25第五章 连续梁桥的设计与计算[1]
- 格式:ppt
- 大小:10.16 MB
- 文档页数:140
钢筋混凝土连续梁桥计算流程(一)钢筋混凝土连续梁桥计算流程引言钢筋混凝土连续梁桥是一种常见且重要的桥梁类型。
在设计和计算过程中,遵循一定的流程可以保证梁桥的结构安全和稳定性。
本文将详细介绍钢筋混凝土连续梁桥的计算流程。
流程一:梁桥初步设计1.确定桥梁的跨度、宽度和高度等基本参数。
2.根据桥梁的位置和用途,确定相应的设计规范和荷载标准。
3.使用结构设计软件或手工计算,进行初步设计,确定梁桥各个构件的尺寸和布置。
流程二:荷载计算和分析1.根据设计规范和荷载标准,确定梁桥所承受的各种静态和动态荷载。
2.将荷载转化为梁桥上各个构件的力和弯矩,进行静力分析。
3.进行动力分析,考虑桥梁的振动特性和动态荷载的作用。
流程三:结构计算和优化1.根据荷载计算和分析的结果,进行桥梁结构的计算,包括承载力、抗弯能力、抗剪能力等。
2.根据计算结果进行结构优化,调整梁桥各个构件的尺寸和布置,达到经济、安全、美观的设计目标。
流程四:钢筋设计1.根据结构计算的结果,确定梁桥各个构件所需的钢筋面积。
2.钢筋布置设计,确定钢筋的直径、间距和层数等参数。
3.进行钢筋计算和校核,保证每个钢筋构件的强度和刚度满足设计要求。
流程五:施工图设计1.根据梁桥的最终设计结果,进行施工图设计。
2.绘制梁桥的平面图、剖面图和详图,标注构件的尺寸、钢筋的布置和施工要求等。
流程六:施工阶段工程控制1.进行施工过程中的工程质量控制,包括混凝土浇筑质量、钢筋安装质量等。
2.监督施工进度和质量,确保梁桥按设计要求进行施工。
结论钢筋混凝土连续梁桥的计算流程是一个系统而复杂的过程,其中包括初步设计、荷载计算和分析、结构计算和优化、钢筋设计、施工图设计以及施工阶段的工程控制。
通过严谨的流程,可以确保梁桥的结构安全和施工质量。
钢筋混凝土连续梁桥计算流程钢筋混凝土连续梁桥计算流程1. 梁桥计算概述•连续梁桥是指由多个简支梁或连续梁组成的桥梁结构。
•计算连续梁桥的目的是确定合适的梁桥几何形状和材料尺寸,以满足设计要求和确保结构安全可靠。
2. 基本假设•进行连续梁桥计算时,需要基于以下假设:–材料的弹性性质符合线弹性假设;–材料的强度符合线性破坏模型;–结构在计算过程中保持线性变形。
3. 计算步骤•进行钢筋混凝土连续梁桥的计算时,通常需要按照以下步骤进行:1.确定梁桥的几何形状和外形尺寸;2.计算并确定工作状态荷载和极限状态荷载;3.进行受力分析,包括计算内力和弯矩分布;4.设计梁桥的纵向钢筋和横向钢筋布置;5.根据设计要求进行验算,包括截面抗弯承载力和抗剪承载力的验算;6.完善并绘制梁桥设计图纸;7.进行施工过程中的检测和监控。
4. 梁桥几何形状和外形尺寸确定•确定梁桥的几何形状和外形尺寸是连续梁桥计算的第一步。
•根据桥梁地理位置、交通需求和设计要求,确定梁桥的跨径、支座形式、高度和宽度等参数。
5. 工作状态荷载和极限状态荷载计算•工作状态荷载是指桥梁在正常使用情况下所受到的荷载,包括行车荷载、行人荷载和自重荷载等。
•极限状态荷载是指桥梁在极端情况下所受到的荷载,包括地震荷载、风荷载和水荷载等。
6. 内力和弯矩分布计算•根据荷载及其分布形式,采用结构解析方法计算连续梁桥的内力和弯矩分布。
•内力和弯矩分布的计算是连续梁桥设计的关键,需要保证结构在工作状态和极限状态下的安全可靠。
7. 纵向钢筋和横向钢筋布置设计•根据内力和弯矩分布结果,进行横向和纵向钢筋的布置设计。
