人教新版高中数学必修一《指数与指数幂的运算》ppt
- 格式:ppt
- 大小:568.50 KB
- 文档页数:13
指数与指数幂的运算无理数指数幂有理数指数幂整数指数幂分数指数幂幂的运算性质根式的性质.*,1,,,N n n n x a a x n ∈>=且其中次方根的叫做那么如果一般地n a根号被开方数 根指数 根式•1、n 次方根的定义及性质是平方根与立方根的定义及性质的推广:(1)在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,0的奇次方根是0..1,n a n a ,n R a 次方根是的则的奇数是大于设∈(2)在实数范围内,正数的偶次方根是一对相反数,负数 的偶次方根没有意义,0的偶次方根是0..1,0na n a ,n a ±≥次方根是的则的偶数是大于设开方运算.2的四次方根不是叫做四次根号结果则为的四次方根而求结果为的四次方如求为逆运算开方运算与乘方运算互运算次方根的运算称为开方的求2,222:,2;162:,2,,444±=n a 导图()⎩⎨⎧>>=>∈=>∈=)1,(|,|)1,(,.3)1*(,.2)1*(,00.1n n a n n a a n N n a a n N n n n n n n 且为正偶数且为正奇数且且:x x ,x y x y x 其中正确的是则若次方根是的有下列说法例.222)2(2)5(|;|)()4(;381)3(;2416)2(;327)1(:.13388243-=⎪⎭⎫ ⎝⎛-+-<+=+±=±=-.,263223)3(|;3|44,2)2(;)2(:)1.(262488的值及求实数已知化简有意义若求值例y x x x y x x x x x +-+-=--+---导图分数指数幂正分数指数幂规定:n mnmaa=(a>0,m,n∈N*,且n>1)负分数指数幂规定:n mnmaa1=-(a>0,m,n∈N*,且n>1)0的指数幂0的正分数指数幂等于0,0的负分数指数幂0次幂没有意义.导图)1*,,0(1>∈>=nNnaaa nn).0()5();0()4();0(1)3();0()2();0()()1(:,.3413314343316221>=≠-=>⎪⎭⎫ ⎝⎛=<=>-=---a a a a x x x x x x y y y x x x 正确的是根式与分数指数幂互化下列关系式中例)0()2(;)(1)1(:.4324323252>⎪⎪⎭⎫ ⎝⎛--b b x x 数幂的形式将下列式子化成分数指例导图一般地,无理数指数幂ra (0 a ,r 是无理数)是一个确定的实数.导图r r r s r s r rr r rs sr s r s r b a b a a aa b a ab aa aa a =⎪⎭⎫ ⎝⎛====-+.5.4).(3).(2;.1()33122121212121212175.0343031264233266141)3(2)2(|01.0|16])2[(8706.0)1(:)(.5⎪⎪⎭⎫ ⎝⎛-⨯+-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--+-+--++-+⎪⎭⎫ ⎝⎛-------ba ba b a b a b a 下列各式或化简计算例根式 化成 分数 小数 化成 分数.,3)2(;88),(22)1.(6212123232121的值求已知的值求常数已知例-------=++=+a a aa a a a x x x x。