考)在一次技能比赛中,共有12人参加,他们的得分(百分制)茎叶图如图,则他们得分的中位数和方差分别为( B )A .89 54.5B .89 53.5C .87 53.5D .89 54(3)高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为x 1,x 2,x 3,…,x 100,它们的平均数为x -,方差为s 2:其中扫码支付使用的人数分别为3x 1+2,3x 2+2,3x 3+2,…,3x 100+2,它们的平均数为x -′,方差为s′2,则x -′,s′2分别为( C )A .3x -+2,3s 2+2 B .3x -,3s 2C .3x -+2,9s 2D .3x -+2,9s 2+2[解析] (1)中位数为:150+(170-150)×0.10.02×20=155.该组数据的平均数为x =0.005×20×120+0.015×20×140+0.020×20×160+0.005×20×180+0.003×20×200+0.002×20×220=156.8.(2)由题可知,中位数为:87+912=89,先求平均数:x -=78+79+84+86+87+87+91+94+98+98+99+9912=90,S 2=112[(-12)2+(-11)2+(-6)2+(-4)2+(-3)2+(-3)2+12+42+82+82+92+92]=53.5,故中位数为:89,方差为53.5,故选:B .(3)显然x -′=3x -+2,而每个数据上都加上或减去相同数不影响方差,但每个数据都乘以a ,则方差变为原方差的a 2倍,故选C .考点四 折线图——师生共研例4 (多选题)(2021·河南顶级名校模拟改编)如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论不正确的是( BCD )A .连续三天日平均温度的方差最大的是7日,8日,9日三天B .这15天日平均温度的极差为15 ℃C .由折线图能预测16日温度要低于19 ℃D .由折线图能预测本月温度小于25 ℃的天数少于温度大于25 ℃的天数[解析] A 选项,日平均温度的方差的大小取决于日平均温度的波动的大小,7,8,9三日的日平均温度的波动最大,故日平均温度的方差最大,正确;B 选项,这15天日平均温度的极差为18 ℃,B 错;C 选项,由折线图无法预测16日温度是否低于19 ℃,故C 错误;D 选项,由折线图无法预测本月温度小于25 ℃的天数是否少于温度大于25 ℃的天数,故D 错误.故选B 、C 、D .名师点拨折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势.〔变式训练4〕(多选题)甲乙两名同学在本学期的六次考试成绩统计如图,甲乙两组数据的平均值分别为x -甲、x -乙,则( BC )A .每次考试甲的成绩都比乙的成绩高B .甲的成绩比乙稳定C .x -甲一定大于x -乙D .甲的成绩的极差大于乙的成绩的极差[解析] 第二次考试甲的成绩比乙低,A 错;由图可知甲的成绩比乙的成绩波动小,B 正确,D 错;甲的平均成绩显然比乙的平均成绩高,C 正确;故选B 、C .名师讲坛·素养提升 高考与频率分布直方图例5 (2021·安徽省池州市期末)高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150].其中a ,b ,c 成等差数列且c =2a ,物理成绩统计如表.(说明:数学满分150分,物理满分100分)分组 [50,60) [60,70) [70,80) [80,90) [90,100]频数6920105(1)根据频率分布直方图,请估计数学成绩的平均分; (2)根据物理成绩统计表,请估计物理成绩的中位数;(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人.记X 为抽到两个“优”的学生人数,求X 的分布列和期望值.[解析] (1)根据频率分布直方图得, (a +b +2c +0.024+0.020+0.004)×10 =1, 又因a +c =2b ,c =2a ,解得a =0.008,b =0.012,c =0.016, 故数学成绩的平均分x -=85×0.04+95×0.12+105×0.16+115×0.2+125×0.24 +135×0.16+145×0.08=117.8(分),(2)总人数50分,由物理成绩统计表知,中位数在成绩区间[70,80), 所以物理成绩的中位数为75分.(3)数学成绩为“优”的同学有4人,物理成绩为“优”有5人,因为至少有一个“优”的同学总数为6名同学,故两科均为“优”的人数为3人,故X 的取值为0、1、2、3.P(X =0)=C 33C 36=120,P(X =1)=C 13C 23C 36=920,P(X =2)=C 23C 13C 36=920,P(X =3)=C 33C 36=120,所以分布列为:X 0 1 2 3 P120920920120∴期望值为E(X)=0×120+1×920+2×920+3×120=32.名师点拨(1)通过统计图可以很清楚地表示出各部分数量同总数之间的关系. (2)准确理解频率分布直方图的数据特点是解题关键. 〔变式训练5〕(2019·高考全国Ⅲ卷)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).[解析](1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05,乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.。