•横向钢筋主要用于抵抗弯曲和剪切力,纵向钢筋主要用于抵抗弯矩和拉力。
8. 抗弯承载力和抗剪承载力验算•根据设计要求和规范要求,对梁桥的抗弯承载力和抗剪承载力进行验算。
•验算结果应满足设计要求,确保结构在工作状态和极限状态下的安全性和可靠性。
9. 梁桥设计图纸绘制•根据设计要求和验算结果,完善梁桥设计图纸。
第一章绪论第一节桥梁设计的基本原则和要求一、使用上的要求桥梁必须适用。
要有足够的承载和泄洪能力,能保证车辆和行人的安全畅通;既满足当前的要求,又照顾今后的发展,既满足交通运输本身的需要,也要兼顾其它方面的要求;在通航河道上,应满足航运的要求;靠近城市、村镇、铁路及水利设施的桥梁还应结合有关方面的要求,考虑综合利用。
建成的桥梁要保证使用年限,并便于检查和维护。
二、经济上的要求桥梁设计应体现经济上的合理性。
一切设计必须经过详细周密的技术经济比较,使桥梁的总造价和材料等的消耗为最小,在使用期间养护维修费用最省,并且经久耐用;另外桥梁设计还应满足快速施工的要求,缩短工期不仅能降低施工费用,面且尽早通车在运输上将带来很大的经济效益。
三、设计上的要求桥梁设计必须积极采用新结构、新设备、新材料、新工艺利新的设计思想,认真研究国外的先进技术,充分利用国际最新科学技术成果,把国外的先进技术与我们自己的独创结合起来,保证整个桥梁结构及其各部分构件在制造、运输、安装和使用过程中具有足够的强度、刚度、稳定性和耐久性。
四、施工上的要求桥梁结构应便于制造和安装,尽量采用先进的工艺技术和施工机械,以利于加快施工速度,保证工程质量和施工安全。
五、美观上的要求在满足上述要求的前提下,尽可能使桥梁具行优美的建筑外型,并与周围的景物相协调,在城市和游览地区,应更多地考虑桥梁的建筑艺术,但不可把美观片面地理解为豪华的细部装饰。
第二节计算荷载的确定桥梁承受着整个结构物的自重及所传递来的各种荷载,作用在桥梁上的计算荷载有各种不同的特性,各种荷载出现的机率也不同,因此需将作用荷载进行分类,并将实际可能同时出现的荷载组合起来,确定设计时的计算荷载。
一、作用分类与计算为了便于设计时应用,将作用在桥梁及道路构造物上的各种荷载,根据其性质分为:永久作用、可变作用和偶然作用三类。
(一)永久作用指长期作用着荷载和作用力,包括结构重力(包括结构附加重力)、预加力、土重力及土的侧压力、混凝土收缩徐变作用、水的浮力和基础变位而产生的影响力。
共享知识分享快乐设计原始资料1. 地形、地貌、气象、工程地质及水文地质、地震烈度等自然情况(1)气象:天津地区气候属于暖温带亚湿润大陆性季风气候区,部分地区受海洋气候影响。
四季分明,冬季寒冷干旱,春季大风频繁,夏季炎热多雨,雨量集中,秋季冷暖变化显著。
年平均气温12.2°C,最冷月平均气温-4°C,七月平均气温26.4°C。
(2)工程地质:天津地铁一号线经过地区处于海河冲积平原上,地形平坦,地势低平,地下水位埋深较浅,沿线分布了较多的粉砂、细砂、粉土,均为地震可液化层,局部地段具有地震液化现象。
沿线地层简单,第四系地层广泛发育,地层分布从上到下依次为人工堆积层、新近沉积层、上部陆相层、第一海相层、中上部陆相层、上部及中上部地层广泛发育沉积有十几米厚的软土。
a. 人工填土层,厚度5m,?k=100KP a;b. 粉质黏土,中密,厚度15m,?k=150 KP a;c. 粉质黏土,密实,厚度15m,?k=180KP a;d. 粉质黏土,密实,厚度10m,?k=190KP a。
第一章方案比选一、桥型方案比选桥梁的形式可考虑拱桥、梁桥、梁拱组合桥和斜拉桥。
任选三种作比较,从安全、功能、经济、美观、施工、占地与工期多方面比选,最终确定桥梁形式。
桥梁设计原则1 •适用性桥上应保证车辆和人群的安全畅通,并应满足将来交通量增长的需要。
桥下应满足泄洪、安全通航或通车等要求。
建成的桥梁应保证使用年限,并便于检查和维修。
2. 舒适与安全性现代桥梁设计越来越强调舒适度,要控制桥梁的竖向与横向振幅,避免车辆在桥上振动与冲击。
整个桥跨结构及各部分构件,在制造、运输、安装和使用过程中应具有足够的强度、刚度、稳定性和耐久性。
3. 经济性设计的经济性一般应占首位。
经济性应综合发展远景及将来的养护和维修等费用。
4. 先进性桥梁设计应体现现代桥梁建设的新技术。
应便于制造和架设,应尽量共享知识分享快乐采用先进工艺技术和施工机械、设备,以利于减少劳动强度,加快施工进度,保证工程质量和施工安全。
第1章绪论1.1 概述随着我国交通运输业的发展,人们对公路桥梁的建设提出了更高的要求,例如行车要舒适、平稳,建设周期要短等等。
于是,兼顾简支梁桥和连续梁桥优点的先简支后连续桥梁形式应运而生。
简支变连续梁桥经历了简支梁桥面(板)连续→恒载简支、活载连续、体系不转换→先简支后连续结构体系的发展历程,从原来的普通钢筋连接墩顶发展到现在的采用预应力筋连接,但是墩顶混凝土的开裂问题的克服效果不佳,就此国内外主要对墩顶混凝土开裂,以及如何更好连接墩顶以防止开裂的研究进行了大量的研究。
跨径大有增加,并且有继续增大的趋势,成为现代桥梁建设中的一种重要桥型。
简支梁桥属于单孔静定结构,它构造简单,施工方便,其结构尺寸易于设计成系列化和标准化,有利于在工厂内或地上广泛采用工业化施工,组织大规模预制生产,并用现代化的起重设备进行安装。
采用装配式的施工方法可以大量节约模板支架木材,降低劳动强度,缩短工期,显著加快建桥速度。
然而简支梁桥也存在很大缺点:从运营条件来说,简支梁桥在梁衔接处的挠曲线会发生不利于行车的折点,一般简支梁在梁衔接处设置成伸缩缝或桥面连续,伸缩缝造价较高,易受破坏,又无法避免行车的不舒适性;桥面连续也容易出现破坏(已建工程中简支梁上桥面连续出现破坏的屡见不鲜),另外简支梁跨中弯矩较大,致使梁的截面尺寸和自重显著增加,需要耗用材料多,这些都是简支梁桥的显著缺点。
而连续梁桥同简支梁桥相比较而言,其特点差别很大:结构较复杂,且从桥梁建筑现代化的角度来衡量,钢筋混凝土连续梁桥逊色于简支梁桥,因为当跨径较大时,长而重的构件不利于预制安装施工,而往往要在工费昂贵的支架上现浇,需要的工期长。
但是连续梁桥无断点,行车舒适,且由于支点负弯矩的存在,使跨中正弯矩值明显减少,从而减少材料用量及结构自重,这些特点是简支梁桥所无法比拟的。
先简支后连续梁桥刚好发挥了上述两种梁桥的优点,克服它们的缺点。
其施工特点是先按简支梁规模化施工,后用湿接缝把相临跨的梁块连接成连续梁,从而得到连续梁优越的使用效果。
连续梁桥毕业设计连续梁桥毕业设计在土木工程领域中,连续梁桥是一种常见的桥梁结构。
它由多个连续的梁段组成,通过梁段之间的支座连接起来。
连续梁桥的设计和施工需要考虑多个因素,包括桥梁的跨度、荷载、材料选择等。
本文将探讨连续梁桥的设计过程和一些关键要点。
在连续梁桥的设计中,首先需要确定桥梁的跨度。
跨度是指两个支座之间的距离。
较小的跨度可以减少桥梁的成本和施工难度,但也可能限制桥梁的通行能力。
较大的跨度则需要更强的结构支撑和更大的材料使用量。
因此,在设计连续梁桥时,需要权衡这些因素,找到最合适的跨度。
另一个重要的设计因素是荷载。
连续梁桥需要能够承受车辆和行人的重量,以及可能的自然灾害等外部力量。
设计师需要根据桥梁所在地区的交通情况和环境条件,合理估计荷载,并确保桥梁能够安全稳定地承受这些荷载。
在选择材料时,设计师需要考虑多个因素,包括强度、耐久性和成本等。
常见的连续梁桥材料包括钢、混凝土和预应力混凝土。
钢材具有较高的强度和灵活性,适用于较大跨度的桥梁。
混凝土则具有较好的耐久性和抗腐蚀性能,适用于长期使用的桥梁。
预应力混凝土则结合了两者的优点,可以提供更高的强度和耐久性。
设计师需要根据具体情况选择最合适的材料。
在连续梁桥的施工过程中,需要注意几个关键要点。
首先是梁段之间的支座设计。
支座需要能够承受桥梁的荷载,并提供足够的支撑力。
其次是梁段的预应力设计。
预应力是通过在梁段中引入张拉力来提高其承载能力。
设计师需要合理确定预应力的大小和位置,以确保梁段在荷载作用下不会发生变形或破坏。
最后是桥梁的施工工艺和质量控制。
连续梁桥的施工需要精确的测量和施工工艺,以确保桥梁的几何形状和结构性能符合设计要求。
除了上述的设计和施工要点,连续梁桥的毕业设计还需要考虑其他一些因素。
例如,桥梁的美观性和环境影响。
设计师可以通过合理的桥梁形状和装饰,提高桥梁的美观性,并与周围环境相协调。
此外,设计师还需要考虑桥梁对周围环境的影响,例如水流、土壤稳定性等。
简支梁和连续梁的计算简支梁和连续梁是结构工程中常见的两种梁的形式。
本文将分别从简支梁和连续梁的计算角度进行介绍。
简支梁是指梁两端支座完全固定,不受弯矩和剪力的约束,只有轴力作用的梁结构。
在计算简支梁时,需要考虑梁的受力情况以及梁的形状和材料等因素。
首先,需要确定梁的受力情况,包括梁的荷载和支座的约束。
根据支座的类型和位置,可以确定梁的边界条件,进而计算出梁的弯矩和剪力分布。
在计算弯矩和剪力时,可以使用静力学平衡方程和力矩平衡方程进行计算。
另外,还需要考虑梁的形状和材料的特性,如梁的截面形状、尺寸、材料的弹性模量等。
根据这些信息,可以计算出梁的挠度和应力分布,并进行验算。
简支梁的计算可以使用手算方法、数值计算方法或专业软件进行。
连续梁是指梁两端支座之间还有其他支座的梁结构。
在计算连续梁时,需要考虑梁的受力情况以及各支座的约束。
与简支梁不同的是,连续梁在计算时需要考虑梁的整体受力平衡。
首先,需要确定梁的边界条件,即支座的类型和位置。
可以根据支座的约束和梁的几何形状,建立受力平衡方程组,求解出各支座的反力。
然后,根据反力和支座的约束条件,可以计算出梁的弯矩和剪力分布。
在计算弯矩和剪力时,可以使用力矩平衡方程和剪力平衡方程进行计算。
同时,还需要考虑梁的形状和材料的特性,如梁的截面形状、尺寸、材料的弹性模量等。
根据这些信息,可以计算出梁的挠度和应力分布,并进行验算。
连续梁的计算通常较为复杂,需要使用专业软件进行计算,以提高计算的准确性和效率。
简支梁和连续梁在结构工程中都有广泛的应用。
简支梁适用于跨度较小、受力较简单的梁结构,如房屋的屋梁和桥梁的短跨径梁。
而连续梁适用于跨度较大、受力较复杂的梁结构,如高速公路桥梁、铁路桥梁和大跨度建筑物的梁。
根据实际情况选择适合的梁形式和计算方法,可以保证结构的安全和经济性。
简支梁和连续梁是结构工程中常见的两种梁的形式。
在计算简支梁和连续梁时,需要考虑梁的受力情况、形状和材料等因素,并使用适当的计算方法进行计算。